79
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Primary Microplastics in the Ecosystem: Ecological Effects, Risks, and Comprehensive Perspectives on Toxicology and Detection Methods

, & ORCID Icon

References

  • Ritchie H, Roser M. Plastic Pollution. Our World Data.https://ourworldindata.org/plastic-pollution. 2018.
  • Kiran BR, Kopperi H, Venkata Mohan S. Micro/nano-plastics occurrence, identification, risk analysis and mitigation: challenges and perspectives. Rev Environ Sci Biotechnol. 2022;21(1):169–203. doi:10.1007/s11157-021-09609-6.
  • Napper IE, Thompson RC. Plastic debris in the marine environment: history and future challenges. Glob Challenges. 2020;4(6):1900081. doi:10.1002/gch2.201900081.
  • Bashir SM, Kimiko S, Mak C-W, Fang JK-H, Gonçalves D. Personal care and cosmetic products as a potential source of environmental contamination by microplastics in a densely populated Asian city. Front Mar Sci. 2021; 8:1–11. doi:10.3389/fmars.2021.683482.
  • Yang H, Dong H, Huang Y, Chen G, Wang J. Interactions of microplastics and main pollutants and environmental behavior in soils. Sci Total Environ. 2022;821:153511. doi:10.1016/j.scitotenv.2022.153511.
  • Mdlalose L, Chimuka L. Mitigation approaches to prevent microplastics effects in the aquatic environment: exploration of microbeads from personal care and cosmetic products. Int J Environ Res. 2022;16(5):84. doi:10.1007/s41742-022-00464-z.
  • Chatterjee S, Sharma S. Microplastics in our oceans and marine health. F Actions Sci Reports. 2019; Special Issue 19 :54–61.
  • Li J, Song Y, Cai Y. Focus topics on microplastics in soil: analytical methods, occurrence, transport, and ecological risks. Environ. Pollut. 2020;257:113570. doi:10.1016/j.envpol.2019.113570.
  • Dris R, Gasperi J, Mirande C, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017;221:453–458. doi:10.1016/j.envpol.2016.12.013.
  • Zhang B, Yang X, Chen L, Chao J, Teng J, Wang Q. Microplastics in soils: a review of possible sources, analytical methods and ecological impacts. J Chem Tech Biotech. 2020;95(8):2052–2068. doi:10.1002/jctb.6334.
  • Campanale C, Stock F, Massarelli C, et al. Microplastics and their possible sources: the example of Ofanto River in Southeast Italy. Environ Pollut. 2020;258:113284. doi:10.1016/j.envpol.2019.113284.
  • Allen S, Allen D, Phoenix VR, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci. 2019;12(5):339–344. doi:10.1038/s41561-019-0335-5.
  • Rochman CM. Microplastics research from sink to source. Science. 2018;360(6384):28–29. doi:10.1126/science.aar7734.
  • Eerkes-Medrano D, Thompson RC, Aldridge DC. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015;75:63–82. doi:10.1016/j.watres.2015.02.012.
  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 2017;586:127–141. doi:10.1016/j.scitotenv.2017.01.190.
  • Näkki P, Setälä O, Lehtiniemi M. Bioturbation transports secondary microplastics to deeper layers in soft marine sediments of the Northern Baltic Sea. Mar. Pollut. Bull. 2017;119(1):255–261. doi:10.1016/j.marpolbul.2017.03.065.
  • Lassen C, Hansen SF, Magnusson K, et al. Microplastics occurrence, effects and sources of releases to the environment in Denmark. Denmark: Danish Environmental Protection Agency; 2015. Report No. 1793/2015: 1–205.
  • Heilig ML. United States patent office. SIGGRAPH Comput Graph. 1994;28(2):131–134. doi:10.1145/178951.178972.
  • Sundt P, Per-Erik Schultze FS. Sources of microplastic- pollution to the marine environment. Miljodirektoratet: Mepex Nor Environ Agency; 2014. Report No. M-321/2015: 86
  • Essel R, Engel L, Carus M and Ahrens RH. Sources of microplastics relevant to marine protection in Germany. Germany: Federal Environment Agency; 2015. Texte 64/2015, Project No. 31969, Report No. (UBA-FB) 002146/E: 1–45.
  • Eriksen M, Mason S, Wilson S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull. 2013;77(1–2):177–182. doi:10.1016/j.marpolbul.2013.10.007.
  • Leslie HA. Review of microplastics in cosmetics. IVM Inst Environ Stud. 2014;476(July):33.
  • Yurtsever M. Glitters as a source of primary microplastics: an approach to environmental responsibility and ethics. J Agric Environ Ethics. 2019;32(3):459–478. doi:10.1007/s10806-019-09785-0.
  • Kibria MG, Masuk NI, Safayet R, Nguyen HQ, Mourshed M. Plastic waste: challenges and opportunities to mitigate pollution and effective management. Int J Environ Res. 2023;17(1):20. doi:10.1007/s41742-023-00507-z.
  • Whitacre DM, ed. Reviews of Environmental Contamination and Toxicology, USA: Springer Cham, 2014; Vol. 227.
