2,582
Views
5
CrossRef citations to date
0
Altmetric
Articles

Diamond and carbon nanostructures for biomedical applications

, , &
Pages 221-242 | Received 12 Oct 2021, Accepted 29 Nov 2021, Published online: 30 Dec 2021

References

  • Gupta T, Gupta T. Historical production and use of carbon materials: the activated carbon. In: Gupta T, editor. Carbon: the black, the gray and the transparent. Cham: Springer; 2018. p. 47–70.
  • Mathur RB, Singh BP, Pande S. Carbon nanomaterials: synthesis, structure, properties and applications. New York: CRC Press; 2016.
  • Falcao EHL, Wudl F. Carbon allotropes: beyond graphite and diamond. J Chem Technol Biotechnol. 2007;82(6):524–531.
  • Hirsch A. The era of carbon allotropes. Nat Mater. 2010;9(11):868–871.
  • Wang Y, Li Z, Wang J, et al. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;29(5):205–212.
  • Sankaran KJ, Haenen K. Properties of Carbon Bulk Materials. In Arnault J-C, Eder D, editors. Synthesis and Applications of Nanocarbons. Hoboken: Wiley; 2020. p. 1–23.
  • Kroto HW, Heath JR, O’Brien SC, et al. C 60: buckminsterfullerene. Nature. 1985;318(6042):162–163.
  • Georgakilas V, Perman JA, Tucek J, et al. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115(11):4744–4822.
  • Li B, Zhao S, Huang L, et al. Recent advances and prospects of carbon dots in phototherapy. Chem Eng J. 2021;408:127245.
  • Li X, Zhao S, Li B, et al. Advances and perspectives in carbon dot-based fluorescent probes: mechanism, and application. Coord Chem Rev. 2021;431:213686.
  • Lan M, Zhang J, Chui Y-S, et al. Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. ACS Appl Mater Interfaces. 2014;6(23):21270–21278.
  • Zhao S, Wu S, Jia Q, et al. Lysosome-targetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging. Chem Eng J. 2020;388:124212.
  • Chen X, Zhang W. Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem Soc Rev. 2017;46(3):734–760.
  • Su L-X, Cao Y, Hao H-S, et al. Emerging applications of nanodiamonds in photocatalysis. Funct Diam. 2021;1(1):93–109.
  • Stachel T, Luth RW. Diamond formation – where, when and how? Lithos. 2015;220-223:200–220.
  • Narayan RJ, Boehm RD, Sumant AV. Medical applications of diamond particles & surfaces. Mater Today. 2011;14(4):154–163.
  • Mochalin VN, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds. Nature Nanotech. 2012;7(1):11–23.
  • Narayan J, Bhaumik A. Novel synthesis and properties of pure and NV-doped nanodiamonds and other nanostructures. Mater Res Lett. 2017;5(4):242–250.
  • Dolmatov VY, Myllymäki V, Vehanen A, et al. Dependence of the detonation nanodiamond yield on the detonation process parameters. J Superhard Mater. 2019;41(5):355–359.
  • Shvidchenko AV, Eidelman ED, Vul AY, et al. Colloids of detonation nanodiamond particles for advanced applications. Adv Colloid Interface Sci. 2019;268:64–81.
  • Gorrini F, Cazzanelli M, Bazzanella N, et al. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci Rep. 2016;6:35244
  • Xiao J, Liu P, Yang GW. Nanodiamonds from coal under ambient conditions. Nanoscale. 2015;7(14):6114–6125.
  • De Feudis M, Tallaire A, Nicolas L, et al. Large‐scale fabrication of highly emissive nanodiamonds by chemical vapor deposition with controlled doping by SiV and GeV centers from a solid source. Adv Mater Interfaces. 2020;7(2):1901408.
  • Basso L, Cazzanelli M, Orlandi M, et al. Nanodiamonds: synthesis and application in sensing, catalysis, and the possible connection with some processes occurring in space. Appl Sci. 2020;10(12):4094.
  • Rehor I, Cigler P. Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam Relat Mater. 2014;46:21–24.
  • Stehlik S, Varga M, Ledinsky M, et al. Size and purity control of HPHT nanodiamonds down to 1 nm. J Phys Chem C. 2015;119(49):27708–27720.
  • Dideikin AT, Aleksenskii AE, Baidakova MV, et al. Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon. 2017;122:737–745.
