Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 10, 2024 - Issue 1
291
Views
0
CrossRef citations to date
0
Altmetric
Environmental Chemistry

Pesticides use and its effects on grape production: A review

ORCID Icon, , , &
Article: 2366555 | Received 24 Oct 2023, Accepted 06 Jun 2024, Published online: 17 Jun 2024

References

  • Abian, J., Durand, G., & Barcelo, D. (1993). Analysis of chlorotriazines and their degradation products in environmental samples by selecting various operating modes in thermosprayHPLC/MS/MS. Journal of Agricultural and Food Chemistry, 41(8), 1264–13. https://doi.org/10.1021/jf00032a020
  • Agrios, G. N. (2005). Plant diseases caused by viruses. In K. D. Sonnack (Ed.), Plant Pathology (5th ed., pp. 724–820). Elsevier Academia Press.
  • Aichner, B., Bussian, B., Lehnik-Habrink, P., & Hein, S. (2013). Levels and spatial distribution of persistent organic pollutants in the environment: A case study of German forest soils. Environmental Science & Technology, 47(22), 12703–12714. https://doi.org/10.1021/es4019833
  • Alcorta, M., Fidelibus, M. W., Steenwerth, K. L., & Shrestha, A. (2011). Competitive effects of glyphosate-resistant and glyphosate-susceptible horseweed (Conyza canadensis) on young grapevines (vitis vinifera). Weed Science, 59(4), 489–494. https://doi.org/10.1614/WS-D-10-00186.1
  • Ali, U., Syed, J. H., Malik, R. N., Katsoyiannis, A., Li, J., Zhang, G., & Jones, K. C. (2014). Organochlorine pesticides (OCPs) in South Asian region: A review. Science of the Total Environment, 476, 705–717. https://doi.org/10.1016/j.scitotenv.2013.12.107
  • Ali, S., Ullah, M. I., Sajjad, A., Shakeel, Q., & Hussain, A. (2021). Environmental and Health Effects of Pesticide Residues. In Inamuddin, M. I., Ahamed & E. Lichtfouse (Eds.), Sustainable Agriculture Reviews 48: Pesticide Occurrence, Analysis and Remediation (Vol. 2, pp. 311–336). Springer. https://doi.org/10.1007/978-3-030-54719-6_8
  • Angioni, A., & Dedola, F. (2013). Three years monitoring survey of pesticide residues in Sardinia wines following integrated pest management strategies. Environmental Monitoring and Assessment, 185(5), 4281–4289. https://doi.org/10.1007/s10661-012-2868-6
  • Baiano, A. (2021). An overview on sustainability in the wine production chain. Beverages, 7(1), 15. https://doi.org/10.3390/beverages7010015
  • Battany, M. C., & Grismer, M. E. (2000). Rainfall runoff and erosion in Napa Valley vineyards: Effects of slope, cover and surface roughness. Hydrological Processes, 14(7), 1289–1304. https://doi.org/10.1002/(SICI)1099-1085(200005)14:7<1289:AID-HYP43>3.0.CO;2-R
  • Bertsch, C., Ramírez‐Suero, M., Magnin‐Robert, M., Larignon, P., Chong, J., Abou‐Mansour, E., Fontaine, F., Clément, C., & Fontaine, F. (2013). Grapevine trunk diseases: Complex and still poorly understood. Plant Pathology, 62(2), 243–265. https://doi.org/10.1111/j.1365-3059.2012.02674.x
  • Bhardwaj, T., & Sharma, J. P. (2013). Impact of pesticides application in agricultural industry: An Indian scenario. International Journal of Agriculture and Food Science Technology, 4(8), 817–822.
  • Bouagga, A., Chaabane, H., Toumi, K., MougouHamdane, A., Nasraoui, B., & Joly, L. (2019). Pesticide residues in Tunisian table grapes and associated risk for consumer’s health. Food Additives and Contaminants: Part B, 12(2), 135–144. https://doi.org/10.1080/19393210.2019.1571532
  • Caffi, T., Rossi, V., & Bugiani, R. (2010). Evaluation of a warning system for controlling primary infections of grapevine downy mildew. Plant Disease, 94(6), 709–716. https://doi.org/10.1094/PDIS-94-6-0709
  • Calonnec, A., Cartolaro, P., Poupot, C., Dubourdieu, D., & Darriet, P. (2004). Effects of uncinula necator on the yield and quality of grapes (vitis vinifera) and wine. Plant Pathology, 53(4), 434–445. https://doi.org/10.1111/j.0032-0862.2004.01016.x
  • Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48–60. https://doi.org/10.1002/fes3.108
  • Celette, F., Findeling, A., & Gary, C. (2009). Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. European Journal of Agronomy, 30(1), 41–51. https://doi.org/10.1016/j.eja.2008.07.003
  • Celette, F., Gaudin, R., & Gary, C. (2008). Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. European Journal of Agronomy, 29(4), 153–162. https://doi.org/10.1016/j.eja.2008.04.007
  • Chamgenzi, S. S. (2020). Pesticide Residues in Locally Produced Grape Wine in Tanzania: A Case Study of Dodoma Urban and Bahi Districts [ Doctoral dissertation]. Sokoine University of Agriculture.