  • Rillig MC. Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol. 2012;46(12):6453–6454. doi:10.1021/es302011r.
  • Luo Y, Awoyemi OS, Naidu R, Fang C. Detection of Microplastics and Nanoplastics Released from a Kitchen Blender Using Raman Imaging. J. Hazard. Mater. 2023, 453, 131403: 1-9. doi: 10.1016/j.jhazmat.2023.131403.
  • Wang T, Li B, Zou X, et al. Emission of primary microplastics in mainland China: invisible but not negligible. Water Res. 2019;162:214–224. doi:10.1016/j.watres.2019.06.042.
  • van Wezel A, Caris I, Kools SAE. Release of primary microplastics from consumer products to wastewater in the Netherlands. Environ Toxicol Chem. 2016;35(7):1627–1631. doi:10.1002/etc.3316.
  • Xia B, Sui Q, Du Y, et al. Secondary PVC microplastics are more toxic than primary PVC microplastics to Oryzias melastigma embryos. J Hazard Mater. 2022;424:127421. doi:10.1016/j.jhazmat.2021.127421.
  • Magnusson K, Norén F. Screening of microplastic particles in and down-stream a wastewater treatment plant. Stockholm, Sweden: IVL Swedish Environmental Research Institute; 2014. Report C55.
  • Talvitie J, Heinonen M, Pääkkönen J-P, et al. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the Coastal Gulf of Finland, Baltic Sea. Water Sci Technol J Int Assoc Water Pollut Res. 2015;72(9):1495–1504. doi:10.2166/wst.2015.360.
  • Murphy F, Ewins C, Carbonnier F, Quinn B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ Sci Technol. 2016;50(11):5800–5808. doi:10.1021/acs.est.5b05416.
  • Mintenig SM, Int-Veen I, Löder MGJ, Primpke S, Gerdts G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017;108:365–372. doi:10.1016/j.watres.2016.11.015.
  • Ziajahromi S, Neale PA, Rintoul L, Leusch FDL. Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res. 2017;112:93–99. doi:10.1016/j.watres.2017.01.042.
  • Gies EA, LeNoble JL, Noël M, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar Pollut Bull. 2018;133:553–561. doi:10.1016/j.marpolbul.2018.06.006.
  • Gündoğdu S, Çevik C, Güzel E, Kilercioğlu S. Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environ Monit Assess. 2018;190(11):626. doi:10.1007/s10661-018-7010-y.
  • Conley K, Clum A, Deepe J, Lane H, Beckingham B. Wastewater treatment plants as a source of microplastics to an urban estuary: removal efficiencies and loading per capita over one year. Water Res. X. 2019;3:100030. doi:10.1016/j.wroa.2019.100030.
  • Lv X, Dong Q, Zuo Z, Liu Y, Huang X, Wu W-M. Microplastics in a municipal wastewater treatment plant: fate, dynamic distribution, removal efficiencies, and control strategies. J Clean Prod. 2019;225:579–586. doi:10.1016/j.jclepro.2019.03.321.
  • Magni S, Binelli A, Pittura L, et al. The fate of microplastics in an Italian wastewater treatment plant. Sci. Total Environ. 2019;652:602–610. doi:10.1016/j.scitotenv.2018.10.269.
  • Leslie HA, Brandsma SH, van Velzen MJM, Vethaak AD. Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ Int. 2017;101:133–142. doi:10.1016/j.envint.2017.01.018.
  • Iyare PU, Ouki SK, Bond T. Microplastics removal in wastewater treatment plants: a critical review. Environ Sci Water Res Technol. 2020;6(10):2664–2675. doi:10.1039/D0EW00397B.
  • Dris R, Gasperi J, Rocher V, Saad M, Renault N, Tassin B. Microplastic contamination in an urban area: a case study in Greater Paris. Environ Chem. 2015;12(5):592–599. doi:10.1071/EN14167.
  • Lee H, Kim Y. Treatment characteristics of microplastics at biological sewage treatment facilities in Korea. Mar Pollut Bull. 2018;137:1–8. doi:10.1016/j.marpolbul.2018.09.050.
  • Simon M, van Alst N, Vollertsen J. Quantification of microplastic mass and removal rates at wastewater treatment plants applying focal plane array (FPA)-based Fourier transform infrared (FT-IR) imaging. Water Res. 2018;142:1–9. doi:10.1016/j.watres.2018.05.019.
  • Wisniowska E, Moraczewska-Majkut K, Nocon W. Efficiency of microplastics removal in selected wastewater treatment plants – preliminary studies. DWT. 2018;134:316–323. doi:10.5004/dwt.2018.23418.
  • Kleinschmidt JM, Janosik AM. Microplastics in Florida, United States: a case study of quantification and characterization with intertidal snails. Front Ecol Evol. 2021;9:1–12. doi:10.3389/fevo.2021.645727.
  • Sobhani Z, Luo Y, Gibson CT, et al. Collecting microplastics in gardens: case study (i) of soil. Front Environ Sci. 2021;9:1–11. doi:10.3389/fenvs.2021.739775.
