994
Views
1
CrossRef citations to date
0
Altmetric
Review

Insights on self-assembly of carbon in the processes of thermal transformations under high pressures

, , & ORCID Icon
Article: 2193212 | Received 05 Dec 2022, Accepted 14 Mar 2023, Published online: 10 Apr 2023

References

  • Kroto HW, Heath JR, O’Brien SC, et al. C60: buckminsterfullerene. Nature. 1985;318(6042):162–163.
  • Krätschmer W, Lamb LD, Fostiropoulos K, et al. Solid C60: a new form of carbon. Nature. 1990;347(6291):354–358.
  • Howard JB, McKinnon JT, Makarovsky Y, et al. Fullerenes C60 and C70 in flames. Nature. 1991;352(6331):139–141.
  • Lieber CM, Chen CC. Preparation of fullerenes and fullerene-based materials. In: Ehrenreich H, Spaepen F, editors. Solid state phys. Cambridge (MA): Academic Press; 1994. p. 109–148.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58.
  • Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation. Nature. 1992;359(6397):707–709.
  • Gogotsi Y, Libera JA, Kalashnikov N, et al. Graphite polyhedral crystals. Science. 2000;290(5490):317–320.
  • Ge M, Sattler K. Observation of fullerene cones. Chem Phys Lett. 1994;220(3–5):192–196.
  • Fitzer E, Mueller K, Schaefer W. The chemistry of the pyrolytic conversion of organic compounds to carbon. Chem Phys Carbon. 1971;7(1):237–383.
  • Fishbach D. The kinetics and mechanism of graphitization. Chem Phys Carbon. 1971;7:1–106.
  • Davydov VA, Rakhmanina AV, Agafonov V, et al. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures. Carbon. 2004;42(2):261–269.
  • Melikhov IV. Physico-Chemical evolution of solid state. Moscow: BINOM. Laboratory of Knowledge; 2006.
  • Jiang Q, Chen ZP. Thermodynamic phase stabilities of nanocarbon. Carbon. 2006;44(1):79–83.
  • Vander Wal RL, Tomasek AJ, Street K, et al. Carbon nanostructure examined by lattice fringe analysis of high-resolution transmission electron microscopy images. Appl Spectrosc. 2004;58(2):230–237.
  • Khvostantsev LG, Vereshchagin LF, Novikov AP. Device of toroid type for high pressure generation. High Temp- High Pressures. 1977;9:637–639.
  • Tonkov EY, Ponyatovsky EG. Phase transformations of elements Under high pressure. London: CRC Press; 2004.
  • Bundy FP. Direct conversion of graphite to diamond in static pressure apparatus. Science. 1962;137(3535):1057–1058.
  • Digonsky VV, Digonsky SV. Patterns of diamond formation. St. Petersburg: “Nedra” Publishing House; 1992.
  • Terrones M, Terrones H. The carbon nanocosmos: novel materials for the twenty-first century. Philos Trans A Math Phys Eng Sci. 2003;361(1813):2789–2806.
  • Vereshchagin LF, Ryabinin YN, Semerchan AA, et al. Direct conversion of graphite into diamond at high static pressures. Dokl Akad Nauk SSSR. 1972;206(1):78–79.
  • Wentorf RH. The behavior of some carbonaceous materials at very high pressures and high temperatures. J Phys Chem. 1965;69(9):3063–3069.
  • Dresselhaus MS, Dresselhaus G, Eklund PC. Science of fullerenes and carbon nanotubes. New York (NY): Academic Press; 1995.
  • David WIF, Ibberson RM, Matthewman JC, et al. Crystal structure and bonding of ordered C60. Nature. 1991;353(6340):147–149.
  • Heiney PA. Structure, dynamics and ordering transition of solid C60. J Phys Chem Solids. 1992;53(11):1333–1352.
  • Heimann RB, Evsvukov SE, Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon. 1997;35(10–11):1654–1658.
  • Burgos E, Halac E, Weht R, et al. New superhard phases for three-dimensional ${C}_{60}$-based fullerites. Phys Rev Lett. 2000;85(11):2328–2331.