  • Chen, C., Zou, W., Cui, G., Tian, J., Wang, Y., & Ma, L. (2020). Ecological risk assessment of current-use pesticides in an aquatic system of Shanghai, China. Chemosphere, 257, 127222. https://doi.org/10.1016/j.chemosphere.2020.127222
  • Compant, S., Brader, G., Muzammil, S., Sessitsch, A., Lebrihi, A., & Mathieu, F. (2013). Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl, 58(4), 435–455. https://doi.org/10.1007/s10526-012-9479-6
  • Coscollà, C., Colin, P., Yahyaoui, A., Petrique, O., Yusà, V., Mellouki, A., & Pastor, A. (2010). Occurrence of currently used pesticides in ambient air of centre region (France). Atmospheric Environment, 44(32), 3915–3925. https://doi.org/10.1016/j.atmosenv.2010.07.014
  • Čuš, F., Česnik, H. B., Bolta, Š. V., & Gregorčič, A. (2010). Pesticide residues and microbiological quality of bottled wines. Food Control, 21(2), 150–154. https://doi.org/10.1016/j.foodcont.2009.04.010
  • Daane, K. M., Almeida, R. P., Bell, V. A., Walker, J. T., Botton, M., Fallahzadeh, M., Mani, M., Miano, J. L., Sforza, R., Walton, V. M., & Zaviezo, T. (2012). Bilogy and Management of Mealybugs in Vineyards. In N. J. Bostanian, C. Vincent & R. Isaacs (Eds.), Arthropod Management in Vineyards: Pests, Approaches, and Future Directions (Vol. 1, pp. 271–307). Springer. https://doi.org/10.1007/978-94-007-4032-7
  • da Graça Silva, V. A. F. (2022). Pesticide Residues in EU Soils and Related Risks [ Doctoral dissertation]. Wageningen University and Research.
  • Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402–1419. https://doi.org/10.3390/ijerph8051402
  • Delić, D., Contaldo, N., Paltrinieri, S., Lolić, B., Đurić, Z., Hrnčić, S., & Bertaccini, A. (2011). Grapevine yellows in Bosnia and Herzegovina: Surveys to identify phytoplasmas in grapevine, weeds and insect vectors. In A. Bertaccini & S. Mainni (Eds.), Proceedings of the Second International Phytoplasmologist Working Group Meeting, September 12-15, 2011, Germany (Vol. 64, pp. 245–246). Neustadt an der Weinstrasse.
  • DeVetter, L. W., Dilley, C. A., & Nonnecke, G. R. (2015). Mulches reduce weeds, maintain yield, and promote soil quality in a continental-climate vineyard. American Journal of Enology and Viticulture, 66(1), 54–64. https://doi.org/10.5344/ajev.2014.14064
  • Díaz‐Raviña, M., De Anta, R. C., & Bååth, E. (2007). Tolerance (PICT) of the bacterial communities to copper in vineyards soils from Spain. Journal of Environmental Quality, 36(6), 1760–1764. https://doi.org/10.2134/jeq2006.0476
  • Doğan, M. N., Kaya-Altop, E., Türkseven, S. G., & Serim, A. T. (2022). Determination of glyphosate-resistant Conyza spp. In orchards and vineyards in Turkey. Phytoparasitica, 50(3), 567–578. https://doi.org/10.1007/s12600-022-00982-8
  • Dorosh, O., Fernandes, V. C., Moreira, M. M., & Delerue-Matos, C. (2021). Occurrence of pesticides and environmental contaminants in vineyards: Case study of Portuguese grapevine canes. Science of the Total Environment, 791, 148395. https://doi.org/10.1016/j.scitotenv.2021.148395
  • Durmuşoğlu, E., Hatipoğlu, A., Gürkan, M. O., & Moores, G. (2015). Comparison of different bioassay methods for determining insecticide resistance in European grapevine moth, Lobesia botrana (Denis & schiffermüller) (lepidoptera: Tortricidae). Turkish Journal of Entomology, 39(3), 271–276. https://doi.org/10.16970/ted.93098
  • Essling, M., McKay, S., & Petrie, P. R. (2021). Fungicide programs used to manage powdery mildew (erysiphe necator) in Australian vineyards. Crop Protection, 139, 105369. https://doi.org/10.1016/j.cropro.2020.105369
  • FAO. (2023). The FAO- WHO List of Pesticide and Their MRLs in Grape Production. [https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/commodities-detail/en/?lang=en&c_id=113]. Site visited on 8/10/2023.