  • Ragusa A, Notarstefano V, Svelato A, et al. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers. 2022;14(13):1–14. doi:10.3390/polym14132700.
  • Kılıç E, Yücel N, Şahutoğlu SM. Microplastic composition, load and removal efficiency from wastewater treatment plants discharging into Orontes River. Int J Environ Res. 2023;17(2):25. doi:10.1007/s41742-023-00514-0.
  • Yang L, Zhang Y, Kang S, Wang Z, Wu C. Microplastics in soil: a review on methods, occurrence, sources, and potential risk. Sci Total Environ. 2021;780:146546. doi:10.1016/j.scitotenv.2021.146546.
  • Murray A, Örmeci B. Removal effectiveness of nanoplastics (<400 Nm) with separation processes used for water and wastewater treatment. Water. 2020;12(3):635. doi:10.3390/w12030635.
  • Wright SL, Ulke J, Font A, Chan KLA, Kelly FJ. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ Int. 2020;136:105411. doi:10.1016/j.envint.2019.105411.
  • Zhang Y, Kang S, Allen S, Allen D, Gao T, Sillanpää M. Atmospheric microplastics: a review on current status and perspectives. Earth-Science Rev. 2020;203:103118. doi:10.1016/j.earscirev.2020.103118.
  • Allen S, Allen D, Moss K, Le Roux G, Phoenix VR, Sonke JE. Examination of the ocean as a source for atmospheric microplastics. PLOS One. 2020;15(5):e0232746. doi:10.1371/journal.pone.0232746.
  • Botterell ZLR, Beaumont N, Dorrington T, Steinke M, Thompson RC, Lindeque PK. Bioavailability and effects of microplastics on marine zooplankton: a review. Environ Pollut. 2019;245:98–110. doi:10.1016/j.envpol.2018.10.065.
  • Lambert S, Scherer C, Wagner M. Ecotoxicity testing of microplastics: considering the heterogeneity of physicochemical properties. Integr Environ Assess Manag. 2017;13(3):470–475. doi:10.1002/ieam.1901.
  • Gao H, Yan C, Liu Q, Ding W, Chen B, Li Z. Effects of plastic mulching and plastic residue on agricultural production: a meta-analysis. Sci Total Environ. 2019;651(Pt 1):484–492. doi:10.1016/j.scitotenv.2018.09.105.
  • Schwinghammer L, Krause S, Schaum C. Determination of large microplastics: wet-sieving of dewatered digested sludge, co-substrates, and compost. Water Sci Technol. 2020;84(2):384–392. doi:10.2166/wst.2020.582.
  • McGivney E, Cederholm L, Barth A, et al. Rapid physicochemical changes in microplastic induced by biofilm formation. Front Bioeng Biotechnol. 2020;8:1–14. doi:10.3389/fbioe.2020.00205.
  • Gandara E Silva PP, Nobre CR, Resaffe P, Pereira CDS, Gusmão F. Leachate from microplastics impairs larval development in brown mussels. Water Res. 2016;106:364–370. doi:10.1016/j.watres.2016.10.016.
  • O’Connor IA, Golsteijn L, Hendriks AJ. Review of the partitioning of chemicals into different plastics: consequences for the risk assessment of marine plastic debris. Mar Pollut Bull. 2016;113(1–2):17–24. doi:10.1016/j.marpolbul.2016.07.021.
  • Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY. A global perspective on microplastics. JGR Oceans. 2020;125(1):1–40. doi:10.1029/2018JC014719.
  • Dobslaw D, Woiski C, Kiel M, Kuch B, Breuer J. Plant uptake, translocation and metabolism of PBDEs in plants of food and feed industry: a review. Rev Environ Sci Biotechnol. 2021;20(1):75–142. doi:10.1007/s11157-020-09557-7.
  • Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN. In: Karcioglu O, Arslan B, eds. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. Rijeka: IntechOpen; 2019: 1–13.
  • Verla AW, Enyoh CE, Verla EN, Nwarnorh KO. Microplastic–toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Appl Sci. 2019;1(11):1400. doi:10.1007/s42452-019-1352-0.
  • Amelia TSM, Khalik WMAWM, Ong MC, Shao YT, Pan H-J, Bhubalan K. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Prog Earth Planet Sci. 2021;8(1):12. doi:10.1186/s40645-020-00405-4.
  • Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B. Microplastics in aquatic environments: toxicity to trigger ecological consequences. Environ Pollut. 2020;261:114089. doi:10.1016/j.envpol.2020.114089.
  • Li J, Zhang K, Zhang H. Adsorption of antibiotics on microplastics. Environ Pollut. 2018;237:460–467. doi:10.1016/j.envpol.2018.02.050.
  • Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: a scoping review. Sci Total Environ. 2021;757:143872. doi:10.1016/j.scitotenv.2020.143872.
  • Carbery M, O’Connor W, Palanisami T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int. 2018;115:400–409. doi:10.1016/j.envint.2018.03.007.
  • Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B. Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol. 2019;53(4):1748–1765. doi:10.1021/acs.est.8b05512.
