2,653
Views
10
CrossRef citations to date
0
Altmetric
Articles

Emerging applications of nanodiamonds in photocatalysis

, , , ORCID Icon & ORCID Icon
Pages 93-109 | Received 26 Jun 2020, Accepted 04 Jan 2020, Published online: 19 Feb 2021

References

  • Danilenko VV. On the history of the discovery of nanodiamond synthesis. Phys Solid State. 2004; 46(4): 595–599.
  • Chang YR, Lee HY, Chen K, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol. 2008;3(5): 284–288.
  • Mochalin VN, Gogotsi Y. Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc. 2009;131(13): 4594–4595.
  • Rosenholm JM, Vlasov II, Burikov SA, et al. Nanodiamond-based composite structures for biomedical imaging and drug delivery. J Nanosci Nanotechnol. 2015; 15(2): 959–971.
  • Turcheniuk K, Mochalin VN. Biomedical applications of nanodiamond. Nanotechnology. 2017; 28(25): 252001.
  • Su LX, Lou Q, Jiao Z, et al. Plant cell imaging based on nanodiamonds with excitation-dependent fluorescence. Nanoscale Res Lett. 2016;11(1): 425.
  • Maze JR, Stanwix PL, Hodges JS, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature. 2008; 455(7213): 644–647.
  • Wang N, Liu GQ, Leong WH, et al. Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions. Phys Rev X. 2018; 8(1): 011042.
  • Tallaire A, Brinza O, Feudis MD, et al. Synthesis of loose nanodiamonds containing nitrogen-vacancy centers for magnetic and thermal sensing. ACS Appl Nano Mater. 2019; 2(9): 5952–5962.
  • Shimkunas RA, Robinson E, Lam R, et al. Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials. 2009; 30(29): 5720–5728.
  • Vaijayanthimala V, Lee DK, Kim SV, et al. Nanodiamond-mediated drug delivery and imaging: challenges and opportunities. Expert Opini Drug Deliv. 2015; 12(5): 735–749.
  • Chan MS, Liu LS, Leung HM, et al. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017; 9(13):11780–11789.
  • Greentree AD. Nanodiamonds in Fabry-Perot cavities: a route to scalable quantum computing. New J Phys. 2016; 18(2): 021002.
  • Xu Z, Yin ZQ, Han Q, et al. Quantum information processing with closely-spaced diamond color centers in strain and magnetic fields. Opt Mater Express. 2019; 9(12): 4654–4668.
  • Osswald S, Yushin G, Mochalin V, et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc. 2006; 128(35): 11635–11642.
  • Zhang Y, Rhee KY, Hui D, et al. A critical review of nanodiamond based nanocomposites: synthesis, properties and applications. Compos Part B Eng. 2018;143: 19–27.
  • Etemadi H, Yegani R, Babaeipour V. Performance evaluation and antifouling analyses of cellulose acetate/nanodiamond nanocomposite membranes in water treatment. J Appl Polym Sci. 2017; 134(21): 44873.
  • Liu J, Wang P, Qu W, et al. Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene. Appl Catal B. 2019; 257: 117880.
  • Lin Z, Xiao J, Li L, et al. Nanodiamond‐embedded p‐type copper (I) oxide nanocrystals for broad‐spectrum photocatalytic hydrogen evolution. Adv Energy Mater. 2016; 6(4): 1501865.
  • Su LX, Liu ZY, Ye YL, et al. Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation. Int J Hydrogen Energy. 2019; 44(36): 19805–19815.
  • Ekimov E, Kondrina K, Mordvinova N, et al. High-pressure, high-temperature synthesis of nanodiamond from adamantane. Inorg Mater. 2019;55(5): 437–442.
  • Shakhov FM, Abyzov AM, Takai K. Boron doped diamond synthesized from detonation nanodiamond in a COH fluid at high pressure and high temperature. J Solid State Chem. 2017;256: 72–92.
