5,359
Views
16
CrossRef citations to date
0
Altmetric
Articles

Coessential-connection by microwave plasma chemical vapor deposition: a common process towards wafer scale single crystal diamond

, , , , , , , & show all

References

  • Fang J, He Z, Zhang Z, et al. Reliability improvement of diamond drill bits using design of experiments. Qual Eng. 2018; 30(2): 339–350.
  • Wang XC, Shen B, Sun FH, et al. Deposition and application of CVD diamond films on the interior-hole surface of silicon carbide compacting dies. KEM. 2012; 499: 45–50.
  • Jayaraman A. Diamond anvil cell and high-pressure physical investigations. Rev Mod Phys. 1983; 55(1): 65–108.
  • Inyushkin AV, Taldenkov AN, Ralchenko VG, et al. Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B. 2018; 97(14): 144305.
  • Graebner JE, Reiss ME, Seibles L, et al. Phonon scattering in chemical-vapor-deposited diamond. Phys Rev B. 1994; 50(6): 3702–3713.
  • Simon RB, Anaya J, Faili F, et al. Effect of grain size of polycrystalline diamond on its heat spreading properties. Appl Phys Express. 2016; 9(6): 061302.
  • Rossini FD, Jessup RS. Heat and free energy of formation of carbon dioxide, and of the transition between graphite and diamond. J Res Natl Bur Stan. 1938; 21(4): 491–513.
  • Palyanov YN, Kupriyanov IN, Khokhryakov AF, et al. Crystal growth of diamond. In: Handbook of crystal growth: bulk crystal growth. 2nd ed. New York (NY): Elsevier; 2015. p. 671–713.
  • Bundy FP, Hall HT, Strong HM, et al. Man-made diamonds. Nature. 1955; 176(4471): 51–55.
  • Bovenkerk HP, Bundy FP, Strong HM, et al. Preparation of diamond. Nature. 1959; 184(4693): 1094–1098.
  • Strong HM, Wentorf RH. The growth of large diamond crystals. Die Naturwissenschaften. 1972; 59(1): 1–7.
  • Sumiya H, Satoh S, Nishibayashi Y. Development of high-purity synthetic diamonds. Sumitomo Electr Tech Rev. 1995; 39: 69–69.
  • Wang G. The birth of China’s first synthetic diamond (in Chinese). Superhard Mater Eng. 2008; 4: 45–47.
  • Shigley J, Moses T, Reinitz I, et al. Gemological properties of near-colorless synthetic diamonds. Gems Gemol. 2010; 46: 42–53.
  • Hainschwang T, Simic D, Fritsch E, et al. A gemological study of a collection of chameleon diamonds. Gems Gemol. 2005; 41(1): 20–35.
  • D’Haenens-Johansson UFS, Moe KS, Johnson P, et al. Near-colorless HPHT synthetic diamonds from AOTC Group. Gems Gemol. 2014; 50: 30–45.
  • D’Haenans-Johansson UFS, Katrusha A, Moe KS, et al. Large colorless HPHT-grown synthetic gem diamonds from New Diamond Technology, Russia. G&G. 2015; 51(3): 260–279.
  • Eversole WG. Synthesis of diamond. US Patent No. 3,030,188. 1962.
  • Spitsyn B. v, Bouilov LL, Derjaguin B. Vapor growth of diamond on diamond and other surfaces. J Cryst Growth. 1981; 52: 219–226.
  • Goodwin DG. Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry. J Appl Phys. 1993; 74(11): 6888–6894.
  • Wang JT, Huang ZQ, Wan YZ, et al. Thermodynamic coupling effect and catalyst effect for the artificial diamond growth. J Mater Res. 1997; 12(6): 1530–1535.
  • Wang H, Shen X, Wang X, et al. Simulation and experimental researches on the substrate temperature distribution of the large-capacity HFCVD setup for mass-production of diamond coated milling tools. Diamond Relat Mater. 2020; 101(107610): 107610.
  • Smith JA, Rosser KN, Yagi H, et al. Diamond deposition in a DC-arc jet CVD system: Investigations of the effects of nitrogen addition. Diamond Relat Mater. 2001; 10(3–7): 370–375.
  • Mallik A, Microwave plasma CVD grown single crystal diamonds – a review. J Coat Sci Technol. 2016; 3(2): 75–99.
  • Matsumoto S, Sato Y, Tsutsumi M, et al. Growth of diamond particles from methane-hydrogen gas. J Mater Sci. 1982; 17(11): 3106–3112.
