621
Views
1
CrossRef citations to date
0
Altmetric
Materials data analysis and utilization

Experimental exploration of ErB2 and SHAP analysis on a machine-learned model of magnetocaloric materials for materials design

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2217474 | Received 17 Dec 2022, Accepted 12 May 2023, Published online: 21 Jun 2023

References

  • Gschneidner KA, Pecharsky VK. Magnetocaloric materials. Annu Rev Mater Sci. 2000;30(1):387–10.
  • Franco V, Blázquez J, Ipus J, et al. Magnetocaloric effect: from materials research to refrigeration devices. Pro Mater Sci. 2018;93:112–232.
  • Utaki T, Kamiya K, Nakagawa T, et al. Research on a magnetic refrigeration cycle for hydrogen liquefaction. Vol. 14, New York: Kluwer Academic/Prenum Publishers; 2007. p. 645.
  • de Castro PB, Terashima K, Yamamoto TD, et al. Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature. NPG Asia Mater. 2020;12:35.
  • Ward L, Agrawal A, Choudhary A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater. 2016;2:16028.
  • Yamada H, Liu C, Wu S, et al. Predicting materials properties with little data using shotgun transfer learning. ACS Cent Sci. 2019;5:1717–1730.
  • Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; New York, NY, USA. ACM; 2016. p. 785–794.
  • Buschow KHJ. Magnetic properties of borides. Berlin, Heidelberg: Springer Berlin Heidelberg; 1977. p. 494–515.
  • Avila M, Bud’ko S, Petrovic C, et al. Synthesis and properties of YbB2. J Alloys Compd. 2003;358:56–64.
  • Han Z, Li D, Meng H, et al. Magnetocaloric effect in terbium diboride. J Alloys Compd. 2010;498:118–120.
  • Mori T, Takimoto T, Leithe-Jasper A, et al. Ferromagnetism and electronic structure of TmB2. Phys Rev B. 2009;79:104418.
  • Meng H, Li B, Han Z, et al. Reversible magnetocaloric effect and refrigeration capacity enhanced by two successive magnetic transitions in DyB2. Sci China Technol Sci. 2012;55:501–504.
  • Terada N, Terashima K, de Castro PB, et al. Relationship between magnetic ordering and gigantic magnetocaloric effect in HoB2 studied by neutron diffraction experiment. Phys Rev B. 2020;102:094435.
  • Franco V, Conde A, Romero-Enrique JM, et al. A universal curve for the magnetocaloric effect: an analysis based on scaling relations. J Phys Condens Matter. 2008;20:285207.
  • Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter. 1993;192:55–69.
  • Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr. 2008;41:653–658.
  • Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Guyon I, Luxburg U, and Bengio S, editors. Advances in neural information processing systems 30. New York, US: Curran Associates, Inc.; 2017. p. 4765–4774.
  • Lundberg SM, Erion G, Chen H, et al. From local explanations to global understanding with explainable ai for trees. Nat Mach Intell. 2020;2:56–67.
  • Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B. 1993;47:558–561.
  • Pecharsky A, Gschneidner K, Pecharsky V. The giant magnetocaloric effect between 190 and 300 K in the Gd5SixGe4–x alloys for 1.4≤x≤2.2. J Magn Magn Mater. 2003;267:60–68.
  • Mo ZJ, Shen J, Li L, et al. Observation of giant magnetocaloric effect in EuTiO3. Mater Lett. 2015;158:282–284.
  • Li D, Yamamura T, Nimori S, et al. Large reversible magnetocaloric effect in ferromagnetic semiconductor EuS. Solid State Commun. 2014;193:6–10.
  • Wada H, Tomekawa S, Shiga M. Magnetocaloric properties of a first-order magnetic transition system ErCo2. Cryogenics. 1999;39:915–919.
  • Chen X, Chen Y, Tang Y. The effect of different temperature annealing on phase relation of LaFe11.5Si1.5 and the magnetocaloric effects of La0.8Ce0.2Fe11.5–xCoxSi1.5 alloys. J Magn Magn Mater. 2011;323:3177–3183.
  • de Castro PB, Terashima K, Yamamoto TD, et al. Enhancement of giant refrigerant capacity in Ho1–xGdxB2 alloys (0.1 ≤ x ≤ 0.4). J Alloys Compd. 2021;865:158881.
  • Takeya H, Pecharsky VK, Gschneidner KA, et al. New type of magnetocaloric effect: implications on low-temperature magnetic refrigeration using an ericsson cycle. Appl Phys Lett. 1994;64:2739–2741.
  • Li L, Yuan Y, Qi Y, et al. Achievement of a table-like magnetocaloric effect in the dual-phase ErZn2/ErZn composite. Mater Res Lett. 2017;6:67–71.