  • Ekimov E, Kondrin M, Lyapin S, et al. High-pressure synthesis and optical properties of nanodiamonds obtained from halogenated adamantanes. Diamond Relat Mater. 2020; 103: 107718.
  • Dolmatov VY. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ Chem Rev. 2007; 76(4): 339–360.
  • Shery L. Size dependent surface reconstruction in detonation nanodiamonds. Nanoscale Horiz. 2018; 3(2): 213–217.
  • Hao J, Pan L, Gao S, et al. Production of fluorescent nano-diamonds through femtosecond pulsed laser ablation. Opt Mater Express. 2019; 9(12): 4734–4741.
  • Gorrini F, Cazzanelli M, Bazzanella N, et al. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci Rep. 2016; 6(1): 1–9.
  • Basso L, Bazzanella N, Cazzanelli M, et al. On the route towards a facile fluorescent nanodiamonds laser-synthesis. Carbon. 2019; 153: 148–155.
  • Khan MB, Khan ZH. Nanodiamonds: synthesis and applications. In: Khan Z, editors. Nanomaterials and their applications. Singapore: Springer, 2018; p. 1–26.
  • Gottlieb S, Wöhrl N, Schulz S, et al. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper. Springerplus. 2016; 5(1): 568.
  • Liu Y, Tzeng YK, Lin D, et al. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes. Joule. 2018; 2(8): 1595–1609.
  • Basso L, Gorrini F, Bazzanella N, et al. The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient. Appl Phys A. 2018; 124(1): 72.
  • Plotnikov V, Makarov S, Bogdanov D, et al. The structure of detonation nanodiamond particles. AIP Conf Proc. 2016; 1785(1): 040045.
  • Kausar A. Properties and applications of nanodiamond nanocomposite. Am J Nanosci Nanotechnol Res. 2018; 6(1): 46–54.
  • Liu T, Ali S, Li B, et al. Revealing the role of sp2@ sp3 structure of nanodiamond in direct dehydrogenation: insight from DFT study. ACS Catal. 2017; 7(6): 3779–3785.
  • Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos Trans R Soc London Ser A Math Phys Eng Sci. 2004; 362(1824): 2477–2512.
  • Su LX, Lou Q, Zang JH, et al. Temperature-dependent fluorescence in nanodiamonds. Appl Phys Express. 2017; 10(2): 025102.
  • Liang B, Zhang L, Wang W, et al. Nanodiamond core/onion-like carbon shell materials with excellent visible light photocatalytic activity. Mater Res Express. 2019; 6(4): 045609.
  • Su LX, Huang QZ, Lou Q, et al. Effective light scattering and charge separation in nanodiamond@ g-C3N4 for enhanced visible-light hydrogen evolution. Carbon. 2018; 139: 164–171.
  • Li Y, He S, Zhou Z, et al. Carboxylated nanodiamond-enhanced photocatalytic membranes with improved antifouling and self-cleaning properties. Ind Eng Chem Res. 2020; 59(8): 3538–3549.
  • Pastrana-Martínez LM, Morales-Torres S, Carabineiro SA, et al. Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation. Appl Surf Sci. 2018; 458: 839–848.
  • Khan M, Hayat A, Mane SKB, et al. Functionalized nano diamond composites for photocatalytic hydrogen evolution and effective pollutant degradation. Int J Hydrogen Energy. 2020; 45(53): 29070–29081.
  • Castro AH, Guinea F, PeresNMR, et al. The electronic properties of graphene. RvMP. 2009; 81(1): 109–162.
  • Geim AK. Graphene: status and prospects. Science. 2009; 324(5934): 1530–1534.
  • Muschi M, Serre C. Progress and challenges of graphene oxide/metal-organic composites. Coord Chem Rev. 2019; 387: 262–272.
  • Kim HI, Kim HN, Weon S, et al. Robust co-catalytic performance of nanodiamonds loaded on WO3 for the decomposition of volatile organic compounds under visible light. ACS Catal. 2016; 6(12): 8350–8360.