  • Farlin, J., Gallé, T., Bayerle, M., Pittois, D., Braun, C., El Khabbaz, H., Lallement, C., Leopold, U., Vanderborght, J., & Weihermueller, L. (2013). Using the long-term memory effect of pesticide and metabolite soil residues to estimate field degradation half-life and test leaching predictions. Geoderma, 207, 15–24. https://doi.org/10.1016/j.geoderma.2013.04.028
  • Ferrero, A., Usowicz, B., & Lipiec, J. (2005). Effects of tractor traffic on spatial variability of soil strength and water content in grass covered and cultivated sloping vineyard. Soil and Tillage Research, 84(2), 127–138. https://doi.org/10.1016/j.still.2004.10.003
  • FRAC. (2023a). The FRAC Fungicide Resistance-Management. Site visited on 26/6/2023. https://www.frac.info/fungicide-resistance-management/background
  • FRAC. (2023b). The FRAC List of Fungicide Common Names. Site visited on 16/6/2023. https://www.frac.info/docs/default-source/publications/frac-list-of-fungicide-common-names/frac-list-of-fungicide-common-names-(2016v2).pdf?sfvrsn=ff7f4a9a_2
  • Gadoury, D. M., Cadle‐Davidson, L. A. N. C. E., Wilcox, W. F., Dry, I. B., Seem, R. C., & Milgroom, M. G. (2012). Grapevine powdery mildew (erysiphe necator): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology, 13(1), 1–16. https://doi.org/10.1111/j.1364-3703.2011.00728.x
  • Gaudin, R., Celette, F., & Gary, C. (2010). Contribution of runoff to incomplete offseason soil water refilling in a Mediterranean vineyard. Agricultural Water Management, 97(10), 1534–1540. https://doi.org/10.1016/j.agwat.2010.05.007
  • Geissen, V., Silva, V., Lwanga, E. H., Beriot, N., Oostindie, K., Bin, Z., Pyne, E., Busink, S., Zomer, P., Mol, H., & Ritsema, C. J. (2021). Cocktails of pesticide residues in conventional and organic farming systems in Europe – legacy of the past and turning point for the future. Environmental Pollution, 278, 116827. https://doi.org/10.1016/j.envpol.2021.116827
  • Georgiev, V., Ananga, A., & Tsolova, V. (2014). Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6(1), 391–415. https://doi.org/10.3390/nu6010391
  • Gessler, C., Pertot, I., & Perazzolli, M. (2011). Plasmopara viticola: A review of knowledge on downy mildew of grapevine and effective disease management. Phytopathologia Mediterranea, 50(1), 3–44.
