2,968
Views
3
CrossRef citations to date
0
Altmetric
Computer programming, system and service

NIMS-OS: an automation software to implement a closed loop between artificial intelligence and robotic experiments in materials science

, &
Article: 2232297 | Received 26 Apr 2023, Accepted 08 Jun 2023, Published online: 19 Jul 2023

References

  • White A. The materials genome initiative: one year on. MRS Bull. 2012;37(8):715–12. doi: 10.1557/mrs.2012.194
  • Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: recent applications and prospects. npj Comput Mater. 2017;3(1):54. doi: 10.1038/s41524-017-0056-5
  • Schmidt J, Marques MRG, Botti S, et al. Recent advances and applications of machine learning in solid-state materials science. npj Comput Mater. 2019;5(1):83. doi: 10.1038/s41524-019-0221-0
  • Ling C. A review of the recent progress in battery informatics. npj Comput Mater. 2022;8(1):33. doi: 10.1038/s41524-022-00713-x
  • Terayama K, Sumita M, Tamura R, et al. Black-box optimization for automated discovery. Acc Chem Res. 2021;54(6):1334–1346. doi: 10.1021/acs.accounts.0c00713
  • Ueno T, Rhone TD, Hou Z, et al. COMBO: an efficient bayesian optimization library for materials science. Mater Discovery. 2016;4:18–21. doi: 10.1016/j.md.2016.04.001
  • Packwood D. Bayesian optimization for materials science. Springer Singapore: 2017. doi: 10.1007/978-981-10-6781-5
  • Kumar PV, Jin Y. Bayesian optimisation for efficient material discovery: a mini review. Nanoscale. 2023;15:10975–10984. doi: 10.1039/D2NR07147A
  • Homma K, Liu Y, Sumita M, et al. Optimization of a heterogeneous ternary Li3PO4—Li3BO3—Li2SO4 mixture for Li-ion conductivity by machine learning. J Phys Chem C. 2020;124(24):12865–12870. doi: 10.1021/acs.jpcc.9b11654
  • Sakurai A, Yada K, Simomura T, et al. Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed by Bayesian optimization. ACS Central Sci. 2019;5(2):319–326. doi: 10.1021/acscentsci.8b00802
  • Sun S, Tiihonen A, Oviedo F, et al. A data fusion approach to optimize compositional stability of halide perovskites. Matter. 2021;4(4):1305–1322. doi: 10.1016/j.matt.2021.01.008
  • Tamura R, Osada T, Minagawa K, et al. Machine learning-driven optimization in powder manufacturing of Ni-Co based superalloy. Mater Design. 2021;198:109290. doi: 10.1016/j.matdes.2020.109290
  • Matsuda S, Lambard G, Sodeyama K. Data-driven automated robotic experiments accelerate discovery of multi-component electrolyte for rechargeable Li-O2 batteries. Cell Rep Physical Sci. 2022;3(4):100832. doi: 10.1016/j.xcrp.2022.100832
  • Ozaki Y, Suzuki Y, Hawai T, et al. Automated crystal structure analysis based on blackbox optimisation. npj Comput Mater. 2020;6(1):75. doi: 10.1038/s41524-020-0330-9
  • Tamura R, Sumita M, Terayama K, et al. Automatic Rietveld refinement by robotic process automation with RIETAN-FP. Sci Technol Adv Mater Methods. 2022;2(1):435–444. doi: 10.1080/27660400.2022.2146470
  • Chakraborti N. Genetic algorithms in materials design and processing. Int Mater Rev. 2004;49(3–4):246–260. doi: 10.1179/095066004225021909
  • Patra TK, Meenakshisundaram V, Hung JH, et al. Neural-network-biased genetic algorithms for materials design: evolutionary algorithms that learn. ACS Comb Sci. 2017;19(2):96–107. doi: 10.1021/acscombsci.6b00136
  • Dieb TM, Ju S, Yoshizoe K, et al. MDTS: automatic complex materials design using Monte Carlo tree search. Sci Technol Adv Mater. 2017;18(1):498–503. doi: 10.1080/14686996.2017.1344083
  • Li J, Zhang J, Tamura R, et al. Self-learning entropic population annealing for interpretable materials design. Digital Discov. 2022;1:295–302. doi: 10.1039/D1DD00043H
  • Kitai K, Guo J, Ju S, et al. Designing metamaterials with quantum annealing and factorization machines. Phys Rev Res. 2020;2(1):013319. doi: 10.1103/PhysRevResearch.2.013319
  • Koshikawa AS, Ohzeki M, Kadowaki T, et al. Benchmark test of black-box optimization using D-Wave quantum annealer. J Phys Soc Jpn. 2021;90(6):064001. doi: 10.7566/JPSJ.90.064001
  • Izawa S, Kitai K, Tanaka S, et al. Continuous black-box optimization with an Ising machine and random subspace coding. Phys Rev Res. 2022;4(2):023062. doi: 10.1103/PhysRevResearch.4.023062