  • Iwasa Y, Arima T, Fleming RM, et al. New phases of C-60 synthesized at high-pressure. Science. 1994;264(5165):1570–1572.
  • Núñez-Regueiro M, Marques L, Hodeau JL, et al. Polymerized fullerite structures. Phys Rev Lett. 1995;74(2):278–281.
  • Davydov VA, Kashevarova LS, Rakhmanina AV, et al. Spectroscopic study of pressure-polymerized phases of ${\mathrm{C}}_{60}$. Phys Rev B. 2000;61(18):11936–11945.
  • Tang H, Yuan X, Cheng Y, et al. Synthesis of paracrystalline diamond. Nature. 2021;599(7886):605–610.
  • Blank VD, Buga SG, Dubitsky GA, et al. High-pressure polymerized phases of C60. Carbon. 1998;36(4):319–343.
  • Brazhkin VV, Lyapin AG. Hard and superhard carbon phases synthesized from fullerites under pressure. J. Superhard Mater. 2012;34(6):400–423.
  • Sundqvist B. Carbon under pressure. Phys Rep. 2021;909:1–73.
  • Shang Y, Liu Z, Dong J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature. 2021;599(7886):599–604.
  • Chernozatonskii LA, Serebryanaya NR, Mavrin BN. The superhard crystalline three-dimensional polymerized C60 phase. Chem Phys Lett. 2000;316(3–4):199–204.
  • De Gennes PG. Scaling concepts in polymer physics. London: Ithaca; 1979.
  • Yakovlev EN, Voronov OA. The gibbs energy of fullerite C60 at pressures up to 20 GPa in the temperature range 300-1000 K. High Temper High Pressure. 1994;26:639–643.
  • Davydov VA, Shiryaev AA, Rakhmanina AV, et al. Transformations of polyhedral carbon nanoparticles under high pressures and temperatures. Carbon. 2011;49(7):2389–2401.
  • Banhart F, Ajayan PM. Carbon onions as nanoscopic pressure cells for diamond formation. Nature. 1996;382(6590):433–435.
  • Pierson HO. Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications. Park Ridge (NJ): Noyes Publications; 1993.
  • Oberlin A. High-resolution TEM study of carbonization and graphitization. In: Thrower A, editor. Chemistry and physics of carbon . New York (NY): Dekker M; 1989. p. 1–143.
  • Whang P, Dachille F, Walker P.Jr Pressure effects on the initial carbonization reactions of anthracene. High Temp-High Press. 1974;6(2):127–136.
  • Ayache J, Oberlin A, Inagaki M. Mechanism of carbonization under pressure, part I: influence of aromaticity (polyethylene and anthracene). Carbon. 1990;28(2–3):337–351.
  • Yakovlev E, Voronov O, Rakhmanina A. Diamond synthesis from hydrocarbons. Sverkhtverd Mater. 1984;59(4):8–11.
  • Onodera A, Suito K. Synthesis of diamond from carbonaceous materials. In: science and technology of high pressure. Hyderabad, India: Universities Press Hyderabad; 2000. p. 875–880.
  • Davydov VA, Rakhmanina AV, Boudou JP, et al. Nanosized carbon forms in the processes of pressure-temperature-induced transformations of hydrocarbons. Carbon. 2006;44(10):2015–2020.
  • Lambrecht WRL, Lee CH, Segall B, et al. Diamond nucleation by hydrogenation of the edges of graphitic precursors. Nature. 1993;364(6438):607–610.
  • Davydov VA, Rakhmanina AV, Agafonov VN, et al. Synergistic effect of fluorine and hydrogen on processes of graphite and diamond formation from Fluorographite-Naphthalene mixtures at high pressures. J Phys Chem C. 2011;115(43):21000–21008.
  • Davydov VA, Rakhmanina AV, Agafonov V, et al. On the nature of simultaneous formation of nano- and micron-size diamond fractions under pressure-temperature-induced transformations of binary mixtures of hydrocarbon and fluorocarbon compounds. Carbon. 2015;90:231–233.