  • Mason SA, Welch VG, Neratko J. Synthetic polymer contamination in bottled water. Front Chem. 2018;6:1–11. doi:10.3389/fchem.2018.00407.
  • Ge H, Yan Y, Wu D, Huang Y, Tian F. Potential Role of LINC00996 in Colorectal Cancer: A Study Based on Data Mining and Bioinformatics. Onco. Targets. Ther. 2018;11:4845–4855. doi:10.2147/OTT.S173225.
  • Yee MS-L, Hii L-W, Looi CK, et al. Impact of microplastics and nanoplastics on human health. Nanomater. 2021;11(2):1–22. doi:10.3390/nano11020496.
  • Stapleton PA. Toxicological considerations of nano-sized plastics. AIMS Environ Sci. 2019;6(5):367–378. doi:10.3934/environsci.2019.5.367.
  • Hernandez LM, Yousefi N, Tufenkji N. Are there nanoplastics in your personal care products? Environ Sci Technol Lett. 2017;4(7):280–285. doi:10.1021/acs.estlett.7b00187.
  • Dawson A, Huston W, Kawaguchi S, et al. Uptake and depuration kinetics influence microplastic bioaccumulation and toxicity in Antarctic Krill (Euphausia Superba). Environ Sci. Technol. 2018;52(5):3195–3201. doi:10.1021/acs.est.7b05759.
  • Mitrano DM, Wick P, Nowack B. Placing nanoplastics in the context of global plastic pollution. Nat Nanotechnol. 2021;16(5):491–500. doi:10.1038/s41565-021-00888-2.
  • Clark NJ, Khan FR, Mitrano DM, Boyle D, Thompson RC. Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. Environ. Int. 2022;159:106994. doi:10.1016/j.envint.2021.106994.
  • McIlwraith HK, Kim J, Helm P, Bhavsar SP, Metzger JS, Rochman CM. Evidence of microplastic translocation in wild-caught fish and implications for microplastic accumulation dynamics in food webs. Environ Sci Technol. 2021;55(18):12372–12382. doi:10.1021/acs.est.1c02922.
  • So MWK, Vorsatz LD, Cannicci S, Not C. Fate of plastic in the environment: from macro to nano by macrofauna. Environ Pollut. 2022;300:118920. doi:10.1016/j.envpol.2022.118920.
  • Fournier SB, D’Errico JN, Adler DS, et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol. 2020;17(1):55. doi:10.1186/s12989-020-00385-9.
  • Hu L, Chernick M, Lewis AM, Ferguson PL, Hinton DE. Chronic microfiber exposure in adult Japanese Medaka (Oryzias Latipes). PLOS One. 2020;15(3):e0229962. doi:10.1371/journal.pone.0229962.
  • Hu L, Zhou Y, Wang Y, Zhang D, Pan X. Transfer of micro(nano)plastics in animals: a mini-review and future research recommendation. J Hazard Mater Adv. 2022;7:100101. doi:10.1016/j.hazadv.2022.100101.
  • Driedger AGJ, Dürr HH, Mitchell K, Van Cappellen P. Plastic debris in the Laurentian Great Lakes: a review. J Great Lakes Res. 2015;41(1):9–19. doi:10.1016/j.jglr.2014.12.020.
  • Long M, Moriceau B, Gallinari M, et al. Interactions between microplastics and phytoplankton aggregates : impact on their respective fates. Mar Chem. 2015;175:39–46. doi:10.1016/j.marchem.2015.04.003.
  • Musa IO, Auta HS, Ilyasu US, et al. Micro- and nanoplastics in environment: degradation, detection, and ecological impact. Int J Environ Res. 2023;18(1):1. doi:10.1007/s41742-023-00551-9.
  • Zantis LJ, Carroll EL, Nelms SE, Bosker T. Marine mammals and microplastics: a systematic review and call for standardisation. Environ Pollut. 2021;269:116142. doi:10.1016/j.envpol.2020.116142.
  • Lu L, Luo T, Zhao Y, Cai C, Fu Z, Jin Y. Interaction between microplastics and microorganism as well as gut microbiota: a consideration on environmental animal and human health. Sci Total Environ. 2019;667:94–100. doi:10.1016/j.scitotenv.2019.02.380.
  • Cole M, Lindeque P, Fileman E, et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 2013;47(12):6646–6655. doi:10.1021/es400663f.
  • He M, Yan M, Chen X, et al. Bioavailability and toxicity of microplastics to zooplankton. Gondwana Res. 2022;108:120–126. doi:10.1016/j.gr.2021.07.021.
  • EEA. Plastic in textiles : towards a circular economy for synthetic textiles in Europe. https://www.eea.europa.eu/publications/plastic-in-textiles-towards-a. European Environment Agency| Briefing No 25/2020. Published Month June 29, 2021
  • Romera-Castillo C, Pinto M, Langer TM, Álvarez-Salgado XA, Herndl GJ. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat Commun. 2018;9(1):1430. doi:10.1038/s41467-018-03798-5.
