1,298
Views
0
CrossRef citations to date
0
Altmetric
Materials/process modeling and simulation

Data-driven estimation of plastic properties in work-hardening model combining power-law and linear hardening using instrumented indentation test

ORCID Icon & ORCID Icon
Pages 416-424 | Received 28 Jun 2022, Accepted 22 Sep 2022, Published online: 17 Oct 2022

References

  • Onishi T, Kadohira T, Watanabe I. Relationship extraction with weakly supervised learning based on process-structure-property-performance reciprocity. Sci Technol Adv Mater. 2018;19(1):649–659.
  • Liu Z, Wu CT. Exploring the 3D architectures of deep material network in data-driven multiscale mechanics. J Mech Phys Solids. 2019;127:20–46.
  • Yamanaka A, Kamijyo R, Koenuma K, et al. Deep neural network approach to estimate biaxial stress-strain curves of sheet metals. Mater Des. 2020;195:108970.
  • Xiong W, Olson GB. Cybermaterials: materials by design and accelerated insertion of materials. Npj Comput Mater. 2016;2(1):1509.
  • de Pablo JJ, Jackson NE, Webb MA, et al. New frontiers for the materials genome initiative. Npj Comput Mater. 2019;5(1):41.
  • Enoki M. Development of performance prediction system on SIP-MI project. Mater Trans. 2020;61(11):2052–2057.
  • Rovinelli A, Sangid MD, Proudhon H, et al. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: in-situ experiments and crystal plasticity simulations. J Mech Phys Solids. 2018;115:208–229.
  • Li H, Kafka OL, Gao J, et al. Clustering discretization methods for generation of material performance databases in machine learning and design optimization. Computational Mechanics. 2019;64(2):281–305.
  • Zheng X, Chen T, Guo X, et al. Controllable inverse design of auxetic metamaterials using deep learning. Mater Des. 2021;211:110178.
  • Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):011002.
  • Kirklin S, Saal JE, Meredig B, et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. Npj Comput Mater. 2015;1(1):15010.
  • Gong X, Mohan S, Mendoza M, et al. High throughput assays for additively manufactured Ti-Ni alloys based on compositional gradients and spherical indentation. Integr Mater Manuf Innovation. 2017;6(3):218–228.
  • Chen H, Cai LX. Theoretical conversions of different hardness and tensile strength for ductile materials based on stress–strain curves. Metall Mater Trans A. 2018;49(4):1090–1101.
  • Cheng G, Choi KS, Hu X, et al. Determining individual phase properties in a multi-phase Q&P steel using multi-scale indentation tests. Mater Sci Eng A. 2016;652:384–395.
  • Zhou Y, Fan Z, Liu X, et al. Experimental study and crystal plasticity finite element simulations of nano-indentation-induced lattice rotation and the underlying mechanism in TC6 single α-grain. Mater Des. 2020;188:108423.
  • Kadambi SB, Divya YD, Ramamurty U. Evaluation of solid-solution hardening in several binary alloy systems using diffusion couples combined with nanoindentation. Metall Mater Trans A. 2017;48(10):4574–4582.
  • Asgharzadeh A, Tiji SAN, Esmaeilpour R, et al. Determination of hardness-strength and-flow behavior relationships in bulged aluminum alloys and verification by FE analysis on Rockwell hardness test. Int J Adv Manuf Technol. 2020;106(1–2):315–331.
  • Ikeda A, Goto K, Osada T, et al. High-throughput mapping method for mechanical properties, oxidation resistance, and phase stability in Ni-based superalloys using composition-graded unidirectional solidified alloys. Scr Mater. 2021;193:91–96.
  • Goto K, Ikeda A, Osada T, et al. High-throughput evaluation of stress–strain relationships in Ni–Co–Cr ternary systems via indentation testing of diffusion couples. J Alloys Compd. 2022;910:164868.
  • Van Landingham MR. Review of instrumented indentation. J Res Natl Inst Stand Technol. 2003;108(4):249–265.
  • Walley SM. Historical origins of indentation hardness testing. Mater Sci Technol. 2012;28(9–10):1028–1044.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583.