  • Lu Y, Huang G, Wang S, et al. A review on diamond-like carbon films grown by pulsed laser deposition. Appl Surf Sci. 2021;541:148573.
  • Bakharev PV, Huang M, Saxena M, et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat Nanotechnol. 2020;15(1):59–66.
  • Cumont A, Pitt AR, Lambert PA, et al. Properties, mechanism and applications of diamond as an antibacterial material. Funct Diam. 2021;1(1):1–28.
  • Huang B-R, Wang M-J, Kathiravan D, et al. Interfacial effect of oxygen-doped nanodiamond on CuO and micropyramidal silicon heterostructures for efficient nonenzymatic glucose sensor. ACS Appl Bio Mater. 2018;1(5):1579–1586.
  • Huang F, Deng Y, Chen Y, et al. Anchoring Cu 1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat Commun. 2019;10:4431.
  • Fang J, Wang H, Bao X, et al. Nanodiamond as efficient peroxidase mimic against periodontal bacterial infection. Carbon. 2020;169:370–381.
  • Chen TM, Tian XM, Huang L, et al. Nanodiamonds as pH-switchable oxidation and reduction catalysts with enzyme-like activities for immunoassay and antioxidant applications. Nanoscale. 2017;9(40):15673–15684.
  • Mogilnaya O, Ronzhin N, Artemenko K, et al. Nanodiamonds as an effective adsorbent for immobilization of extracellular peroxidases from luminous fungus neonothopanus nambi to construct a phenol detection system. Biocatal Biotransform. 2019;37(2):97–105.
  • Vaijayanthimala V, Cheng P-Y, Yeh S-H, et al. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials. 2012;33(31):7794–7802.
  • van der Laan K, Hasani M, Zheng T, et al. Nanodiamonds for in vivo applications. Small. 2018;14(19):1703838.
  • Chong EYW, Ng CYP, Choi VWY, et al. A diamond nanocone array for improved osteoblastic differentiation. J Mater Chem B. 2013;1(27):3390–3396.
  • Sutisna B, Janssens SD, Giussani A, et al. Block copolymer–nanodiamond coassembly in solution: towards multifunctional hybrid materials. Nanoscale. 2021;13(3):1639–1651.
  • Jariwala DH, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Mater Sci Eng C. 2020;113:110996.
  • Wei S, Li L, Du X, et al. Off–on nanodiamond drug platform for targeted cancer imaging and therapy. J Mater Chem B. 2019;7(21):3390–3402.
  • Gu M, Toh TB, Hooi L, et al. Nanodiamond-mediated delivery of a G9a inhibitor for hepatocellular carcinoma therapy. ACS Appl Mater Interfaces. 2019;11(49):45427–45441.
  • Gao G, Guo Q, Zhi J. Nanodiamond‐based theranostic platform for drug delivery and bioimaging. Small. 2019;15(48):1902238.
  • Chan MS, Liu LS, Leung HM, et al. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017;9(13):11780–11789.
  • Simon J, Wolf T, Klein K, et al. Hydrophilicity regulates the stealth properties of polyphosphoester‐coated nanocarriers. Angew Chem Int Ed. 2018;57(19):5548–5553.
  • Silva DD, Kaduri M, Poley M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018;340:9–14.
  • Merz V, Lenhart J, Vonhausen Y, et al. Zwitterion‐functionalized detonation nanodiamond with superior protein repulsion and colloidal stability in physiological media. Small. 2019;15(48):1901551.
  • Madamsetty VS, Pal K, Keshavan S, et al. Development of multi-drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. Nanoscale. 2019;11(45):22006–22018.
  • Liao W-S, Ho Y, Lin Y-W, et al. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel-and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater. 2019;86:395–405.
  • Yang Y, Yuen M-F, Chen X, et al. Fabrication of arrays of high-aspect-ratio diamond nanoneedles via maskless ECR-assisted microwave plasma etching. CrystEngComm. 2015;17(14):2791–2800.
  • Zhu X, Kwok SY, Yuen MF, et al. Dense diamond nanoneedle arrays for enhanced intracellular delivery of drug molecules to cell lines. J Mater Sci. 2015;50(23):7800–7807.
  • Chen X, Zhu G, Yang Y, et al. A diamond nanoneedle array for potential high‐throughput intracellular delivery. Adv Healthc Mater. 2013;2(8):1103–1107.
