2,665
Views
12
CrossRef citations to date
0
Altmetric
Articles

Room temperature direct bonding of diamond and InGaP in atmospheric air

, , , , , & show all
Pages 110-116 | Received 26 Jun 2020, Accepted 04 Jan 2020, Published online: 19 Feb 2021

References

  • Yamamoto Y, Imai T, Tanabe K, et al. The measurement of thermal properties of diamond. Diamond Relat Mater. 1997; 6(8): 1057–1061.
  • Nosaeva K, Weimann N, Rudolph M, et al. Erratum: Improved thermal management of InP transistors in transferred-substrate technology with diamond heat-spreading layer. Electron Lett. 2015; 51(13): 1010–1012.
  • Cho J, Francis D, Altman D, et al. Phonon conduction in GaN-diamond composite substrate. J Appl Phys. 2017; 121(5): 055105.
  • Käding OW, Rösler M, Zachai R, et al. Lateral thermal diffusivity of epitaxial diamond films. Diamond Relat Mater. 1994; 3(9): 1178–1182.
  • Sun H, Pomeroy J, Simon R, et al. Temperature-dependent thermal resistance of GaN-on-diamond HEMT wafers. IEEE Electron Device Lett. 2016; 37(5): 621–624.
  • Zhou Y, Anaya J, Pomeroy J, et al. Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl Mater Interfaces. 2017; 9(39): 34416–34422.
  • Matsumae T, Kurashima Y, Umezawa Y, et al. Room-temperature bonding of single-crystal diamond and Si using Au/Au atomic diffusion bonding in atmospheric air. Microelectron Eng. 2018; 195: 68–73.
  • Minoura Y, Ohki T, Okamoto N, et al. Surface activated bonding of SiC/diamond for thermal management of high-output power GaN HEMTs. Jpn J Appl Phys. 2020; 59 (Suppl G): SGGD03.
  • Mu F, He R, Suga T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices. Scr Mater. 2018; 150: 148–151.
  • Cheng Z, Mu F, Yates L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl Mater Interfaces. 2020; 12(7): 8376–8384.
  • Liang J, Masuya S, Kasu M, et al. Realization of direct bonding of single crystal diamond and Si substrates. Appl Phys Lett. 2017; 110(11): 111603.
  • Liang J, Masuya S, Kim S, et al. Stability of diamond/Si bonding interface during device fabrication process. Appl Phys Express. 2019; 12(1): 016501.
  • Matsumae T, Kurashima Y, Umezawa H, et al. Hydrophilic direct bonding of diamond (111) substrate using treatment with H2SO4/H2O2. Jpn J Appl Phys. 2020; 59 (Suppl B): SBBA01.
  • Choi S, Peake GM, Keeler GA, et al. Thermal design and characterization of heterogeneously integrated InGaP/GaAs HBTs. IEEE Trans Compon Packag Manuf Technol. 2016; 6(5): 740–748.
  • Pierściński K, Pierścińska D, Iwińska M, et al. Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers. J Appl Phys. 2012; 112(4): 043112.
  • Humbert B, Hellala N, Ehrhardt JJ, et al. X-ray photoelectron and Raman studies of microwave plasma assisted chemical vapour deposition (PACVD) diamond films. Appl Surf Sci. 2008; 254(20): 6400–6409.
  • Wang C, Huang N, Zhuang H, et al. Photochemical functionalization of diamond films using a short carbon chain acid. Chem Phys Lett. 2016; 646: 87–90.
  • López-Escalante MC, Gabás M, García I, et al. Differences between GaAs/GaInP and GaAs/AlInP interfaces grown by movpe revealed b depth profiling and angle-resolved X-ray photoelectron spectroscopies. Appl Surf Sci. 2016; 360: 477–484.
  • Hönle M, Oberhumer P, Hingerl K, et al. Mechanism of indium thin oxide//indium tin oxide direct wafer bonding. Thin Solid Films. 2020; 704: 137964.
  • Straessle R, Pétremand Y, Briand D, et al. Evaluation of thin film indium bonding at wafer level. Procedia Eng. 2011; 25: 1493–1496.
  • Liang J, Zhou Y, Masuya S, et al. Annealing effect of surface-activated bonded diamond/Si interface. Diamond Relat Mater. 2019; 93: 187–192.
  • Liang J, Nishida S, Arai M, et al. Effects of thermal annealing process on the electrical properties of p+-Si/n-SiC heterojunctions. Appl Phys Lett. 2014; 104(16): 161604.
  • Howlader MMR, Zhang F. Void-free strong bonding of surface activated silicon wafers from room temperature to annealing at 600 °C. Thin Solid Film. 2010; 519(2): 804–808.
  • Liang J, Ohno Y, Yamashita Y, et al. Characterization of nanoscopic Cu/diamond interfaces prepared by surface-activated bonding: implications for thermal management. ACS Appl Nano Mater. 2020; 3(3): 2455–2462.
  • Takagi H, Maeda R, Hosoda N, et al. Transmission electron microscope observations of Si/Si interface bonded at room temperature by Ar beam surface activation. Jpn J Appl Phys. 1999; 38 (Part 1, No. 3A): 1589–1594.
  • Takagi H, Kikuchi K, Maeda R, et al. Surface activated boding of silicon wafers at room temperature. Appl Phys Lett. 1996; 68(16): 2222–2224.
  • Mu F, Cheng Z, Shi J, et al. High thermal boundary conductance across bonded heterogeneous GaN-SiC interfaces. ACS Appl Mater Interfaces. 2019; 11(36): 33428–33434.
  • Al Mohtar A, Tessier G, Ritasalo R, et al. Thickness-dependent thermal properties of amorphous insulating thin films measured by photoreflectance microscopy. Thin Solid Films. 2017; 642: 157–162.
  • Cheng Z, Mu F, You T, et al. Thermal transport across ion-cut monocrystalline β-Ga2O3 thin films and bonded β-Ga2O3–SiC interfaces. ACS Appl Mater Interfaces. 2020; 12(40): 44943–44951.