316
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Determination of optical properties of single crystal diamond substrates grown via welding-assisted microwave plasma enhanced chemical vapour deposition

, ORCID Icon, &
Article: 2350967 | Received 21 Dec 2023, Accepted 29 Apr 2024, Published online: 11 May 2024

References

  • Field JE. The properties of diamond. London: Academic Press; 1979.
  • Thomas ME, Tropf WJ. Optical properties of diamond. Johns Hopkins APL Tech Dig. 1993;14:16–23.
  • Godfried, et al. U.S. Patent No. USO09551090B2. U.S. Patent and Trademark Office: Washington, D.C. 2017. https://patents.google.com/patent/US9551090B2/en.
  • Kitzler O, Sabella A, et al. Design and characterisation of optical quality single crystal diamond for raman laser applications. Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optica Publishing Group, 2011). 2011.
  • Shreya N. Growth and characterization of large, high quality single crystal diamond substrates via microwave plasma assisted chemical vapor deposition [PhD thesis]. East Lansing, Michigan, US: Michigan State University; 2015.
  • Charris-Hernandez A. Towards the rapid growth of high quality, polycrystalline rimless and large area single crystal diamond substrates [PhD thesis]. East Lansing, Michigan, US: Michigan State University; 2017.
  • Yang B, Shen S, Zhang L, et al. Study on diamond temperature stability during long-duration growth via MPCVD under the influence of thermal contact resistance. J Appl Crystallogr. 2022;55(2):240–246.
  • European Carbon and Graphite Association. wegiel wzor [Photograph]. 1995. https://ecga.net/what-is-graphite/.
  • Cao GZ, Schermer JJ, van Enckevort WJP, et al. Growth of {100} textured diamond films by the addition of nitrogen. J Appl Phys. 1996;79(3):1357–1364.
  • Jin S, Moustakas TD. Effect of nitrogen on the growth of diamond films. Appl Phys Lett. 1994;65(4):403–405.
  • Müller-Sebert W, Wörner E, Fuchs F, et al. Nitrogen induced increase of growth rate in chemical vapor deposition of diamond. Appl Phys Lett. 1995;68(6):759–760. https://doi.org/10.1063/1.116733
  • Afzal A, Rego CA, Ahmed W, et al. HFCVD diamond grown with added nitrogen: film characterization and gas-phase composition studies. Diamond Relat Mater. 1998;7(7):1033–1038.
  • Luo H, Ajmal KM, Liu W, et al. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives. Int J Extrem Manuf. 2021;3(2):022003. doi: 10.1088/2631-7990/abe915
  • Upadhyay K. Enhancement in the quality of single crystal diamond seed substrate through various etching method. In: National Conference on Advances in Physical Science for Sustainable Development, August 27, 2022, Gandhinagar. Sector 15 Gandhinagar: A book on National Conference on Advances in Physical Science for Sustainable Development, pp. 114–124. 2023.
  • Altukhov AA, Vikharev AL, Gorbachev AM, et al. Characterization of single crystal diamond grown from the vapor phase on substrates of natural diamond. Semiconductors. 2011;45(3):392–396. doi: 10.1134/S106378261103002X
  • Prawer S, Nemanich RJ. Raman spectroscopy of diamond and doped diamond. Philos Trans R Soc A. 2004;362(1824):2537–2565. https://doi.org/10.1098/rsta.2004.1451
  • Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61(20):14095–14107. http://dx.doi.org/10.1103/physrevb.61.14095
  • Birrell J, Gerbi JE, Auciello O, et al. Interpretation of the Raman spectra of ultra nanocrystalline diamond. Diamond Relat Mater. 2005;14(1):86–92. doi: 10.1016/j.diamond.2004.07.012
  • Wagner J, Wild C, Koidl P. Resonance effects in Raman scattering from polycrystalline diamond films. Appl Phys Lett. 1991;59(7):779–781. https://doi.org/10.1063/1.105340