  • Davydov VA, Agafonov V, Khabashesku VN. Comparative study of condensation routes for formation of nano- and microsized carbon forms in hydrocarbon, fluorocarbon, and Fluoro-Hydrocarbon systems at high pressures and temperatures. J Phys Chem C. 2016;120(51):29498–29509.
  • Ekimov E, Shiryaev AA, Grigoriev Y, et al. Size-Dependent thermal stability and optical properties of ultra-small nanodiamonds synthesized under high pressure. Nanomaterials. 2022;12(3):351.
  • Aharonovich I, Castelletto S, Simpson DA, et al. Diamond-based single-photon emitters. Rep. Prog. Phys. 2011;74(7):076501.
  • Arnault JC. Nanodiamonds: advanced material analysis, properties and applications. Amsterdam, the Netherlands: Elsevier; 2017.
  • Bradac C, Gao WB, Forneris J, et al. Quantum nanophotonics with group IV defects in diamond. Nat Commun. 2019;10(1):5625.
  • Alkahtani MH, Alghannam F, Jiang L, et al. Fluorescent Nanodiamonds: past, present, and future. Nanophotonics. 2018;7(8):1423–1453.
  • Shenderova OA, Shames AI, Nunn NA, et al. Review article: synthesis, properties, and applications of fluorescent diamond particles. J Vac Sci Technol B Nanotechnol Microelectron. 2019;37(3):030802.
  • Ekimov E, Kondrin M. High-pressure, high-temperature synthesis and doping of nanodiamonds. Diamond for quantum applications part 1. Semiconductors and semimetals. Amsterdam, the Netherlands: Elsevier Science; 2020. p. 161–199.
  • Fehler KG, Ovvyan AP, Antoniuk L, et al. Purcell-enhanced emission from individual SiV − center in nanodiamonds coupled to a Si3N4-based, photonic crystal cavity. Nanophotonics. 2020;9(11):3655–3662.
  • Nahra M, Alshamaa D, Deturche R, et al. Single germanium vacancy centers in nanodiamonds with bulk-like spectral stability. AVS Quantum Sci. 2021;3(1):012001.
  • Kumar S, Wu C, Komisar D, et al. Fluorescence enhancement of a single germanium vacancy center in a nanodiamond by a plasmonic bragg cavity. J Chem Phys. 2021;154(4):044303.
  • Waltrich R, Lubotzky B, Abudayyeh H, et al. High-purity single photons obtained with moderate-NA optics from SiV center in nanodiamonds on a bullseye antenna. New J Phys. 2021;23(11):113022.
  • Liu W, Alam MNA, Liu Y, et al. Silicon-Vacancy nanodiamonds as high performance Near-Infrared emitters for Live-Cell Dual-Color imaging and thermometry. Nano Lett. 2022;22(7):2881–2888.
  • Mindarava Y, Blinder R, Davydov VA, et al. Core-Shell" diamond nanoparticles with NV- Centers and a highly isotopically enriched C-13 shell as a promising hyperpolarization agent. J Phys Chem C. 2021;125:27647–27653.
  • Vlasov II, Shenderova O, Turner S, et al. Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small. 2010;6(5):687–694.
  • Mochalin VN, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds. Nat Nanotech. 2012;7(1):11–23.
  • Vlasov II, Turner S, Van Tendeloo G, et al. Chapter 9 recent results on characterization of detonation nanodiamonds. In: Shenderova OA, GruenIn DM, editors. Ultananocrystalline diamond. Amsterdam, the Netherlands: Elsevier; 2012. p. 291–326.
  • Bergman L, Stoner BR, Turner KF, et al. Microphotoluminescence and Raman-Scattering study of defect formation in diamond films. J Appl Phys. 1993;73(8):3951–3957.
  • Turukhin AV, Liu C, Gorokhovsky AA, et al. Picosecond photoluminescence decay of si-doped chemical-vapor-deposited diamond films. Phys Rev B. 1996;54(23):16448–16451.
