Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 10, 2024 - Issue 1
179
Views
0
CrossRef citations to date
0
Altmetric
Research article

Recycling of phosphorus from dredged lake sediment: Importance of iron-bound phosphates for plant growth

ORCID Icon, , , , , , , , & | (Reporting editor) show all
Article: 2362503 | Received 22 Dec 2023, Accepted 28 May 2024, Published online: 07 Jun 2024

References

  • Ayadi, N., Aloulou, F., & Bouzid, J. (2015). Assessment of contaminated sediment by phosphate fertilizer industrial waste using pollution indices and statistical techniques in the Gulf of Gabes (Tunisia). Arabian Journal of Geosciences, 8(3), 1755–14. https://doi.org/10.1007/s12517-014-1291-4
  • Azam, H. M., Alam, S. T., Hasan, M., Yameogo, D. D. S., Kannan, A. D., Rahman, A., & Kwon, M. J. (2019). Phosphorous in the environment: Characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in natural and engineered systems. Environmental Science and Pollution Research, 26(20), 20183–20207. https://doi.org/10.1007/s11356-019-04732-y
  • Bianchi, V., Masciandaro, G., Giraldi, D., Ceccanti, B., & Iannelli, R. (2008). Enhanced heavy metal phytoextraction from marine dredged sediments comparing conventional chelating agents (citric acid and EDTA) with humic substances. Water, Air, and Soil Pollution, 193(1–4), 323–333. https://doi.org/10.1007/s11270-008-9693-0
  • Boers, P., Van der Does, J., Quaak, M., Van der Vlugt, J., & Walker, P. (1992). Fixation of phosphorus in lake sediments using iron(III)chloride: Experiences, expectations. In Restoration and recovery of shallow Eutrophic Lake ecosystems in the Netherlands (Vol. 233, pp. 211–212). Springer Netherlands. https://doi.org/10.1007/978-94-011-2432-4_19
  • Boers, P. C. M., Van Raaphorst, W., & Van Der Molen, D. T. (1998). Phosphorus retention in sediments. Water Science and Technology, 37(3), 31–39. https://doi.org/10.2166/wst.1998.0169
  • Braga, B. B., de Carvalho, T. R. A., Brosinsky, A., Foerster, S., & Medeiros, P. H. A. (2019). From waste to resource: Cost-benefit analysis of reservoir sediment reuse for soil fertilization in a semiarid catchment. Science of the Total Environment, 670, 158–169. https://doi.org/10.1016/j.scitotenv.2019.03.083
  • Braga, B. B., Junior, F. H. N., Barbosa, R. M., Brito, P. O. B. D., Martins, K., Medeiros, P. H. A., & Gondim, F. A. (2017). Biomass production and antioxidative enzyme activities of sunflower plants growing in substrates containing sediment from a tropical reservoir. Journal of Agricultural Science, 9(5), 95. https://doi.org/10.5539/jas.v9n5p95
  • Brownlie, W. J., Sutton, M. A., Reay, D. S., Heal, K. V., Hermann, L., Kabbe, C., & Spears, B. M. (2021). Global actions for a sustainable phosphorus future. Nature Food, 2(2), 71–74. https://doi.org/10.1038/s43016-021-00232-w
  • Canet, R., Chaves, C., Pomares, F., & Albiach, R. (2003). Agricultural use of sediments from the Albufera Lake (eastern Spain). Agriculture, Ecosystems and Environment, 95(1), 29–36. https://doi.org/10.1016/S0167-8809(02)00171-8
  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C., & Likens, G. E. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323(5917), 1014–1015. https://doi.org/10.1126/science.1167755
  • Cooke, G. D., Welch, E. B., Peterson, S. A., & Nichols, S. A. (1972). Restoration and management of lakes and reservoirs. In Taylor & Francis (third, vol. 4, issue 3). https://doi.org/10.1016/0006-3207(72)90195-4
  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
  • Crespi, J. M., Hart, C., Pudenz, C. C., Schulz, L. L., Wongpiyabovorn, O., Zhang, W., & Student, P. (2022). An examination of recent fertilizer price changes. June, 58. https://doi.org/10.13140/RG.2.2.24806.70720
  • Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245(1), 35–47. https://doi.org/10.1023/A:1020809400075