  • Bennett AM, Wickham BJ, Dhillon HK, et al. Development of high purity, optical grade single crystal CVD diamond for intra-cavity cooling. Proceedings of SPIE 8959, Solid State Lasers XXIII: Technology and Devices. 2014. http://dx.doi.org/10.1117/12.2037811
  • Breeding CM, Shigley JE. The “type” classification system of diamonds and its importance in gemology. Gems Gemol. 2009;45(2):96–111. doi: 10.5741/GEMS.45.2.96
  • Pandit T. Absorbance and Transmittance measurement of CsI thin films. In: Jain S, editor. Proceedings of the DAE Symposium on Nuclear Physics; Nabhikiya Urja Bhawan Auditorium, Anushakti Nagar, Mumbai-INDIA; 2013. p. 838–839.
  • Wang W, Hall MS, Moe KS, et al. Latest-generation CVD-GROWN synthetic diamonds from apollo diamond inc. Gems Gemmol. 2007;43(4):294–312.
  • Chrenko RM, Strong HM, Tuft RE. Dispersed paramagnetic nitrogen content of large laboratory diamonds. Philos Mag. 1971;23(182):313–318.
  • Sumiya H, Satoh S. High-pressure synthesis of high-purity diamond crystal. Diam Relat Mater. 1996;5(11):1359–1365.
  • Kiflawi I, Mainwood A, Kanda H, et al. Nitrogen interstitials in diamond, the American Physical Society. Phys Rev B. 1996;54(23):16719–16726. doi: 10.1103/PhysRevB.54.16719
  • Litvak I, Cahana A, Anker Y, et al. Nitrogen structure determination in treated fancy diamonds via EPR spectroscopy. Crystals. 2022;12(12):1775. https://doi.org/10.3390/cryst12121775
  • Hainschwang T, Notari F, Fritsch E, et al. Natural, untreated diamonds showing the A, B and C infrared absorptions (“ABC diamonds”), and the H2 absorption. Diam Relat Mater. 2006;15(10):1555–1564.
  • Goss JP, Briddon PR, Hill V, et al. Identification of the structure of the 3107 Cm-1 H-related defect in diamond. J Phys. 2014;26(14):145801.
  • Petit T, Puskar L, Dolenko TA, et al. Unusual water hydrogen bond network around hydrogenated nanodiamonds. J Phys Chem C. 2017;121(9):5185–5194. doi: 10.1021/acs.jpcc.7b00721
  • Stehlik S, Glatzel T, Pichot V, et al. Water interaction with hydrogenated and oxidized detonation nanodiamonds – microscopic and spectroscopic analyses. Diam Relat Mater. 2016;63:97–102. doi: 10.1016/j.diamond.2015.08.016
  • Yang Z, Liang R, Zeng X, et al. A microscopy and FTIR and PL spectra study of polycrystalline diamonds from Mengyin kimberlite pipes. ISRN Spectroscopy. 2012;2012:1–10. doi: 10.5402/2012/871824
  • Jiang T, Xu K. FTIR study of ultra dispersed diamond powder synthesized by explosive detonation. Carbon. 1995;33(12):1663–1671. doi: 10.1016/0008‐6223(95)00115‐1
  • Jiang T, Xu K, Ji S. FTIR studies on the spectral changes of the surface functional groups of ultra dispersed diamond powder synthesized by explosive detonation after treatment in hydrogen, nitrogen, methane and air at different temperatures. Faraday Trans. 1996;92(18):3401. doi: 10.1039/ft9969203401
  • Petit T, Puskar L. FTIR spectroscopy of nanodiamonds: methods and interpretation. Diamond Relat Mater. 2018;89:52–66. doi: 10.1016/j.diamond.2018.08.005
  • Mitev D, Dimitrova R, Spassova M, et al. Surface peculiarities of detonation nanodiamonds in dependence of fabrication and purification methods. Diam Relat Mater. 2007;16(4–7):776–780. doi: 10.1016/j.diamond.2007.01.005
  • Mironov E, Koretz A, Petrov E. Detonation synthesis ultra dispersed diamond structural properties investigation by infrared absorption. Diam Relat Mater. 2002;11(3-6):872–876. doi: 10.1016/S0925‐9635(01)00723‐3
  • Krüger A, Liang Y, Jarre G, et al. Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem. 2006;16(24):2322–2328. doi: 10.1039/b601325b
  • Shenderova O, Petrov I, Walsh J, et al. Modification of detonation nanodiamonds by heat treatment in air. Diam Relat Mater. 2006;15(11–12):1799–1803. doi: 10.1016/j.diamond.2006.08.032