  • Zhu X, Yuen MF, Yan L, et al. Diamond‐nanoneedle‐array‐facilitated intracellular delivery and the potential influence on cell physiology. Adv Healthcare Mater. 2016;5(10):1157–1168.
  • He G, Hu N, Xu AM, et al. Nanoneedle platforms: the many ways to pierce the cell membrane. Adv Funct Mater. 2020;30(21):1909890.
  • Zhang Y, Gu Y, He J, et al. Ultrabright gap-enhanced raman tags for high-speed bioimaging. Nat Commun. 2019;10:1–12.
  • Kim D, Jeong K, Kwon JE, et al. Dual-color fluorescent nanoparticles showing perfect color-specific photoswitching for bioimaging and super-resolution microscopy. Nat Commun. 2019;10:1–10.
  • Torelli MD, Nunn NA, Shenderova OA. A perspective on fluorescent nanodiamond bioimaging. Small. 2019;15(48):1902151.
  • Ho D, Wang C-HK, Chow EK-H. Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci Adv. 2015;1(7):e1500439.
  • Fang C, Vaijayanthimala V, Cheng C, et al. The exocytosis of fluorescent nanodiamond and its use as a long‐term cell tracker. Small. 2011;7(23):3363–3370.
  • Alkahtani MH, Alghannam F, Jiang L, et al. Fluorescent nanodiamonds: past, present, and future. Nanophotonics. 2018;7(8):1423–1453.
  • Reineck P, Lau DWM, Wilson ER, et al. Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano. 2017;11(11):10924–10934.
  • Shenderova OA, Vlasov II, Turner S, et al. Nitrogen control in nanodiamond produced by detonation shock-wave-assisted synthesis. J Phys Chem C. 2011;115(29):14014–14024.
  • Shenderova OA, Shames AI, Nunn NA, et al. Synthesis, properties, and applications of fluorescent diamond particles. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom. 2019;37:30802.
  • Morita M, Tachikawa T, Seino S, et al. Controlled synthesis of gold nanoparticles on fluorescent nanodiamond via electron-beam-induced reduction method for dual-modal optical and electron bioimaging. ACS Appl Nano Mater. 2018;1(1):355–363.
  • Yoshino F, Amano T, Zou Y, et al. Preferential tumor accumulation of polyglycerol functionalized nanodiamond conjugated with cyanine dye leading to near‐infrared fluorescence in vivo tumor imaging. Small. 2019;15(48):1901930.
  • Lila ASA, Nawata K, Shimizu T, et al. Use of polyglycerol (PG), instead of polyethylene glycol (PEG), prevents induction of the accelerated blood clearance phenomenon against long-circulating liposomes upon repeated administration. Int J Pharm. 2013;456(1):235–242.
  • Choi HS, Liu W, Misra P, et al. Renal clearance of nanoparticles. Nat Biotechnol. 2007;25(10):1165–1170.
  • Hoshyar N, Gray S, Han H, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–692.
  • Gobet J, Volpe P-N, Dubois M-A. Friction coefficient of diamond under conditions compatible with microelectromechanical systems applications. Appl Phys Lett. 2016;108(12):124103.
  • Shuai C, Li Y, Wang G, et al. Surface modification of nanodiamond: toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. Int J Biol Macromol. 2019;126:1116–1124.
  • Morimune-Moriya S, Yada S, Kuroki N, et al. Strong reinforcement effects of nanodiamond on mechanical and thermal properties of polyamide 66. Compos Sci Technol. 2020;199:108356.
  • Zhang F, Song Q, Huang X, et al. A novel high mechanical property PLGA composite matrix loaded with nanodiamond–phospholipid compound for bone tissue engineering. ACS Appl Mater Interfaces. 2016;8(2):1087–1097.
  • Feng P, Kong Y, Yu L, et al. Molybdenum disulfide nanosheets embedded with nanodiamond particles: co-dispersion nanostructures as reinforcements for polymer scaffolds. Appl Mater Today. 2019;17:216–226.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science (80. 2004;306(5696):666–669.
  • Kumar R, Sahoo S, Joanni E, et al. Heteroatom doped graphene engineering for energy storage and conversion. Mater Today. 2020;39:47–65.
  • Yang W, He C, Zhang L, et al. Growth, characterization, and properties of nanographene. Small. 2012;8(9):1429–1435.