  • De Santiago, A., Quintero, J. M., Carmona, E., & Delgado, A. (2008). Humic substances increase the effectiveness of iron sulfate and vivianite preventing iron chlorosis in white lupin. Biology and Fertility of Soils, 44(6), 875–883. https://doi.org/10.1007/s00374-008-0272-8
  • Díaz, I., Barrón, V., Del Campillo, M. C., & Torrent, J. (2010). Testing the ability of vivianite to prevent iron deficiency in pot-grown grapevine. Scientia Horticulturae, 123(4), 464–468. https://doi.org/10.1016/j.scienta.2009.11.006
  • Dittrich, M., Chesnyuk, A., Gudimov, A., McCulloch, J., Quazi, S., Young, J., Winter, J., Stainsby, E., & Arhonditsis, G. (2013). Phosphorus retention in a mesotrophic lake under transient loading conditions: Insights from a sediment phosphorus binding form study. Water Research, 47(3), 1433–1447. https://doi.org/10.1016/j.watres.2012.12.006
  • Fonseca, R. M. F., Barriga, F., & Fyfe, W. S. (2003). Dam reservoir sediments as fertilizers and artificial soils. Case studies from Portugal and Brazil. Proceedings, International Symposium of the Kanazawa University 22st-Century COE Program (Vol. 1, pp. 55–62). Kanawaza University.
  • Gächter, R., & Müller, B. (2003). Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnology and Oceanography, 48(2), 929–933. https://doi.org/10.4319/lo.2003.48.2.0929
  • Gonsiorczyk, T., Casper, P., & Koschel, R. (1998). Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic lake District (Germany). Water Science and Technology, 37(3), 51–58. https://doi.org/10.2166/wst.1998.0173
  • Gunnars, A., Blomqvist, S., Johansson, P., & Andersson, C. (2002). Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochimica et Cosmochimica Acta, 66(5), 745–758. https://doi.org/10.1016/S0016-7037(01)00818-3
  • Gypser, S., & Freese, D. (2020). Phosphorus release from vivianite and hydroxyapatite by organic and inorganic compounds. Pedosphere, 30(2), 190–200. https://doi.org/10.1016/S1002-0160(20)60004-2
  • Hertzberger, A. J., Cusick, R. D., & Margenot, A. J. (2021). Maize and soybean response to phosphorus fertilization with blends of struvite and monoammonium phosphate. Plant and Soil, 461(1–2), 547–563. https://doi.org/10.1007/s11104-021-04830-2
  • Ibendahl, G. (2022). The Russia-Ukraine conflict and the effect on fertilizer Kansas. State University – Department of Agricultural Economics. 1–12.
  • International Fertiliser Society. (2022). Triple Superphosphate (TSP). https://fertechinform.org/knowledgebase/triple-superphosphate-tsp/
  • Jupp, A. R., Beijer, S., Narain, G. C., Schipper, W., & Slootweg, J. C. (2021). Phosphorus recovery and recycling – closing the loop. Chemical Society Reviews, 50(1), 87. https://doi.org/10.1039/d0cs01150a
  • Kiani, M., Raave, H., Simojoki, A., Tammeorg, O., & Tammeorg, P. (2021). Recycling lake sediment to agriculture: Effects on plant growth, nutrient availability, and leaching. Science of the Total Environment, 753, 141984. https://doi.org/10.1016/j.scitotenv.2020.141984
  • Kiani, M., Tammeorg, P., Niemistö, J., Simojoki, A., & Tammeorg, O. (2020). Internal phosphorus loading in a small shallow lake: Response after sediment removal. Science of the Total Environment, 725, 138279. https://doi.org/10.1016/j.scitotenv.2020.138279
  • Kiani, M., Zrim, J., Simojoki, A., Tammeorg, O., Penttinen, P., Markkanen, T., & Tammeorg, P. (2023). Recycling eutrophic lake sediments into grass production: A four-year field experiment on agronomical and environmental implications. Science of the Total Environment, 870, 870. https://doi.org/10.1016/j.scitotenv.2023.161881
  • Kleeberg, A., Herzog, C., & Hupfer, M. (2013). Redox sensitivity of iron in phosphorus binding does not impede lake restoration. Water Research, 47(3), 1491–1502. https://doi.org/10.1016/j.watres.2012.12.014
  • Koroleff, F. (1983). Determination of phosphorus. In K. Grasshoff, M. Ehrhardt, & K. Kremling (Eds.), Methods of seawater analysis (pp. 125–132). Verlag Chemie.