  • Miao L, Wang P, Hou J, et al. Distinct community structure and microbial functions of biofilms colonizing microplastics. Sci Total Environ. 2019;650(Pt 2):2395–2402. doi:10.1016/j.scitotenv.2018.09.378.
  • McCormick AR, Hoellein TJ, London MG, Hittie J, Scott JW, Kelly JJ. Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages. Ecosphere. 2016;7(11):e01556. doi:10.1002/ecs2.1556.
  • Gong M, Yang G, Zhuang L, Zeng EY. Microbial biofilm formation and community structure on low-density polyethylene microparticles in lake water microcosms. Environ Pollut. 2019;252(Pt A):94–102. doi:10.1016/j.envpol.2019.05.090.
  • Smith M, Love DC, Rochman CM, Neff RA. Microplastics in seafood and the implications for human health. Curr Environ Heal Reports. 2018;5(3):375–386. doi:10.1007/s40572-018-0206-z.
  • Hitchcock JN. Microplastics can alter phytoplankton community composition. Sci Total Environ. 2022;819(January):153074. doi:10.1016/j.scitotenv.2022.153074.
  • Mao Y, Ai H, Chen Y, et al. Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere. 2018;208:59–68. doi:10.1016/j.chemosphere.2018.05.170.
  • Senavirathna MDHJ, Zhaozhi L, Fujino T. Root adsorption of microplastic particles affects the submerged freshwater macrophyte Egeria Densa. Water Air Soil Pollut. 2022;233(3):80. doi:10.1007/s11270-022-05556-2.
  • Zhang C, Jian M-F, Chen Y-M[, et al. Effects of polystyrene microplastics (PS-MPs) on the growth, physiology, and biochemical characteristics of Hydrilla verticillata. Ying Yong Sheng Tai Xue Bao [J Appl Ecol]. 2021;32(1):317–325. doi:10.13287/j.1001-9332.202101.037.
  • Klein M, Fischer EK. Microplastic abundance in atmospheric deposition within the metropolitan area of Hamburg, Germany. Sci Total Environ. 2019;685:96–103. doi:10.1016/j.scitotenv.2019.05.405.
  • Baensch-Baltruschat B, Kocher B, Stock F, Reifferscheid G. Tyre and road wear particles (TRWP) – a review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci Total Environ. 2020;733:137823. doi:10.1016/j.scitotenv.2020.137823.
  • SAPEA, Science Advice for Policy By European Academies. A Scientific Perspective on Microplastics in Nature and Society. Berlin: SAPEA; 2019; Evidence Review Report No. 4: 1-173. doi: 10.26356/microplastics.
  • Henry B, Laitala K, Klepp IG. Microfibres from apparel and home textiles: prospects for including microplastics in environmental sustainability assessment. Sci Total Environ. 2019;652:483–494. doi:10.1016/j.scitotenv.2018.10.166.
  • Gong J, Xie P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere. 2020;254:126790. doi:10.1016/j.chemosphere.2020.126790.
  • de Souza Machado AA, Lau CW, Till J, et al. Impacts of microplastics on the soil biophysical environment. Environ Sci Technol. 2018;52(17):9656–9665. doi:10.1021/acs.est.8b02212.
  • de Souza Machado AA, Lau CW, Kloas W, et al. Microplastics can change soil properties and affect plant performance. Environ Sci Technol. 2019;53(10):6044–6052. doi:10.1021/acs.est.9b01339.
  • Wang J, Huang M, Wang Q, Sun Y, Zhao Y, Huang Y. LDPE microplastics significantly alter the temporal turnover of soil microbial communities. Sci Total Environ. 2020;726:138682. doi:10.1016/j.scitotenv.2020.138682.
  • Rillig MC, de Souza Machado AA, Lehmann A, Klümper U. Evolutionary implications of microplastics for soil biota. Environ Chem. 2019;16(1):3–7. doi:10.1071/EN18118.
  • Zhang Y, Zhang X, Li X, He D. Interaction of microplastics and soil animals in agricultural ecosystems. Curr Opin Environ Sci Heal. 2022;26:100327. doi:10.1016/j.coesh.2022.100327.
  • Ding J, Liu C, Chen Q, et al. Extractable additives in microplastics: a hidden threat to soil fauna. Environ Pollut. 2022;294:118647. doi:10.1016/j.envpol.2021.118647.
  • Liu K, Wang X, Song Z, Wei N, Li D. Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Sci Total Environ. 2020;742:140523. doi:10.1016/j.scitotenv.2020.140523.
  • Luo X, Bing H, Luo Z, Wang Y, Jin L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: a review. Environ Pollut. 2019;255:113138. doi:10.1016/j.envpol.2019.113138.
  • Lian J, Liu W, Meng L, et al. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca Sativa L.). Environ Pollut. 2021;280:116978. doi:10.1016/j.envpol.2021.116978.
  • Meng F, Yang X, Riksen M, Geissen V. Effect of different polymers of microplastics on soil organic carbon and nitrogen – a mesocosm experiment. Environ Res. 2022;204:111938. doi:10.1016/j.envres.2021.111938.