  • Han P, Yao X, Müllen K, et al. Size-dependent electron transfer from atomically defined nanographenes to metal oxide nanoparticles. Nanoscale. 2020;12(30):16046–16052.
  • Chen L, Hernandez Y, Feng X, et al. From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew Chem Int Ed. 2012;51(31):7640–7654.
  • Jassas RS, Mughal EU, Sadiq A, et al. Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review. RSC Adv. 2021;11(51):32158–32202.
  • Vo TH, Shekhirev M, Kunkel DA, et al. Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem Commun. 2014;50(32):4172–4174.
  • Tan Y-Z, Yang B, Parvez K, et al. Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nat Commun. 2013;4:2646.
  • Fujii S, Enoki T. Nanographene and graphene edges: electronic structure and nanofabrication. Acc Chem Res. 2013;46(10):2202–2210.
  • Manrique DZ, You JW, Deng H, et al. Quantum plasmon engineering with interacting graphene nanoflakes. J Phys Chem C. 2017;121(49):27597–27602.
  • Banerjee S, Bhattacharyya D. Electronic properties of nano-graphene sheets calculated using quantum chemical DFT. Comput Mater Sci. 2008;44(1):41–45.
  • Robertson NM, Toscano AE, LaMantia VE, et al. Unlocked nucleic acids for miRNA detection using two dimensional nano-graphene oxide. Biosens Bioelectron. 2017;89:551–557.
  • Qi L, Fan Y-Y, Wei H, et al. Graphene oxide-enhanced and proflavine-probed fluorescence polarization biosensor for ligand-RNA interaction assay. Sensors Actuators B Chem. 2018;257:666–671.
  • Sanchez VC, Jachak A, Hurt RH, et al. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25(1):15–34.
  • Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243–9257.
  • Ashraf MA, Peng W, Zare Y, et al. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett. 2018;13(1):214.
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388.
  • Georgakilas V, Tiwari JN, Kemp KC, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116(9):5464–5519.
  • Pérez EM, Martín N. π–π interactions in carbon nanostructures. Chem Soc Rev. 2015;44(18):6425–6433.
  • Xiao F, Chen Z, Wei Z, et al. Hydrophobic interaction: a promising driving force for the biomedical applications of nucleic acids. Adv Sci. 2020;7(16):2001048.
  • Sasidharan A, Panchakarla LS, Chandran P, et al. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011;3(6):2461–2464.
  • Gao W, Alemany LB, Ci L, et al. New insights into the structure and reduction of graphite oxide. Nature Chem. 2009;1(5):403–408.
  • Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Na. 2010;4(8):4806–4814.
  • Jain VP, Chaudhary S, Sharma D, et al. Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: a review. Eur Polym J. 2021;142:110124.
  • Wang A, Yu W, Huang Z, et al. Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci Rep. 2016;6:23325.
  • Yu W, Sisi L, Haiyan Y, et al. Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv. 2020;10(26):15328–15345.
  • Hermanson GT. Bioconjugate techniques. London, Waltham, and San Diego: Academic Press; 2013.
  • Hutchins KM. Functional materials based on molecules with hydrogen-bonding ability: applications to drug co-crystals and polymer complexes. R Soc Open Sci. 2018;5(6):180564.
  • Liu Z, Robinson JT, Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876–10877.
  • Mugnano M, Lama GC, Castaldo R, et al. Cellular uptake of mildly oxidized nanographene for drug-delivery applications. ACS Appl Nano Mater. 2020;3(1):428–439.
  • Li S, Zheng J, Chen D, et al. Yolk–shell hybrid nanoparticles with magnetic and pH-sensitive properties for controlled anticancer drug delivery. Nanoscale. 2013;5(23):11718–11724.
  • Depan D, Shah J, Misra RDK. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng C. 2011;31(7):1305–1312.
  • Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1(3):203–212.
  • Vaidyanathan S, Chen J, Orr BG, et al. Cationic polymer intercalation into the lipid membrane enables intact polyplex DNA escape from endosomes for gene delivery. Mol Pharm. 2016;13(6):1967–1978.
  • Oskuee RK, Dabbaghi M, Gholami L, et al. Investigating the influence of polyplex size on toxicity properties of polyethylenimine mediated gene delivery. Life Sci. 2018;197:101–108.