  • Gevao, B., Semple, K. T., & Jones, K. C. (2000). Bound pesticide residues in soils: A review. Environmental Pollution, 108(1), 3–14. https://doi.org/10.1016/S0269-7491(99)00197-9
  • Ghanizadeh, H., & Harrington, K. C. (2021). Herbicide resistant weeds in New Zealand: State of knowledge. New Zealand Journal of Agricultural Research, 64(4), 471–482. https://doi.org/10.1080/00288233.2019.1705863
  • Gobbin, D. A. V. I. D. E., Jermini, M., Loskill, B., Pertot, I., Raynal, M., & Gessler, C. (2005). Importance of secondary inoculum of plasmopara viticola to epidemics of grapevine downy mildew. Plant Pathology, 54(4), 522–534. https://doi.org/10.1111/j.1365-3059.2005.01208.x
  • Golge, O., & Kabak, B. (2018). Pesticide residues in table grapes and exposure assessment. Journal of Agricultural and Food Chemistry, 66(7), 1701–1713. https://doi.org/10.1021/acs.jafc.7b05707
  • Golubev, A. S., Borushko, I. P., & Dolzhenko, V. I. (2019). Efficiency of glyphosate and ammonium glufosinate against common ragweed (Ambrosia artemisiifolia L.) in vineyards. Sadovodstvo I Vinogradarstvo, 4(4), 45–50. https://doi.org/10.31676/0235-2591-2019-4-45-50
  • González, P. A., Dans, E. P., Dacal, A. C. A., Peña, M. Z., & Luzardo, O. P. (2022). Differences in the levels of sulphites and pesticide residues in soils and wines and under organic and conventional production methods. Journal of Food Composition and Analysis, 112, 104714. https://doi.org/10.1016/j.jfca.2022.104714
  • Grimalt, S., & Dehouck, P. (2016). Review of analytical methods for the determination of pesticide residues in grapes. Journal of Chromatography A, 1433, 1–23. https://doi.org/10.1016/j.chroma.2015.12.076
  • Grimmer, M. K., van den Bosch, F., Powers, S. J., & Paveley, N. D. (2014). Evaluation of a matrix to calculate fungicide resistance risk. Pest Management Science, 70(6), 1008–1016. https://doi.org/10.1002/ps.3646
  • Helali, D., Reddi, S. G., Basavaraj, P., Mallikarjun, A., Ramanagouda, S. H., & Siddanna, T. (2020). Impact of different herbicides on weed control in grape (Vitis vinifera L.) cv. ‘2A clone’. International Journal of Chemical Studies, 8(5), 288–291. https://doi.org/10.22271/chemi.2020.v8.i5d.10312
  • Herrero-Hernández, E., Andrades, M. S., Álvarez-Martín, A., Pose-Juan, E., Rodríguez-Cruz, M. S., & Sánchez-Martín, M. J. (2013). Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region. Journal of Hydrology, 486, 234–245. https://doi.org/10.1016/j.jhydrol.2013.01.025
  • Herrero-Hernández, E., Rodríguez-Cruz, M. S., Pose-Juan, E., Sánchez-González, S., Andrades, M. S., & Sánchez- Martín, M. J. (2017). Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Science of the Total Environment, 609, 161–171. https://doi.org/10.1016/j.scitotenv.2017.07.113
  • Herrero-Hernández, E., Simón-Egea, A. B., Sánchez-Martín, M. J., Rodríguez-Cruz, M. S., & Andrades, M. S. (2020). Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the denomination of origin Jumilla. Environmental Pollution, 264, 114666. https://doi.org/10.1016/j.envpol.2020.114666
  • Hewitt, H. G. (1998). Fungicides in crop protection. Cab International.
  • Hildebrandt, A., Guillamón, M., Lacorte, S., Tauler, R., & Barceló, D. (2008). Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Research, 42(13), 3315–3326. https://doi.org/10.1016/j.watres.2008.04.009
  • Hou, B., & Wu, L. (2010). Safety impact and farmer awareness of pesticide residues. Food and Agricultural Immunology, 21(3), 191–200. https://doi.org/10.1080/09540105.2010.484858
  • Hoy, C. W. (2008). Pesticide resistance management. In E. B. Radcliffe,W. D. Hutchison& R. E. Cancelado (Eds.), Integrated Pest Management: Concepts, Tactics, Strategies and Case Studies (pp. 192–204). Cambridge University Press.
  • Ibouh, K., Oreste, M., Bubici, G., Tarasco, E., Stacconi, M. V. R., Ioriatti, C., Verrastro, V., Anfora, G., & Baser, N. (2019). Biological control of drosophila suzukii: Efficacy of parasitoids, entomopathogenic fungi, nematodes and deterrents of oviposition in laboratory assays. Crop Protection, 125, 104897. https://doi.org/10.1016/j.cropro.2019.104897
  • Jermini, M., Blaise, P., & Gessler, C. (2010). Quantitative effect of leaf damage caused by downy mildew (Plasmopara viticola) on growth and yield quality of grapevine ‘Merlot’ (Vitis vinifera). Vitis, 49(2), 77–85.
  • Jiang, Y. F., Wang, X. T., Jia, Y., Wang, F., Wu, M. H., Sheng, G. Y., & Fu, J. M. (2009). Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China. Journal of Hazardous Materials, 170(2–3), 989–997. https://doi.org/10.1016/j.jhazmat.2009.05.082
  • Kalimangasi, N., Majula, R., & Kalimangasi, N. N. (2014). The economic analysis of the smallholders grape production and marketing in Dodoma Municipal: A case study of Hombolo Ward. International Journal of Scientific and Research Publications, 4(10), 1–8.