  • Liang B, Zhang W, Zhang Y, et al. Nanodiamond incorporated in SnO composites with enhanced visible-light photocatalytic activity. Diamond Relat Mater. 2018; 89: 108–113.
  • Lin Z, Li J, Zheng Z, et al. A floating sheet for efficient photocatalytic water splitting. Adv Energy Mater. 2016; 6(15): 1600510.
  • Jang DM, Myung Y, Im HS, et al. Nanodiamonds as photocatalysts for reduction of water and graphene oxide. Chem Commun. 2012; 48(5): 696–698.
  • Su LX, Lou Q, Shan CX, et al. Ag/Nanodiamond/g-C3N4 heterostructures with enhanced visible-light photocatalytic performance. Appl Surf Sci. 2020; 525: 146576.
  • Zhou L, Zhang H, Guo X, et al. Metal-free hybrids of graphitic carbon nitride and nanodiamonds for photoelectrochemical and photocatalytic applications. J Colloid Interface Sci. 2017; 493: 275–280.
  • Haleem YA, He Q, Liu D, et al. Facile synthesis of mesoporous detonation nanodiamond-modified layers of graphitic carbon nitride as photocatalysts for the hydrogen evolution reaction. RSC Adv. 2017; 7(25): 15390–15396.
  • Hunge Y, Yadav A, Khan S, et al. Photocatalytic degradation of bisphenol A using titanium dioxide@ nanodiamond composites under UV light illumination. J Colloid Interface Sci. 2021; 582: 1058–1066.
  • Henych J, Stehlík Š, Mazanec K, et al. Reactive adsorption and photodegradation of soman and dimethyl methylphosphonate on TiO2/nanodiamond composites. Appl Catal B. 2019; 259: 118097.
  • Kim KD, Dey NK, Seo HO, et al. Photocatalytic decomposition of toluene by nanodiamond-supported TiO2 prepared using atomic layer deposition. Appl Catal A. 2011; 408(1–2): 148–155.
  • Pichot V, Comet M, Fousson E, et al. An efficient purification method for detonation nanodiamonds. Diamond Relat Mater. 2008; 17(1): 13–22.
  • Shenderova O, Koscheev A, Zaripov N, et al. Surface chemistry and properties of ozone-purified detonation nanodiamonds. J Phys Chem C. 2011; 115(20): 9827–9837.
  • Hong SP, Kim TH, Lee SW. Plasma-assisted purification of nanodiamonds and their application for direct writing of a high purity nanodiamond pattern. Carbon. 2017; 116: 640–647.
  • Rouhani P, Govindaraju N, Iyer JK, et al. Purification and functionalization of nanodiamond to serve as a platform for amoxicillin delivery. Mater Sci Eng C. 2016; 63: 323–332.
  • Sun X, Wang R, Su D. Research progress in metal-free carbon-based catalysts. Chin J Catal. 2013; 34(3): 508–523.
  • Duan X, Su C, Zhou L, et al. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Appl Catal B. 2016; 194: 7–15.
  • Krueger A, Lang D. Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater. 2012; 22(5): 890–906.
  • Xu X, Yu Z, Zhu Y, et al. Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond. J Solid State Chem. 2005; 178(3): 688–693.
  • Mona J, Tu JS, Kang TY, et al. Surface modification of nanodiamond: photoluminescence and Raman studies. Diamond Relat Mater. 2012; 24: 134–138.
  • Reineck P, Lau DW, Wilson ER, et al. Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano. 2017; 11(11): 10924–10934.
  • Liu Y, Khabashesku VN, Halas NJ. Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. J Am Chem Soc. 2005; 127(11): 3712–3713.
  • Lin Y, Sun X, Su DS, et al. Catalysis by hybrid sp2/sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chem Soc Rev. 2018; 47(22): 8438–8473.
  • Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol. 2010; 5(9): 651–654.