  • ISO-14577, Metallic materials – instrumented indentation test for hardness and materials parameters. Geneva, Switzerland: ISO Central Secretariat; 2002.
  • Li TL, Gao YF, Bei H, et al. Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals. J Mech Phys Solids. 2011;59(6):1147–1162.
  • Dahlberg CFO, Saito Y, Oztop MS, et al. Geometrically necessary dislocation density measurements at a grain boundary due to wedge indentation into an aluminum bicrystal. J Mech Phys Solids. 2017;105:131–149.
  • Lu S, Zhang B, Li X, et al. Grain boundary effect on nanoindentation: a multiscale discrete dislocation dynamics model. J Mech Phys Solids. 2019;126:117–135.
  • Matsuno T, Ando R, Yamashita N, et al. Analysis of preliminary local hardening close to the ferrite-martensite interface in dual-phase steel by a combination of finite element simulation and nano-indentation test. Int J Mech Sci. 2020;180:105663.
  • Dao M, Chollacoop N, Van Vliet KJ, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001;49(19):3899–3918.
  • Bucaille JL, Stauss S, Felder E, et al. Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 2003;51(6):1663–1678.
  • Fernandez-Zelaia P, Joseph VR, Kalidindi SR, et al. Estimating mechanical properties from spherical indentation using Bayesian approaches. Mater Des. 2018;147:92–105.
  • Cheng Y, Cheng G. Can stress–strain relationships be obtained from indentation curves using conical and pyramidal indenters? J Mater Res. 1999;14(9):3493–3496.
  • Alkorta J, Martinez-Esnaola JM, Sevillano JG. Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data. J Mater Res. 2005;20(2):432–437.
  • Futakawa M, Wakui T, Tanabe Y, et al. Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles. J Mater Res. 2001;16(8):2283–2292.
  • Iracheta O, Bennett CJ, Sun W. A holistic inverse approach based on a multi-objective function optimisation model to recover elastic-plastic properties of materials from the depth-sensing indentation test. J Mech Phys Solids. 2019;128:1–20.
  • Goto K, Watanabe I, Ohmura T. Determining suitable parameters for inverse estimation of plastic properties based on indentation marks. Int J Plast. 2019;116:81–90.
  • Goto K, Watanabe I, Ohmura T. Inverse estimation approach for elastoplastic properties using the load–displacement curve and pile-up topography of a single Berkovich indentation. Mater Des. 2020;194:108925.
  • Chen T, Watanabe I, Liu D, et al. Data-driven estimation of plastic properties of alloys using neighboring indentation test. Sci Technol Adv Mater Methods. 2021;1(1):143–151.
  • Antunes JM, Menezes LF, Fernandes JV. Three-dimensional numerical simulation of Vickers indentation tests. Int J Solids Struct. 2006;43(3–4):784–806.
  • Kang JJ, Becker AA, Sun W. Determining elastic–plastic properties from indentation data obtained from finite element simulations and experimental results. Int J Mech Sci. 2012;62(1):34–46.
  • Kucharski S, Jarzabek D. Depth dependence of nanoindentation pile-up patterns in copper single crystals. Metall Mater Trans A. 2014;45(11):4997–5008.
  • Ruzic J, Watanabe I, Goto K, et al. Nano-indentation measurement for heat resistant alloys at elevated temperatures in inert atmos phere. Mater Trans. 2019;60(8):1411–1415.
  • Minnert C, Oliver WC, Durst K. New ultra-high temperature nanoindentation system for operating at up to 1100 °C. Mater Des. 2020;192:108727.
  • Ginder RS, Nix WD, Pharr GM. A simple model for indentation creep. J Mech Phys Solids. 2018;112:552–562.
  • Chen T, Watanabe I, Funazuka T. Characterization of the strain- rate-dependent plasticity of alloys using instrumented indentation tests. Crystals. 2021;11:1316.
  • Phani PS, Oliver WC, Pharr GM. Influences of elasticity on the measurement of power law creep parameters by nanoindentation. J Mech Phys Solids. 2021;154:104527.