  • Kariathi, V., Kassim, N., & Kimanya, M. (2017). Risk of exposures of pesticide residues from tomato in Tanzania. African Journal of Food Science, 11(8), 255–262. https://doi.org/10.5897/AJFS2016.1527
  • Kassemeyer, H. H. (2017). Fungi of Grapes. In H. König,G. Unden & J. Fröhlich (Eds.), Biology of Microorganisms on Grapes, in Must and in Wine (pp. 103–132). Springer. https://doi.org/10.1007/978-3-319-60021-5_4 :
  • Keller M. (Ed.). (2015). The science of grapevines. Elsevier Inc.
  • Komárek, M., Čadková, E., Chrastný, V., Bordas, F., & Bollinger, J. C. (2010). Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environment International, 36(1), 138–151. https://doi.org/10.1016/j.envint.2009.10.005
  • Kulwijila, M., Makindara, J., & Laswai, H. (2018). Grape value chain mapping in Dodoma region, Tanzania. Journal of Economics & Sustainable Development, 9(2), 171–182.
  • Kumari, D., & John, S. (2019). Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western Indian Himalayan region. Chemosphere, 224, 162–167. https://doi.org/10.1016/j.chemosphere.2019.02.091
  • Kunova, A., Pizzatti, C., Saracchi, M., Pasquali, M., & Cortesi, P. (2021). Grapevine powdery\mildew: Fungicides for its management and advances in molecular detection of markers associated with resistance. Microorganisms [Internet], 9(7), 1541. https://doi.org/10.3390/microorganisms9071541
  • Ky, I., Lorrain, B., Jourdes, M., Pasquier, G., Fermaud, M., Gény, L., Rey, P., Doneche, B., & Teissedre, P. L. (2012). Assessment of grey mould (botrytis cinerea) impact on phenolic and sensory quality of Bordeaux grapes, musts and wines for two consecutive vintages. Australian Journal of Grape and Wine Research, 18(2), 215–226. https://doi.org/10.1111/j.1755-0238.2012.00191.x
  • Laini, A., Bartoli, M., Lamastra, L., Capri, E., Balderacchi, M., & Trevisan, M. (2012). Herbicide contamination and dispersion pattern in lowland springs. Science of the Total Environment, 438, 312–318. https://doi.org/10.1016/j.scitotenv.2012.08.080
  • Lejon, D. P., Martins, J. M., Lévêque, J., Spadini, L., Pascault, N., Landry, D., Milloux, M. J., Nowak, V., Chaussod, R., & Ranjard, L. (2008). Copper dynamics and impact on microbial communities in soils of variable organic status. Environmental Science & Technology, 42(8), 2819–2825. https://doi.org/10.1021/es071652r
  • Leroy, P., Smits, N., Cartolaro, P., Delière, L., Goutouly, J. P., Raynal, M., & Ugaglia, A. A. (2013). A bioeconomic model of downy mildew damage on grapevine for evaluation of control strategies. Crop Protection, 53, 58–71. https://doi.org/10.1016/j.cropro.2013.05.024
  • Lewis, K. A., Tzilivakis, J., Warner, D., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050–1064. https://doi.org/10.1080/10807039.2015.1133242
  • Li, J., Liu, D., Wu, T., Zhao, W., Zhou, Z., & Wang, P. (2014). A simplified procedure for the determination of organochlorine pesticides and polychlorobiphenyls in edible vegetable oils. Food Chemistry, 151, 47–52. https://doi.org/10.1016/j.foodchem.2013.11.047
  • Lima, V. G., Campos, V. P., Santana, T. C., Santana, F. O., & Costa, T. A. (2017). Determination of agrochemical multi-residues in grapes. Identification and confirmation by gas chromatography-mass spectrometry. Analytical Methods, 9(40), 5880–5889. https://doi.org/10.1039/C7AY01448A
  • Maier, B., & Sutherland, C. A. (2013). Managing Grape Leafhoppers on New Mexico Grape Vines. NM State University, Cooperative Extension Service.
  • Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24(10), 853–863. https://doi.org/10.1016/j.cropro.2005.01.011
  • Mandl, K., Cantelmo, C., Gruber, E., Faber, F., Friedrich, B., & Zaller, J. G. (2018). Effects of glyphosate-, glufosinate-and flazasulfuron-based herbicides on soil microorganisms in a vineyard. Bulletin of Environmental Contamination and Toxicology, 101(5), 562–569. https://doi.org/10.1007/s00128-018-2438-x
  • Mani, M., Shivaraju, C., & Kulkarni, N. S. (2014). Pesticide Used in Grape Pests Management. In The grape entomology (p. 202). Springer.
  • Marsala, R. Z., Capri, E., Russo, E., Bisagni, M., Colla, R., Lucini, L. & Suciu, N. A. (2020). First evaluation of pesticides occurrence in groundwater of Tidone Valley, an area with intensive viticulture. Science of the Total Environment, 736, 139730. https://doi.org/10.1016/j.scitotenv.2020.139730
  • Massi, F., Torriani, S. F., Borghi, L., & Toffolatti, S. L. (2021). Fungicide resistance evolution and detection in plant pathogens: Plasmopara viticola as a case study. Microorganisms [Internet], 9(1), 119. https://doi.org/10.3390/microorganisms9010119
  • Mishra, K., Sharma, R. C., & Kumar, S. (2012). Contamination levels and spatial distribution of organochlorine pesticides in soils from India. Ecotoxicology and Environmental Safety, 76, 215–225. https://doi.org/10.1016/j.ecoenv.2011.09.014
  • Morlat, R., & Jacquet, A. (2003). Grapevine root system and soil characteristics in a vineyard\maintained long-term with or without interrow sward. American Journal of Enology and Viticulture, 54(1), 1–7. https://doi.org/10.5344/ajev.2003.54.1.1
  • Nario, A., Parada, A. M., Videla, X., Pino, I., Acuña, M., Casanova, M., Seguel, O., Luzio, W., Balderacchi, M., Capri, E., Moya, J., Astete, R., Enriquez, P., & Chamorro, J. (2018). Indicators of Good Agricultural Practices in Viticulture. In B. Maestroni & A. Cannavan(Eds.), Integrated Analytical Approaches for Pesticide Management (pp. 261–270). Academic Press.
  • Neto, J., Aguiar, A. A., Parente, C., Costa, C. A. D., & Fonseca, S. C. (2022). Vine protection on family farms: Decision making and pesticide use. Modern Environmental Science and Engineering, 8(4), 246–251. https://doi.org/10.15341/mese(2333-2581)/04.08.2022/005
  • Oberti, R., Marchi, M., Tirelli, P., Calcante, A., Iriti, M., Tona, E., Hočevar, M., Baur, J., Pfaff, J., Schütz, C., & Ulbrich, H. (2016). Selective spraying of grapevines for disease control using a modular agricultural robot. Biosystems Engineering, 146, 203–215. https://doi.org/10.1016/j.biosystemseng.2015.12.004
  • Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, R., Rana, N., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology, 2833. https://doi.org/10.3389/fmicb.2022.962619
  • Peachey, E., Boydston, R., Hanson, B., Miller, T., & Al-Khatib, K. (2013). Preventing and Managing Glyphosate-Resistant Weeds in Orchards and Vineyards. University of California, Agriculture and Natural Resources. https://doi.org/10.3733/uncanr.8501
  • Perria, R., Ciofini, A., Petrucci, W. A., D’Arcangelo, M. E. M., Valentini, P., Storchi, P., Carella, G., Pacetti, A., & Mugnai, L. (2022). A study on the efficiency of sustainable wine grape vineyard management strategies. Agronomy, 12(2), 392. https://doi.org/10.3390/agronomy12020392
  • Pertot, I., Caffi, T., Rossi, V., Mugnai, L., Hoffmann, C., Grando, M. S., Gary, C., Lafond, D., Duso, C., Thiery, D., Mazzoni, V., & Anfora, G. (2017). A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Protection, 97, 70–84. https://doi.org/10.1016/j.cropro.2016.11.025
  • Popp, J., Pető, K., & Nagy, J. (2013). Pesticide productivity and food security. A review. Agronomy for Sustainable Development, 33(1), 243–255. https://doi.org/10.1007/s13593-012-0105-x
  • Puga, G., Umberger, W., & Gennari, A. (2020). The impact of the European grapevine moth on grape production: Implications for eradication programs. Journal of Wine Economics, 15(4), 394–402. https://doi.org/10.1017/jwe.2020.34
  • Rabiet, M., Margoum, C., Gouy, V., Carluer, N., & Coquery, M. (2010). Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment – effect of sampling frequency. Environmental Pollution, 158(3), 737–748. https://doi.org/10.1016/j.envpol.2009.10.014
  • Raherison, C., Baldi, I., Pouquet, M., Berteaud, E., Moesch, C., Bouvier, G., & Canal-Raffin, M. (2019). Pesticides exposure by air in vineyard rural area and respiratory health in children: A pilot study. Environmental Research, 169, 189–195. https://doi.org/10.1016/j.envres.2018.11.002
  • Rahman, T., Ara, S., & Khan, N. A. (2020). Agro-information service and information-seeking behaviour of small-scale farmers in rural Bangladesh. Asia-Pacific Journal of Rural Development, 30(1–2), 175–194. https://doi.org/10.1177/1018529120977259
  • Reisch, B. I., Owens, C. L., & Cousins, P. S. (2012). Fruit Breeding. In M. Badenes & D. Byrne(Eds.), Grape (Vol. 8, pp. 225–262). Springer. https://doi.org/10.1007/978-1-4419-0763-9_7
  • Romanazzi, G., Piancatelli, S., D’Ignazi, G., & Moumni, M. (2022). Innovative approaches to grapevine downy mildew management on large and commercial scale. Proceedings of the BIO Web of Conferences, July 20-22, 2022, Cremona, Italy (Vol. 50. pp. 03010). EDP Sciences.