  • Zeiger M, Jäckel N, Mochalin VN, et al. Carbon onions for electrochemical energy storage. J Mater Chem A. 2016; 4(9): 3172–3196.
  • Spitsyn B, Davidson J, Gradoboev M, et al. Inroad to modification of detonation nanodiamond. Diamond Relat Mater. 2006; 15(2–3): 296–299.
  • Liu Y, Chen S, Quan X, et al. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc. 2015; 137(36): 11631–11636.
  • Liu Y, Zhang Y, Cheng K, et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron‐and nitrogen‐Co‐doped nanodiamond. Angew Chem. 2017; 129(49): 15813–15817.
  • Petit T, Arnault JC, Girard HA, et al. Oxygen hole doping of nanodiamond. Nanoscale. 2012; 4(21): 6792–6799.
  • Fokin AA, Schreiner PR. Band gap tuning in nanodiamonds: first principle computational studies. Mol Phys. 2009; 107(8–12): 823–830.
  • Liu G, Wang L, Yang HG, et al. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J Mater Chem. 2010; 20(5): 831–843.
  • Jiang J, Cao S, Hu C, et al. A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chin J Catal. 2017; 38(12): 1981–1989.
  • Kumaravel V, Mathew S, Bartlett J, et al. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B. 2019; 244: 1021–1064.
  • Liu L, Li S, An Y, et al. Hybridization of nanodiamond and CuFe-LDH as heterogeneous photoactivator for visible-light driven photo-fenton reaction: photocatalytic activity and mechanism. Catalysts. 2019; 9(2): 118.
  • Pastrana‐Martínez L, Carabineiro S, Buijnsters J, et al. Photocatalytic activity of nanocarbon‐TiO2 composites with gold nanoparticles for the degradation of water pollutants. In: Mishra AK, editors. Smart materials for waste water applications. Beverly: Scrivener Publishing LLC, 2016;p. 87–108.
  • Pastrana-Martínez LM, Morales-Torres S, Carabineiro SAC, et al. Nanodiamond-TiO2 composites for heterogeneous photocatalysis. Chempluschem. 2013; 78(8): 801–807.
  • Sampaio MJ, Pastrana-Martínez LM, Silva AMT, et al. Nanodiamond-TiO2 composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light. RSC Adv. 2015; 5(72): 58363–58370.
  • Zhang L, Qin M, Yu W, et al. Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J Electrochem Soc. 2017; 164(14): H1086–H1090.
  • Nguyen CH, Fu CC, Juang RS. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J Clean Prod. 2018; 202: 413–427.
  • Ling LL, Feng Y, Li H, et al. Microwave induced surface enhanced pollutant adsorption and photocatalytic degradation on Ag/TiO2. Appl Surf Sci. 2019; 483: 772–778.
  • Alamelu K, Raja V, Shiamala L, et al. Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes. Appl Surf Sci. 2018; 430: 145–154.
  • Habisreutinger SN, Schmidt‐Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed. 2013; 52(29): 7372–7408.
  • Zhou M, Wang S, Yang P, et al. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018; 8(6): 4928–4936.
  • Vu NN, Kaliaguine S, Do TO. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight‐driven photocatalytic reduction of CO2 into fuels. Adv Funct Mater. 2019; 29(31): 1901825.
  • Zhang L, Zhu D, Nathanson G, et al. Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons. Angew Chem. 2014; 126(37): 9904–9908.
  • Zhang L, Hamers RJ. Photocatalytic reduction of CO2 to CO by diamond nanoparticles. Diamond Relat Mater. 2017; 78: 24–30.
  • Lashgari M, Zeinalkhani P. Photocatalytic N2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: a novel hydrogenation strategy and basic understanding of the phenomenon. Appl Catal A. 2017; 529: 91–97.
  • Zhao Y, Zheng L, Shi R, et al. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv Energy Mater. 2020; 10(34): 2002199.
  • Zhu D, Zhang L, Ruther RE, et al. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nature Mater. 2013; 12(9): 836–841.