  • Kovar, J. L., & Pierzynski, G. M. (2009). Southern Cooperative Series Bulletin (Vol. 408).
  • Laakso, J., Uusitalo, R., Leppänen, J., & Yli-Halla, M. (2017). Sediment from agricultural constructed wetland immobilizes soil phosphorus. Journal of Environmental Quality, 46(2), 356–363. https://doi.org/10.2134/jeq2016.09.0336
  • Li, Y., Wang, X. L., Huang, G. H., Zhang, B. Y., & Guo, S. H. (2009). Adsorption of Cu and Zn onto Mn/Fe oxides and organic materials in the extractable fractions of river surficial sediments. Soil and Sediment Contamination, 18(1), 87–101. https://doi.org/10.1080/15320380802547841
  • López-Bucio, J., Cruz-Ramírez, A., & Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6(3), 280–287. https://doi.org/10.1016/S1369-5266(03)00035-9
  • Mengel, K. (1997). Agronomic measures for better utilization of soil and fertilizer phosphates. Developments in Crop Science, 25(C), 277–289. https://doi.org/10.1016/S0378-519X(97)80028-1
  • Mühlbachová, G., Cermák, P., Vavera, R., Kás, M., Pechová, M., Marková, K., Hlusek, J., & Losák, T. (2018). Phosphorus availability and spring barley yields under graded p-doses in a pot experiment. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 66(1), 111–118. https://doi.org/10.11118/actaun201866010111
  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied & Environmental Soil Science, 2019(3), 1–9. https://doi.org/10.1155/2019/5794869
  • O’Connell, D. W., Mark Jensen, M., Jakobsen, R., Thamdrup, B., Joest Andersen, T., Kovacs, A., & Bruun Hansen, H. C. (2015). Vivianite formation and its role in phosphorus retention in Lake Ørn, Denmark. Chemical Geology, 409, 42–53. https://doi.org/10.1016/j.chemgeo.2015.05.002
  • Pittarello, M., Busato, J. G., Carletti, P., Sodré, F. F., & Dobbss, L. B. (2019). Dissolved humic substances supplied as potential enhancers of Cu, Cd, and Pb adsorption by two different mangrove sediments. Journal of Soils and Sediments, 19(3), 1554–1565. https://doi.org/10.1007/s11368-018-2158-1
  • Prystupa, P., Slafer, G. A., & Savin, R. (2003). Leaf appearance, tillering and their coordination in response to NxP fertilization in barley. Plant and Soil, 255(2), 587–594. https://doi.org/10.1023/A:1026018702317
  • Reitzel, K., Hansen, J., Andersen, F., Hansen, K. S., & Jensen, H. S. (2005). Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environmental Science and Technology, 39(11), 4134–4140. https://doi.org/10.1021/es0485964
  • Renella, G. (2021). Recycling and reuse of sediments in agriculture: Where is the problem? Sustainability (Switzerland), 13(4), 1–12. https://doi.org/10.3390/su13041648
  • Research Ltd, D. G. T. (2013). Guide to deploying DGT passive samplers in soils General considerations Practical procedures Soil preparation. DGT Research Ltd.