  • Huang D, Wang X, Yin L, et al. Research progress of microplastics in soil-plant system: ecological effects and potential risks. Sci Total Environ. 2022;812:151487. doi:10.1016/j.scitotenv.2021.151487.
  • Wang Y, Huang J, Zhu F, Zhou S. Airborne microplastics: a review on the occurrence, migration and risks to humans. Bull Environ Contam Toxicol. 2021;107(4):657–664. doi:10.1007/s00128-021-03180-0.
  • Vianello A, Jensen RL, Liu L, Vollertsen J. Simulating human exposure to indoor airborne microplastics using a breathing thermal manikin. Sci Rep. 2019;9(1):8670. doi:10.1038/s41598-019-45054-w.
  • Alderete TL, Jones RB, Chen Z, et al. Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents. Environ Res. 2018;161:472–478. doi:10.1016/j.envres.2017.11.046.
  • Soltani NS, Taylor MP, Wilson SP. Quantification and exposure assessment of microplastics in Australian indoor house dust. Environ Pollut. 2021;283:117064. doi:10.1016/j.envpol.2021.117064.
  • Shi W, Cao Y, Chai X, et al. Potential health risks of the interaction of microplastics and lung surfactant. J Hazard Mater. 2022;429:128109. doi:10.1016/j.jhazmat.2021.128109.
  • Goodman KE, Hare JT, Khamis ZI, Hua T, Sang Q-XA. Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes. Chem Res Toxicol. 2021;34(4):1069–1081. doi:10.1021/acs.chemrestox.0c00486.
  • Xu M, Halimu G, Zhang Q, et al. Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ. 2019;694:133794. doi:10.1016/j.scitotenv.2019.133794.
  • Dong C-D, Chen C-W, Chen Y-C, Chen H-H, Lee J-S, Lin C-H. Polystyrene microplastic particles: in vitro pulmonary toxicity assessment. J Hazard Mater. 2020;385:121575. doi:10.1016/j.jhazmat.2019.121575.
  • Zhang J, Wang L, Trasande L, Kannan K. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environ Sci Technol Lett. 2021;8(11):989–994. doi:10.1021/acs.estlett.1c00559.
  • Fackelmann G, Sommer S. Microplastics and the gut microbiome: how chronically exposed species may suffer from gut dysbiosis. Mar Pollut Bull. 2019;143:193–203. doi:10.1016/j.marpolbul.2019.04.030.
  • Stock V, Fahrenson C, Thuenemann A, et al. Impact of artificial digestion on the sizes and shapes of microplastic particles. Food Chem Toxicol. 2020;135:111010. doi:10.1016/j.fct.2019.111010.
  • Huang W, Yin H, Yang Y, Jin L, Lu G, Dang Z. Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: simulation in vitro with human cell Caco-2 and gut microbiota. Sci Total Environ. 2021;778:146264. doi:10.1016/j.scitotenv.2021.146264.
  • Stock V, Böhmert L, Lisicki E, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol. 2019;93(7):1817–1833. doi:10.1007/s00204-019-02478-7.
  • Deng Y, Zhang Y, Lemos B, Ren H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep. 2017;7(1):46687. doi:10.1038/srep46687.
  • Ibrahim YS, Tuan Anuar S, Azmi AA, et al. Detection of microplastics in human colectomy specimens. JGH Open. 2021;5(1):116–121. doi:10.1002/jgh3.12457.
  • Tan M, Sun Y, Gui J, Wang J, Chen X, Wu D. The efficiency of different digestion and separation methods for extracting microplastics in typical organic solid waste. Int J Environ Res. 2022;16(2):16. doi:10.1007/s41742-022-00394-w.
  • Heo NW, Hong SH, Han GM, et al. Distribution of small plastic debris in cross-section and high strandline on Heungnam Beach, South Korea. Ocean Sci J. 2013;48(2):225–233. doi:10.1007/s12601-013-0019-9.
  • Hidalgo-Ruz V, Thiel M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): a study supported by a citizen science project. Mar Environ Res. 2013;87–88:12–18. doi:10.1016/j.marenvres.2013.02.015.
  • Desforges J-PW, Galbraith M, Dangerfield N, Ross PS. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 2014;79(1–2):94–99. doi:10.1016/j.marpolbul.2013.12.035.
  • Song YK, Hong SH, Jang M, et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull. 2015;93(1–2):202–209. doi:10.1016/j.marpolbul.2015.01.015.
  • Shim WJ, Hong SH, Eo SE. Identification methods in microplastic analysis: a review. Anal Methods. 2017;9(9):1384–1391. doi:10.1039/C6AY02558G.
  • Song YK, Hong SH, Jang M, et al. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ. Sci. Technol. 2014;48(16):9014–9021. doi:10.1021/es501757s.
  • Han XX, Rodriguez RS, Haynes CL, Ozaki Y, Zhao B. Surface-enhanced raman spectroscopy. Nat Rev Methods Prim. 2022;1(1):87. doi:10.1038/s43586-021-00083-6.
  • Mogha NK, Shin D. Nanoplastic detection with surface enhanced Raman spectroscopy: present and future. TrAC Trends Anal Chem. 2023;158:116885. doi:10.1016/j.trac.2022.116885.