  • Rossi, V., Caffi, T., Legler, S. E., & Fedele, G. (2021). A method for scoring the risk of fungicide resistance in vineyards. Crop Protection, 143, 105477. https://doi.org/10.1016/j.cropro.2020.105477
  • Saladin, G., & Clément, C. (2005). Physiological Side Effects of Pesticides on Non- target Plants. In J. V. Livingston (Ed.), Agriculture and Soil Pollution: New Research (pp. 53–86). Nova Science.
  • Sanguankeo, P. P., Leon, R. G., & Malone, J. (2009). Impact of weed management practices on grapevine growth and yield components. Weed Science, 57(1), 103–107. https://doi.org/10.1614/WS-08-100.1
  • Silva, V., Mol, H. G., Zomer, P., Tienstra, M., Ritsema, C. J., & Geissen, V. (2019). Pesticide residues in European agricultural soils – a hidden reality unfolded. Science of the Total Environment, 653, 1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441
  • Socorro, J., Durand, A., Temime - Roussel, B., Gligorovski, S., Wortham, H., & Quivet, E. (2016). The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue. Scientific Reports, 6(1), 33456. https://doi.org/10.1038/srep33456
  • Song, B., Zhou, Y., Zhan, R., Zhu, L., Chen, H., Ma, Z., Chen, X., & Lu, Y. (2022). Effects of different pesticides on the brewing of wine investigated by GC-MS-based metabolomics. Metabolites, 12(6), 485. https://doi.org/10.3390/metabo12060485
  • Suciu, N., Farolfi, C., Marsala, R. Z., Russo, E., De Crema, M., Peroncini, E., Tomei, F., Antolini, G., Marcaccio, M., Marletto, V., Colla, R., Gallo, A., & Capri, E. (2020). Evaluation of groundwater contamination sources by plant protection products in hilly vineyards of Northern Italy. Science of the Total Environment, 749, 141495. https://doi.org/10.1016/j.scitotenv.2020.141495
  • Tahmasebi, B. K., Alebrahim, M. T., Roldán-Gómez, R. A., da Silveira, H. M., de Carvalho, L. B., Alcántara de la Cruz, R., & De Prado, R. (2018). Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Protection, 112, 350–355. https://doi.org/10.1016/j.cropro.2018.06.021
  • Tcaciuc, A. P., Borrelli, R., Zaninetta, L. M., & Gschwend, P. M. (2018). Passive sampling of DDT, DDE and DDD in sediments: Accounting for degradation processes with reaction–diffusion modeling. Environmental Science: Processes & Impacts, 20(1), 220–231. https://doi.org/10.1039/C7EM00501F
  • Teixeira, M. J., Aguiar, A., Afonso, C. M., Alves, A., & Bastos, M. M. (2004). Comparison of pesticides levels in grape skin and in the whole grape by a new liquid chromatographic multiresidue methodology. Analytica chimica acta, 513(1), 333–340. https://doi.org/10.1016/j.aca.2003.11.077
  • Toffolatti, S. L., De Lorenzis, G., Costa, A., Maddalena, G., Passera, A., Bonza, M. C., Pindo, M., Stefani, E., Cestaro, A., Casati, P., Failla, O., Bianco, P. A., Maghradze, D., & Quaglino, F. (2018). Unique resistance traits against downy mildew from the center of origin of grapevine (vitis vinifera). Scientific Reports, 8(1), 12523. https://doi.org/10.1038/s41598-018-30413-w
  • Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112
  • Tudi, M., Li, H., Li, H., Wang, L., Lyu, J., Yang, L., Tong, S., Yu, Q. J., Ruan, H. D., Atabila, A., Phung, D. T., Sadler, R., & Connell, D. (2022). Exposure routes and health risks associated with pesticide application. Toxics, 10(6), 335. https://doi.org/10.3390/toxics10060335
  • Urkude, R., Dhurvey, V., & Kochhar, S. (2019). Pesticide residues in beverages. In A. M. Grumezescu& A. M. Holban (Eds.), Quality control in the Beverage industry (pp. 529–560). Academic Press.