  • Kamo M, Sato Y, Matsumoto S, et al. Diamond synthesis from gas phase in microwave plasma. J Cryst Growth. 1983; 62(3): 642–644.
  • Matsumoto S. Chemical vapour deposition of diamond in RF glow discharge. J Mater Sci Lett. 1985; 4(5): 600–602.
  • Kurihara K, Sasaki K, Kawarada M, et al. High rate synthesis of diamond by dc plasma jet chemical vapor deposition. Appl Phys Lett. 1988; 52(6): 437–438.
  • Hanssen LM, Carrington WA, Butler JE, et al. Diamond synthesis using an oxygen-acetylene torch. Mater Lett. 1988; 7(7–8): 289–292.
  • Hiraki A, Kawarada H, Wei J, et al. Preparation and characterization of wide area, high quality diamond film using magnetoactive plasma chemical vapour deposition. Surf Coat Technol. 1990; 43–44: 10–21.
  • Hassouni K, Silva F, Gicquel A. Modelling of diamond deposition microwave cavity generated plasmas. J Phys D: Appl Phys. 2010; 43(15): 153001.
  • Füner M, Wild C, Koidl P. Novel microwave plasma reactor for diamond synthesis. Appl Phys Lett. 1998; 72(10): 1149–1151.
  • Bolshakov AP, Ralchenko VG, Yurov VY, et al. High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation. Diamond Relat Mater. 2016; 62: 49–57.
  • Janssen G, Giling LJ. “Mosaic” growth of diamond. Diamond Relat Mater. 1995; 4(7): 1025–1031.
  • Geis MW, Smith HI, Argoitia A, et al. Large-area mosaic diamond films approaching single-crystal quality. Appl Phys Lett. 1991; 58(22): 2485–2487.
  • Geis MW, Efremow NN, Susalka R, et al. Mosaic diamond substrates approaching single-crystal quality using cube-shaped diamond seeds. Diamond Relat Mater. 1994; 4(1): 76–82.
  • Janssen G, Schermer JJ, Giling LJ. Towards large area diamond substrates: the mosaic process. Proceeding of Materials Research Society Symposium. 1996. vol. 416, p. 33–44.
  • Schermer JJ, de Theije FK, Giling LJ. Mosaic growth of diamond: a study of homoepitaxial flame deposition and etching of {001}-oriented diamond layers. J Cryst Growth. 1996; 165(4): 387–401.
  • Posthill JB, Malta DP, Humphreys TP, et al. Method of fabricating a free‐standing diamond single crystal using growth from the vapor phase. J Appl Phys. 1996; 79(5): 2722–2727.
  • Posthill JB, Malta DP, Hudson GC, et al. Demonstration of a method to fabricate a large-area diamond single crystal. Thin Solid Films. 1995; 271(1–2): 39–49.
  • Findeling-Dufour C, Gicquel A. Study for fabricating large area diamond single-crystal layers. Thin Solid Films. 1997; 308–309: 178–185.
  • Findeling-Dufour C, Gicquel A, Chiron R. Growth of large single-crystal diamond layers: analysis of the junctions between adjacent diamonds. Diamond Relat Mater. 1998; 7(7): 986–998.
  • Kobashi K, Nishibayashi Y, Yokota Y, et al. R&D of diamond films in the Frontier Carbon Technology Project and related topics. Diamond Relat Mater. 2003; 12: 233–240.
  • Mokuno Y, Chayahara A, Yamada H. Synthesis of large single crystal diamond plates by high rate homoepitaxial growth using microwave plasma CVD and lift-off process. Diamond Relat Mater. 2008; 17(4–5): 415–418.
  • Mokuno Y, Chayahara A, Yamada H, et al. Large single crystal diamond plates produced by microwave plasma CVD. MSF. 2009; 615–617: 991–994.
  • Yamada H, Chayahara A, Mokuno Y, et al. Fabrication of 1 inch mosaic crystal diamond wafers. Appl Phys Express. 2010; 3(5): 051301.
  • Yamada H, Chayahara A, Mokuno Y, et al. Recent progresses in R&D of methods to fabricate inch-sized diamond wafers. In: Materials Challenges and Testing for Manufacturing, Mobility, Biomedical Applications and Climate. Cham (Switzerland): Springer; 2014. p. 97–106.
  • Yamada H, Chayahara A, Mokuno Y, et al. Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond. Diamond Relat Mater. 2013; 33: 27–31.