  • Ahn HH, Lee MS, Cho MH, et al. DNA/PEI nano-particles for gene delivery of rat bone marrow stem cells. Colloids Surfaces A Physicochem Eng Asp. 2008;313-314:116–120.
  • Godbey WT, Wu KK, Mikos AG. Size matters: molecular weight affects the efficiency of poly (ethylenimine) as a gene delivery vehicle. J Biomed Mater Res. 1999;45(3):268–275.
  • Imani R, Prakash S, Vali H, et al. Polyethylene glycol and octa-arginine dual-functionalized nanographene oxide: an optimization for efficient nucleic acid delivery. Biomater Sci. 2018;6(6):1636–1650.
  • Chertok B, David AE, Yang VC. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials. 2010;31(24):6317–6324.
  • Zhu J, Tang A, Law LP, et al. Amphiphilic core-shell nanoparticles with poly (ethylenimine) shells as potential gene delivery carriers. Bioconjugate Chem. 2005;16(1):139–146.
  • Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale. 2011;3(3):1252–1257.
  • Zhang L, Lu Z, Zhao Q, et al. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI‐grafted graphene oxide. Small. 2011;7(4):460–464.
  • Yang H-W, Huang C-Y, Lin C-W, et al. Gadolinium-functionalized nanographene oxide for combined drug and microRNA delivery and magnetic resonance imaging. Biomaterials. 2014;35(24):6534–6542.
  • Zhao H, Ding R, Zhao X, et al. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov Today. 2017;22(9):1302–1317.
  • Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 2018;36(4):348–357.
  • Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 2014;173:75–88.
  • Shin SR, Li Y-C, Jang HL, et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev. 2016;105:255–274.
  • Wu D, Samanta A, Srivastava RK, et al. Starch-derived nanographene oxide paves the way for electrospinnable and bioactive starch scaffolds for bone tissue engineering. Biomacromolecules. 2017;18(5):1582–1591.
  • Yadav A, Erdal NB, Hakkarainen M, et al. Cellulose-derived nanographene oxide reinforced macroporous scaffolds of high internal phase emulsion-templated cross-Linked poly (ε-caprolactone). Biomacromolecules. 2020;21(2):589–596.
  • Jo SB, Erdenebileg U, Dashnyam K, et al. Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering. J Tissue Eng. 2020;11:204173141990042.
  • McCaul M, Glennon T, Diamond D. Challenges and opportunities in wearable technology for biochemical analysis in sweat. Curr Opin Electrochem. 2017;3(1):46–50.
  • Ferreira JJ, Fernandes CI, Rammal HG, et al. Wearable technology and consumer interaction: a systematic review and research agenda. Comput Hum Behav. 2021;118:106710.
  • Wu Z-S, Tan Y-Z, Zheng S, et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors. J Am Chem Soc. 2017;139(12):4506–4512.
  • Zhang C, Kang T-H, Yu J-S. Three-dimensional spongy nanographene-functionalized silicon anodes for lithium ion batteries with superior cycling stability. Nano Res. 2018;11(1):233–245.
  • Wu Q, Xie D-J, Zhang Y-D, et al. Mechanical properties and simulation of nanographene/polyvinylidene fluoride composite films. Compos Part B Eng. 2019;156:148–155.
  • Liu X, Liu D, Lee J, et al. Spider-web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl Mater Interfaces. 2019;11(2):2282–2294.
  • Romero FJ, Castillo E, Rivadeneyra A, et al. Inexpensive and flexible nanographene-based electrodes for ubiquitous electrocardiogram monitoring. npj Flex Electron. 2019;3:12.
  • Toh C-T, Zhang H, Lin J, et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature. 2020;577(7789):199–203.
  • Bhattarai B, Pandey A, Drabold DA. Evolution of amorphous carbon across densities: an inferential study. Carbon. 2018;131:168–174.
  • Bhattarai B, Drabold DA. Amorphous carbon at low densities: an ab initio study. Carbon. 2017;115:532–538.
  • Xiong Y, Schneider J, Ushakova EV, et al. Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today. 2018;23:124–139.
  • Nufer S, Fantanas D, Ogilvie SP, et al. Percolating metallic structures templated on laser-deposited carbon nanofoams derived from graphene oxide: applications in humidity sensing. ACS Appl Nano Mater. 2018;1(4):1828–1835.