  • Musale D, Sainkar S, Kshirsagar S. Raman, photoluminescence and morphological studies of si-and N-doped diamond films grown on si (100) substrate by hot-filament chemical vapor deposition technique. Diam Relat Mater. 2002;11(1):75–86.
  • Balmer R, Brandon J, Clewes S, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications. J Phys Condens Matter. 2009;21:364221.
  • Grudinkin SA, Feoktistov NA, Medvedev AV, et al. Luminescent isolated diamond particles with controllably embedded silicon-vacancy colour centres. J Phys D Appl Phys. 2012;45(6):062001.
  • Bolshakov A, Ralchenko V, Sedov VS, et al. Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with si from silane. Phys Status Solidi A. 2015;212(11):2525–2532.
  • Vavilov VS, Gippius AA, Zaitsev BV, et al. Study of cathodoluminescence of epitaxial diamond films. Sov Phys Semicond. 1980;14:1078.
  • Tchernij SD, Luhmann T, Herzig T, et al. Single-photon emitters in lead-implanted single-crystal diamond. Acs Photonics. 2018;5(12):4864–4871.
  • Boudou JP, Tisler J, Reuter R, et al. Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diam Relat Mater. 2013;37:80–86.
  • Neu E, Arend C, Gross E, et al. Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. Appl Phys Lett. 2011;98(24):243107–243107.
  • Sittas G, Kanda H, Kiflawi I, et al. Growth and characterization of si-doped diamond single crystals grown by the HTHP method. Diam Relat Mater. 1996;5(6–8):866–869.
  • Clark CD, Kanda H, Kiflawi I, et al. Silicon defects in diamond. Phys Rev B. 1995;51(23):16681–16688.
  • Nadolinny VA, Komarovskikh A, Palyanov YN, et al. EPR study of si‐ and ge‐related defects in HPHT diamonds synthesized from mg‐based solvent‐catalysts. Phys Status Solidi A. 2016;213(10):2623–2628.
  • Rogers L, Wang O, Liu Y, et al. Single SiV- centers in low-strain nanodiamonds with bulk-like spectral properties and nano-manipulation capabilities. Phys Rev Appl. 2018;11:024073.
  • Jantzen U, Kurz AB, Rudnicki DS, et al. Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths. New J Phys. 2016;18(7):073036.
  • Uskoković V. Earthicle and its discontents: a historical critical review of iron (oxide) particles singly and doubly shelled with silica and/or carbon. ACS Earth Space Chem. 2020;4(10):1843–1877.
  • Elihn K. Synthesis of carbon-covered iron nanoparticles by photolysis of ferrocene. Uppsala, Sweden: Uppsala Universitet; 2002.
  • Elihn K, Otten F, Boman M. Size distributions and synthesis of nanoparticles by photolytic dissociation of ferrocene. Appl Phys A. 2001;72(1):29–34.
  • Elihn K, Larsson K. A theoretical study of the thermal fragmentation of ferrocene. Thin Solid Films. 2004;458(1–2):325–329.
  • Elihn K, Landström L, Alm O, et al. Size and structure of nanoparticles formed via ultraviolet photolysis of ferrocene. J Appl Phys. 2007;101(3):034311–034311.
  • Bagramov RH, Blank VD, Serebryanaya NR, et al. High pressures synthesis of iron carbide nanoparticles covered with onion-like carbon shells. Fuller Nanotub Carbon Nanostruct. 2012;20(1):41–48.
  • Baskakov A, Lyubutin I, Starchikov S, et al. Mechanism of transformation of ferrocene into carbon-encapsulated iron carbide nanoparticles at high pressures and temperatures. Inorg Chem. 2018;57(23):14895–14903.
  • Starchikov S, Zayakhanov VA, Vasiliev AL, et al. Core@shell nanocomposites Fe7C3/FexOy/C obtained by high pressure-high temperature treatment of ferrocene fe(C5H5)2. Carbon. 2021;178:708–717.
  • Harris PJF. Carbon nanotubes and related structures: new materials for the twenty-first century. Cambridge: Cambridge University Press; 1999.