  • Li P, Long F, Chen W, Chen J, Chu PK, Wang H. Fundamentals and applications of surface-enhanced raman spectroscopy–based biosensors. Curr Opin Biomed Eng. 2020;13:51–59. doi:10.1016/j.cobme.2019.08.008.
  • Mandal P, Tewari BS. Progress in surface enhanced Raman scattering molecular sensing: a review. Surf Interf. 2022;28:101655. doi:10.1016/j.surfin.2021.101655.
  • Yılmaz D, Günaydın BN, Yüce M. Nanotechnology in food and water security: on-site detection of agricultural pollutants through surface-enhanced Raman spectroscopy. Emergent Mater. 2022;5(1):105–132. doi:10.1007/s42247-022-00376-w.
  • Jiménez-Lamana J, Marigliano L, Allouche J, Grassl B, Szpunar J, Reynaud S. A novel strategy for the detection and quantification of nanoplastics by single particle inductively coupled plasma mass spectrometry (ICP-MS). Anal Chem. 2020;92(17):11664–11672. doi:10.1021/acs.analchem.0c01536.
  • Lai Y, Dong L, Li Q, et al. Counting nanoplastics in environmental waters by single particle inductively coupled plasma mass spectroscopy after cloud-point extraction and in situ labeling of gold nanoparticles. Environ Sci Technol. 2021;55(8):4783–4791. doi:10.1021/acs.est.0c06839.
  • Laborda F, Trujillo C, Lobinski R. Analysis of microplastics in consumer products by single particle-inductively coupled plasma mass spectrometry using the carbon-13 isotope. Talanta. 2021;221:121486. doi:10.1016/j.talanta.2020.121486.
  • Randhawa JS. Advanced analytical techniques for microplastics in the environment: a review. Bull Natl Res Cent. 2023;47(1):174. doi:10.1186/s42269-023-01148-0.
  • Okoffo ED, Ribeiro F, O’Brien JW, et al. Identification and quantification of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography–mass spectrometry. Sci Total Environ. 2020;715:136924. doi:10.1016/j.scitotenv.2020.136924.
  • Blomberg J. The Mechanism Behind Internal Injector Deposits [Thesis] Stockholm, Sweden: KTH Royal Institute of Technology; 2023
  • Peng C, Tang X, Gong X, Dai Y, Sun H, Wang L. Development and application of a mass spectrometry method for quantifying nylon microplastics in environment. Anal. Chem. 2020;92(20):13930–13935. doi:10.1021/acs.analchem.0c02801.
  • Zhang J, Wang L, Kannan K. Quantitative analysis of polyethylene terephthalate and polycarbonate microplastics in sediment collected from South Korea, Japan and the USA. Chemosphere. 2021;279:130551. doi:10.1016/j.chemosphere.2021.130551.
  • Ng KT, Rapp-Wright H, Egli M, et al. High-throughput multi-residue quantification of contaminants of emerging concern in wastewaters enabled using direct injection liquid chromatography-tandem mass spectrometry. J Hazard Mater. 2020;398:122933. doi:10.1016/j.jhazmat.2020.122933.
  • Lin Y, Huang X, Liu Q, Lin Z, Jiang G. Thermal fragmentation enhanced identification and quantification of polystyrene micro/nanoplastics in complex media. Talanta. 2020;208:120478. doi:10.1016/j.talanta.2019.120478.
  • Adhikari S, Kelkar V, Kumar R, Halden RU. Methods and challenges in the detection of microplastics and nanoplastics: a mini-review. Polym Int. 2022;71(5):543–551. doi:10.1002/pi.6348.
  • Moon S, Martin LMA, Kim S, et al. Direct observation and identification of nanoplastics in ocean water. Sci Adv. 2024;10(4):eadh1675. doi:10.1126/sciadv.adh1675.
  • Tse Y-T, Lo H-S, Chan SM, Sze ET. Flow cytometry as a rapid alternative to quantify small microplastics in environmental water samples. Water. 2022;14(9):1436. doi:10.3390/w14091436.
  • Kaile N, Lindivat M, Elio J, Thuestad G, Crowley QG, Hoell IA. Preliminary results from detection of microplastics in liquid samples using flow cytometry. Front Mar Sci. 2020;7: 1–12. doi:10.3389/fmars.2020.552688.
  • Pérez-Guevara F, Roy PD, Kutralam-Muniasamy G, Shruti VC. A central role for fecal matter in the transport of microplastics: an updated analysis of new findings and persisting questions. J Hazard Mater Adv. 2021;4:100021. doi:10.1016/j.hazadv.2021.100021.
  • Mansa R, Zou S. Thermogravimetric analysis of microplastics: a mini review. Environ Adv. 2021;5:100117. doi:10.1016/j.envadv.2021.100117.
  • Rai PK, Kumar V, Sonne C, Lee SS, Brown RJC, Kim K-H. Progress, prospects, and challenges in standardization of sampling and analysis of micro- and nano-plastics in the environment. J Clean Prod. 2021;325:129321. doi:10.1016/j.jclepro.2021.129321.