  • Li X, Zhao L, Li P, et al. In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors. Nano Energy. 2017;42:122–128.
  • Li X, Zhang D, Xu X, et al. Tailoring the nanostructure of graphene as an oil-based additive: toward synergistic lubrication with an amorphous carbon film. ACS Appl Mater Interfaces. 2020;12(38):43320–43330.
  • Zhao T, Ji X, Jin W, et al. Electromagnetic wave absorbing properties of aligned amorphous carbon nanotube/BaFe12O19 nanorod composite. J Alloys Compd. 2017;703:424–430.
  • Yoo K, Miller B, Kalish R, et al. Electrodes of nitrogen‐incorporated tetrahedral amorphous carbon a novel thin‐film electrocatalytic material with diamond‐like stability. Electrochem Solid-State Lett. 1999;2(5):233.
  • Palomäki T, Peltola E, Sainio S, et al. Unmodified and multi-walled carbon nanotube modified tetrahedral amorphous carbon (ta-C) films as in vivo sensor materials for sensitive and selective detection of dopamine. Biosens Bioelectron. 2018;118:23–30.
  • Peltola E, Wester N, Holt KB, et al. Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability. Biosens Bioelectron. 2017;88:273–282.
  • Field SK, Jarratt M, Teer DG. Tribological properties of graphite-like and diamond-like carbon coatings. Tribol Int. 2004;37(11-12):949–956.
  • Dong D, Jiang B, Li H, et al. Effect of graphite target power density on tribological properties of graphite-like carbon films. Appl Surf Sci. 2018;439:900–909.
  • Zhu H, Hassan T, Kabir H, et al. Voltammetric pH sensor based on electrochemically modified pseudo-graphite. Analyst. 2020;145(22):7252–7259.
  • Zhang X, Yu X, Wen K, et al. Multiplex lateral flow immunoassays based on amorphous carbon nanoparticles for detecting three fusarium mycotoxins in maize. J Agric Food Chem. 2017;65(36):8063–8071.
  • Moyano A, Serrano-Pertierra E, Salvador M, et al. Carbon-Coated superparamagnetic nanoflowers for biosensors based on lateral flow immunoassays. Biosensors. 2020;10(8):80.
  • Hu Y, Domínguez CM, Bauer J, et al. Carbon-nanotube reinforcement of DNA-silica nanocomposites yields programmable and cell-instructive biocoatings. Nat Commun. 2019;10(1):5522
  • Sobolev A, Valkov A, Kossenko A, et al. Bioactive coating on Ti alloy with high osseointegration and antibacterial Ag nanoparticles. ACS Appl Mater Interfaces. 2019;11(43):39534–39544.
  • Kapat K, Shubhra QTH, Zhou M, et al. Piezoelectric nano‐biomaterials for biomedicine and tissue regeneration. Adv Funct Mater. 2020;30(44):1909045.
  • Granek A, Monika M, Ozimina D. Diamond-like carbon films for use in medical implants. AIP Conf Proc. 2018;2017:020006.
  • Hajduga MB, Bobinski R. TiN, ZrN and DLC nanocoatings-a comparison of the effects on animals, in-vivo study. Mater Sci Eng C. 2019;104:109949.
  • Hauert R, Thorwarth K, Thorwarth G. An overview on diamond-like carbon coatings in medical applications. Surf Coatings Technol. 2013;233:119–130.
  • Choudhury D, Lackner J, Fleming RA, et al. Diamond-like carbon coatings with zirconium-containing interlayers for orthopedic implants. J Mech Behav Biomed Mater. 2017;68:51–61.
  • Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 2015;33(11):637–652.
  • Glinel K, Thebault P, Humblot V, et al. Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater. 2012;8(5):1670–1684.
  • Yonezawa K, Kawaguchi M, Kaneuji A, et al. Evaluation of antibacterial and cytotoxic properties of a fluorinated diamond-like carbon coating for the development of antibacterial medical implants. Antibiotics. 2020;9(8):495.
  • Chipaux M, van der Laan KJ, Hemelaar SR, et al. Nanodiamonds and their applications in cells. Small. 2018;14(24):1704263.
  • Li Y, Feng L, Shi X, et al. Surface coating‐dependent cytotoxicity and degradation of graphene derivatives: towards the design of non‐toxic, degradable nano‐graphene. Small. 2014;10(8):1544–1554.