  • Yamada H, Chayahara A, Mokuno Y, et al. Developments of elemental technologies to produce inch-size single-crystal diamond wafers. Diamond Relat Mater. 2011; 20(4): 616–619.
  • Yamada H, Chayahara A, Umezawa H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size. Diamond Relat Mater. 2012; 24: 29–33.
  • Yamada H, Chayahara A, Mokuno Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett. 2014; 104(10): 102110.
  • Ohmagari S, Yamada H, Tsubouchi N, et al. Schottky barrier diodes fabricated on diamond mosaic wafers: Dislocation reduction to mitigate the effect of coalescence boundaries. Appl Phys Lett. 2019; 114(8): 082104.
  • Tallaire A, Achard J, Silva F, et al. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges. CR Phys. 2013; 14(2–3): 169–184.
  • Muchnikov AB, Radishev DB, Vikharev AL, et al. Characterization of interfaces in mosaic CVD diamond crystal. J Cryst Growth. 2016; 442: 62–67.
  • Wang X, Duan P, Cao Z, et al. Surface morphology of the interface junction of CVD mosaic single-crystal diamond. Materials. 2019; 13(1): 91.
  • Shu G, Dai B, Ralchenko VG, et al. Epitaxial growth of mosaic diamond: mapping of stress and defects in crystal junction with a confocal Raman spectroscopy. J Cryst Growth. 2017; 463: 19–26.
  • May PW, Tsai HY, Wang WN, et al. Deposition of CVD diamond onto GaN. Diamond Relat Mater. 2006; 15(4–8): 526–530.
  • Xiao M, Zhang J, Duan X, et al. A partly-contacted epitaxial lateral overgrowth method applied to GaN material. Sci Rep. 2016; 6(1): 1–8.
  • Jastrzebski L. SOI by CVD: epitaxial lateral overgrowth (ELO): process—review. J Cryst Growth. 1983; 63(3): 493–526.
  • Tang YH, Bi B, Golding B. Diamond heteroepitaxial lateral overgrowth. In: Proceedings of Materials Research Society Symposium, 2015. p. 1734.
  • Tokuda N, Umezawa H, Ri SG, et al. Atomically flat diamond (111): surface formation by homoepitaxial lateral growth. Diamond Relat Mater. 2008; 17(7–10): 1051–1054.
  • Bauer T, Schreck M, Stritzker B. Epitaxial lateral overgrowth (ELO): of homoepitaxial diamond through an iridium mesh. Diamond Relat Mater. 2007; 16(4–7): 711–717.
  • Wang YF, Chang X, Liu Z, et al. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate. J Cryst Growth. 2018; 489: 51–56.
  • Fu J, Liu Z, Zhu T, et al. Fabrication of microchannels in single crystal diamond for microfluidic systems. Microfluid Nanofluid. 2018; 22(9): 92.
  • Tallaire A, Brinza O, Mille V, et al. Reduction of dislocations in single crystal diamond by lateral growth over a macroscopic hole. Adv Mater. 2017; 29(16): 1604823.
  • Aida H, Ikejiri K, Kim S-W, et al. Overgrowth of diamond layers on diamond microneedles: new concept for freestanding diamond substrate by heteroepitaxy. Diamond Relat Mater. 2016; 66: 77–82.
  • Aida H, Kim S-W, Ikejiri K, et al. Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles. Appl Phys Express. 2016; 9(3): 035504.
  • Verstraete MJ, Charlier JC. Why is iridium the best substrate for single crystal diamond growth? Appl Phys Lett. 2005; 86(19): 191917–191913.
  • Stockel R, Janischowsky K, Rohmfeld S, et al. Diamond growth during bias pre-treatment in the microwave CVD of diamond. Diamond Relat Mater. 1996; 5(3–5): 321–325.
  • Wolter SD, Stoner BR, Glass JT, et al. Textured growth of diamond on silicon via in situ carburization and bias-enhanced nucleation. Appl Phys Lett. 1993; 62(11): 1215–1217.
  • Chavanne A, Arnault JC, Barjon J, et al. Bias-enhanced nucleation of diamond on iridium: a comprehensive study of the first stages by sequential surface analysis. Surf Sci. 2011; 605(5–6): 564–569.
  • Kono S, Takano T, Goto T, et al. Effect of bias treatment in the CVD diamond growth on Ir(001). Diamond Relat Mater. 2004; 13(11–12): 2081–2087.
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017; 7(1): 44462.