  • Ho VTTX, Park H, An S, et al. Coumarin–lipoic acid conjugates on silver nanoparticle-supported nanopipettes for in situ dual-mode monitoring of intracellular Cu(II) and potential chemodynamic therapy applications. Sensors Actuators B Chem. 2021;344:130271. doi:10.1016/j.snb.2021.130271.
  • Nie X-L, Liu H-L, Pan Z-Q, et al. Recognition of plastic nanoparticles using a single gold nanopore fabricated at the tip of a glass nanopipette. Chem Commun. 2019;55(45):6397–6400. doi:10.1039/C9CC01358J.
  • Boni W, Arbuckle-Keil G, Fahrenfeld NL. Inter-storm variation in microplastic concentration and polymer type at stormwater outfalls and a bioretention basin. Sci Total Environ. 2022;809:151104. doi:10.1016/j.scitotenv.2021.151104.
  • Balestra V, Bellopede R. Microplastic pollution in show cave sediments: first evidence and detection technique. Environ Pollut. 2022;292:118261. doi:10.1016/j.envpol.2021.118261.
  • Rist S, Hartmann NB, Welden NAC. How fast, how far: diversification and adoption of novel methods in aquatic microplastic monitoring. Environ Pollut. 2021;291:118174. doi:10.1016/j.envpol.2021.118174.
  • Elsayed AA, Erfan M, Sabry YM, et al. A microfluidic chip enables fast analysis of water microplastics by optical spectroscopy. Sci Rep. 2021;11(1):10533. doi:10.1038/s41598-021-89960-4.
  • Matthews C, Moran F, Jaiswal AK. A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. J Clean Prod. 2021;283:125263. doi:10.1016/j.jclepro.2020.125263.
  • Mitrano DM, Wohlleben W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat Commun. 2020;11(1):5324. doi:10.1038/s41467-020-19069-1.
  • Puharinen S-T. Achieving good marine environmental status in the EU – implications of the marine strategy framework directive for member states and blue economic activities. Mar Policy. 2023;155:105712. doi:10.1016/j.marpol.2023.105712.
  • Anagnosti L, Varvaresou A, Pavlou P, Protopapa E, Carayanni V. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Mar Pollut Bull. 2021;162:111883. doi:10.1016/j.marpolbul.2020.111883.
  • Alava JJ, Lukyanova ON, Ross PS, Shim WJ.. Report of Working Group 31 on Emerging Topics in Marine Pollution. Canada: North Pacific Marine Science Organization (PICES); 2020. PICES Scientific Report No. 56
  • Akhbarizadeh R, Yu JT, Ead L, et al. Reductions of plastic microbeads from personal care products in wastewater effluents and lake waters following regulatory actions. ACS ES&T Water. 2024;4(2):492–499. doi:10.1021/acsestwater.3c00526.
  • Wuennenberg L, Tan CM. Plastic waste in Canada. Canada: International Institute for Sustainable Development; 2019
  • Hu J, Miao L, Han J, Zhou W, Qian X. Waste separation behavior with a new plastic category for the plastic resource circulation: survey in Kansai, Japan. J Environ Manage. 2024;349:119370. doi:10.1016/j.jenvman.2023.119370.
  • Agamuthu P, Mehran SB, Norkhairah A, Norkhairiyah A. Marine debris: a review of impacts and global initiatives. Waste Manag. Res. 2019;37(10):987–1002. doi:10.1177/0734242X19845041.
  • Shooshtarian S, Maqsood T, Wong PSP, Yang RJ, Khalfan M. Review of waste strategy documents in Australia: analysis of strategies for construction and demolition waste. IJETM. 2020;23(1):1–21. doi:10.1504/IJETM.2020.110147.
  • Sun Y, Liu S, Wang P, Jian X, Liao X, Chen W-Q. China’s roadmap to plastic waste management and associated economic costs. J Environ Manage. 2022;309:114686. doi:10.1016/j.jenvman.2022.114686.
  • Meng M, Wen Z, Luo W, Wang S. Approaches and policies to promote zero-waste city construction: China’s practices and lessons. Sustainability. 2021;13(24):13537. doi:10.3390/su132413537.
  • Venus O. National marine microbead policy in developed nations: how microbead bans have influenced microplastic pollution in waterways and begun the trend towards international collaboration [Thesis]. Ann Arbor, US: University of Michigan; 2020.
  • Lopez EMB. Marine debris removal : a case study on South Korean marine litter management [Thesis]. Kingston, US: University of Rhode Island; 2021.
  • Carlini G, Kleine K. Advancing the international regulation of plastic pollution beyond the United Nations environment assembly resolution on marine litter and microplastics. Rev Euro Comp Intl Enviro. 2018;27(3):234–244. doi:10.1111/reel.12258.
  • Borg S, Attard FG, Vella de Fremeaux PM. Research Handbook on Ocean Governance Law. Cheltenham, UK: Edward Elgar Publishing; 2023.
  • Synn K, Thesis JM. Strengthening global governance on marine plastic litter. 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.