  • Valdés-Gómez, H., Fermaud, M., Roudet, J., Calonnec, A., & Gary, C. (2008). Grey mouldincidence is reduced on grapevines with lower vegetative and reproductive growth. Crop Protection, 27(8), 1174–1186. https://doi.org/10.1016/j.cropro.2008.02.003
  • Valdés-Gómez, H., Gary, C., Cartolaro, P., Lolas-Caneo, M., & Calonnec, A. (2011). Powdery mildew development is positively influenced by grapevine vegetative growth induced by different soil management strategies. Crop Protection, 30(9), 1168–1177. https://doi.org/10.1016/j.cropro.2011.05.014
  • Vielba-Fernández, A., Polonio, Á., Ruiz-Jiménez, L., de Vicente, A., Pérez-García, A., & Fernández-Ortuño, D. (2020). Fungicide resistance in powdery mildew fungi. Microorganisms [Internet], 8(9), 1431. https://doi.org/10.3390/microorganisms8091431
  • Vryzas, Z. (2018). Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Current Opinion in Environmental Science & Health, 4, 5–9. https://doi.org/10.1016/j.coesh.2018.03.001
  • Wightwick, A. M., Mollah, M. R., Partington, D. L., & Allinson, G. (2008). Copper fungicide residues in Australian vineyard soils. Journal of Agricultural and Food Chemistry, 56(7), 2457–2464. https://doi.org/10.1021/jf0727950
  • Wong, F., Alegria, H. A., & Bidleman, T. F. (2010). Organochlorine pesticides in soils of Mexico and the potential for soil–air exchange. Environmental Pollution, 158(3), 749–755. https://doi.org/10.1016/j.envpol.2009.10.013
  • Woodrow, J. E., Gibson, K. A., & Seiber, J. N. (2019). Pesticides and Related Toxicants in the Atmosphere. In P. de Voogt (Ed)., Reviews of Environmental Contamination and Toxicology (Vol. 247, pp. 147–196). Springer. https://doi.org/10.1007/398_2018_19
  • Wu, L., Chládková, B., Lechtenfeld, O. J., Lian, S., Schindelka, J., Herrmann, H., & Richnow, H. H. (2018). Characterizing chemical transformation of organophosphorus compounds by 13C and 2H stable isotope analysis. Science of the Total Environment, 615, 20–28. https://doi.org/10.1016/j.scitotenv.2017.09.233
  • Yadav, I. C., & Devi, N. L. (2017). Pesticides Classification and Its Impact on Human and Environment. In A. Kumar, J. C. Singhal,K. Techato,L. T. Molina,N. Singh,P. Kumar,P. Kumar,R. Chandra, S. Caprio,S. Upadhye,S. Yonemura,S. Y. Rao,T. C. Zhang,U. C. Sharma,Y. P. Abrol, (Eds.), Environmental Science and Engineering (Vol. 6, pp. 140–158). Studium Press LLC.
  • Zang, C., Lin, Q., Xie, J., Lin, Y., Zhao, K., & Liang, C. (2020). The biological control of the grapevine downy mildew disease using ochrobactrum sp. Plant Protection Science, 56(1), 52–61. https://doi.org/10.17221/87/2019-PPS
  • Zhao, S., Li, M., Simal-Gandara, J., Tian, J., Chen, J., Dai, X., & Kong, Z. (2022). Impact of chiral tebuconazole on the flavor components and color attributes of merlot and cabernet sauvignon wines at the enantiomeric level. Food Chemistry, 373, 131577. https://doi.org/10.1016/j.foodchem.2021.131577