  • Berdermann E, Afanaciev K, Ciobanu M, et al. Progress in detector properties of heteroepitaxial diamond grown by chemical vapor deposition on Ir/YSZ/Si(001): wafers. Diamond Relat Mater. 2019; 97: 107420.
  • Popovich AF, Ralchenko VG, Balla VK, et al. Growth of 4∼ diameter polycrystalline diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition. Plasma Sci Technol. 2017; 19(3): 035503–035597.
  • Ando Y, Kuwabara J, Suzuki K, et al. Patterned growth of heteroepitaxial diamond. Diamond Relat Mater. 2004; 13(11–12): 1975–1979.
  • Washiyama S, Mita S, Suzuki K, et al. Coalescence of epitaxial lateral overgrowth-diamond on stripe-patterned nucleation on Ir/MgO(001). Appl Phys Express. 2011; 4(9): 095502– 095548.
  • Ando Y, Kamano T, Suzuki K, et al. Epitaxial lateral overgrowth of diamonds on iridium by patterned nucleation and growth method. Jpn J Appl Phys. 2012; 51: 090101.
  • Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diamond Relat Mater. 2019; 94: 92–100.
  • Yoshikawa T, Kodama H, Kono S, et al. Wafer bowing control of free-standing heteroepitaxial diamond (100): films grown on Ir(100): substrates via patterned nucleation growth. Thin Solid Films. 2015; 594: 120–128.
  • Weiß C, Griesmayer E, Guerrero C, et al. A new CVD diamond mosaic-detector for (n, α): cross-section measurements at the n-TOF experiment at CERN. Nucl Instrum Methods Phys Res. 2013; 732: 190–194.
  • Butler JE, Mankelevich YA, Cheesman A, et al. Understanding the chemical vapor deposition of diamond: recent progress. J Phys: Condens Matter. 2009; 21(36): 364201.
  • Silva F, Bonnin X, Achard J, et al. Geometric modeling of homoepitaxial CVD diamond growth: I. The {100}{111}{110}{113} system. J Cryst Growth. 2008; 310(1): 187–203.
  • Bigelow LK, D’Evelyn MP. Role of surface and interface science in chemical vapor deposition diamond technology. Surf Sci. 2002; 500(1–3): 986–1004.
  • Ralchenko V, Sychov I, Vlasov I, et al. Quality of diamond wafers grown by microwave plasma CVD: effects of gas flow rate. Diamond Relat Mater. 1999; 8(2–5): 189–193.
  • Ralchenko VG, Pleuler E, Lu FX, et al. Fracture strength of optical quality and black polycrystalline CVD diamonds. Diamond Relat Mater. 2012; 23: 172–177.
  • Wild C, Herres N, Koidl P. Texture formation in polycrystalline diamond films. J Appl Phys. 1990; 68(3): 973–978.
  • Shu G, Ralchenko VG, Bolshakov AP, et al. Evolution of surface relief of epitaxial diamond films upon growth resumption by microwave plasma chemical vapor deposition. CrystEngComm. 2020; 22(12): 2138–2146.
  • de Theije FK, Schermer JJ, van Enckevort WJP. Effects of nitrogen impurities on the CVD growth of diamond: Step bunching in theory and experiment. Diamond Relat Mater. 2000; 9(8): 1439–1449.
  • Schreck M, Mayr M, Weinl M, et al. Liftoff of single crystal diamond by epitaxial lateral overgrowth using SiO2 masks. Diamond Relat Mater. 2020; 101: 107606.
  • Chae KW, Baik YJ, Park JK, et al. The 8-inch free-standing CVD diamond wafer fabricated by DC-PACVD. Diamond Relat Mater. 2010; 19(10): 1168–1171.
  • Shu G, Ralchenko V, Bolshakov A, et al. Coessential-connection growth technology for large size single crystal diamond. Chinese Journal of Nature. 2019; 2: 100–110.
  • Vikharev AL, Gorbachev AM, Radishev DB. Physics and application of gas discharge in millimeter wave beams. J Phys D: Appl Phys. 2019; 52(1): 014001.
  • Vlasov II, Barnard AS, Ralchenko VG, et al. Nanodiamond photoemitters based on strong narrow-band luminescence from silicon-vacancy defects. Adv Mater. 2009; 21(7): 808–812.
  • Lifshitz Y. The mechanism of diamond nucleation from energetic species. Science. 2002; 297(5586): 1531–1533.
  • Hörmann F, Schreck M, Stritzker B. First stages of diamond nucleation on iridium buffer layers. Diamond Relat Mater. 2001; 10(9–10): 1617–1621.