  • Robinson, B., Schulin, R., Nowack, B., Roulier, S., Menon, M., Clothier, B., Green, S., & Mills, T. (2006). Phytoremediation for the management of metal flux in contaminated sites. Forest Snow and Landscape Research, 80(2), 221–234.
  • Rothe, M., Kleeberg, A., & Hupfer, M. (2016). The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments. In Earth-science reviews (Vol. 158, pp. 51–64). Elsevier B.V. https://doi.org/10.1016/j.earscirev.2016.04.008
  • Scholz, R. W., & Wellmer, F. W. (2021). Endangering the integrity of science by misusing unvalidated models and untested assumptions as facts: General considerations and the mineral and phosphorus scarcity fallacy. Sustainability Science, 16(6), 2069–2086. https://doi.org/10.1007/s11625-021-01006-w
  • Sondergaard, M., Jensen, P. J., & Jeppesen, E. (2001). Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World Journal, 1, 427–442. https://doi.org/10.1100/tsw.2001.72
  • Sørensen, N. K., & Bülow-Olsen, A.(1994). Plantedirektoratets fælles arbejdsmetoder for jordbundsanalyser.
  • Sorn-Srivichai, P., Syers, J. K., Tillman, R. W., & Cornforth, I. S. (1988). An evaluation of water extraction as a soil-testing procedure for phosphorus I. Glasshouse assessment of plant-available phosphorus. Fertilizer Research, 15(3), 211–223. https://doi.org/10.1007/BF01051343
  • Talboys, P. J., Heppell, J., Roose, T., Healey, J. R., Jones, D. L., & Withers, P. J. A. (2016). Struvite: A slow-release fertiliser for sustainable phosphorus management? Plant and Soil, 401(1–2), 109–123. https://doi.org/10.1007/s11104-015-2747-3
  • Tammeorg, O., Chorus, I., Spears, B., Nõges, P., Nürnberg, G. K., Tammeorg, P., Søndergaard, M., Jeppesen, E., Paerl, H., Huser, B., Horppila, J., Jilbert, T., Budzyńska, A., Dondajewska-Pielka, R., Gołdyn, R., Haasler, S., Hellsten, S., Härkönen, L. H., Kiani, M., & Lürling, M. (2023). Sustainable lake restoration: From challenges to solutions. Wiley Interdisciplinary Reviews: Water, 11(2). https://doi.org/10.1002/wat2.1689
  • U.S. Geological Survey. (2020). Mineral commodity summaries 2020. Mineral Commodity Summaries 2020: U.S. Geological Survey, (703). https://doi.org/10.3133/mcs2020
  • Van Wichelen, J., Declerck, S., Muylaert, K., Hoste, I., Geenens, V., Vandekerkhove, J., Michels, E., De Pauw, N., Hoffmann, M., De Meester, L., & Vyverman, W. (2007). The importance of drawdown and sediment removal for the restoration of the eutrophied shallow Lake Kraenepoel (Belgium). Hydrobiologia, 584(1), 291–303. https://doi.org/10.1007/s10750-007-0611-z
  • Welch, E. B., & Cooke, G. D. (2005). Internal phosphorus loading in shallow lakes: Importance and control. Lake and Reservoir Management, 21(2), 209–217. https://doi.org/10.1080/07438140509354430
  • Wijdeveld, W. K., Prot, T., Sudintas, G., Kuntke, P., Korving, L., & van Loosdrecht, M. C. M. (2022). Pilot-scale magnetic recovery of vivianite from digested sewage sludge. Water Research, 212(December 2021), 118131. https://doi.org/10.1016/j.watres.2022.118131
  • Yang, S., Yang, X., Zhang, C., Deng, S., Zhang, X., Zhang, Y., & Cheng, X. (2022). Significantly enhanced P release from vivianite as a fertilizer in rhizospheric soil: Effects of citrate. Environmental Research, 212(PD), 113567. https://doi.org/10.1016/j.envres.2022.113567
  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x