  • King RD, Rowland J, Oliver SG, et al. The automation of science. Science. 2009;324(5923):85–89. doi: 10.1126/science.1165620
  • Boyd J. Robotic laboratory automation. Science. 2002;295(5554):517–518. doi: 10.1126/science.295.5554.517
  • Olsen K. The first 110 years of laboratory automation: technologies, applications, and the creative scientist. SLAS Technol. 2012;17(6):469–480. doi: 10.1177/2211068212455631
  • Macarron R, Banks MN, Bojanic D, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011;10(3):188–195. doi: 10.1038/nrd3368
  • MacLeod BP, Parlane FGL, Morrissey TD, et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci Adv. 2020;6(20):eaaz8867. doi: 10.1126/sciadv.aaz8867
  • Shimizu R, Kobayashi S, Watanabe Y, et al. Autonomous materials synthesis by machine learning and robotics. APL Mater. 2020;8(11):111110. doi: 10.1063/5.0020370
  • Dave A, Mitchell J, Kandasamy K, et al. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning. Cell Rep Physical Sci. 2020;1(12):100264. doi: 10.1016/j.xcrp.2020.100264
  • Burger B, Maffettone PM, Gusev VV, et al. A mobile robotic chemist. Nature. 2020;583(7815):237–241. doi: 10.1038/s41586-020-2442-2
  • Roch LM, Häse F, Kreisbeck C, et al. ChemOS: an orchestration software to democratize autonomous discovery. PLoS One. 2020;15(4):1–18. doi: 10.1371/journal.pone.0229862
  • Motoyama Y, Tamura R, Yoshimi K, et al. Bayesian optimization package: PHYSBO. Comput Phys Commun. 2022;278:108405. doi: 10.1016/j.cpc.2022.108405
  • Terayama K, Sumita M, Tamura R, et al. Pushing property limits in materials discovery via boundless objective-free exploration. Chem Sci. 2020;11:5959–5968. doi: 10.1039/D0SC00982B
  • Terayama K, Tamura R, Nose Y, et al. Efficient construction method for phase diagrams using uncertainty sampling. Phys Rev Mater. 2019;3:033802. doi: 10.1103/PhysRevMaterials.3.033802
  • Matsuda S, Nishioka K, Nakanishi S. High-throughput combinatorial screening of multi-component electrolyte additives to improve the performance of Li metal secondary batteries. Sci Rep. 2019;9(1):6211. doi: 10.1038/s41598-019-42766-x
  • Ong SP, Richards WD, Jain A, et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput Mater Sci. 2013;68:314–319. doi: 10.1016/j.commatsci.2012.10.028
  • Ward L, Agrawal A, Choudhary A, et al. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater. 2016;2(1):1–7. doi: 10.1038/npjcompumats.2016.28
  • RDKit. https://www.rdkit.org/
  • Ojih J, Al-Fahdi M, Rodriguez AD, et al. Efficiently searching extreme mechanical properties via boundless objective-free exploration and minimal first-principles calculations. npj Comput Mater. 2022;8(1):143. doi: 10.1038/s41524-022-00836-1
  • Tamura R, Deffrennes G, Han K, et al. Machine-learning-based phase diagram construction for high-throughput batch experiments. Sci Technol Adv Mater. 2022;2(1):153–161. doi: 10.1080/27660400.2022.2076548
  • Katsube R, Terayama K, Tamura R, et al. Experimental establishment of phase diagrams guided by uncertainty sampling: an application to the deposition of Zn–Sn–P films by molecular beam epitaxy. ACS Mater Lett. 2020;2(6):571–575. doi: 10.1021/acsmaterialslett.0c00104
  • Hu WH, Chen TT, Tamura R, et al. Topological alternation from structurally adaptable to mechanically stable crosslinked polymer. Sci Technol Adv Mater. 2022;23(1):66–75. doi: 10.1080/14686996.2021.2025426
  • Ota H, Shima K, Ue M, et al. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochimica Acta. 2004;49(4):565–572. doi: 10.1016/j.electacta.2003.09.010
  • Zhang XQ, Cheng XB, Chen X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017;27(10):1605989. doi: 10.1002/adfm.201605989
  • Ginsbourger D, Janusevskis J, Le Riche R. Dealing with asynchronicity in parallel Gaussian process based global optimization. Mines Saint-Etienne. 2011;hal00507632.
  • Janusevskis J, Le Riche R, Ginsbourger D. Expected improvements for the asynchronous parallel global optimization of expensive functions: potentials and challenges. In: Hamadi Y Schoenauer M, et al., editors. Learning and intelligent optimization. Berlin, Heidelberg: Springer; 2012. p. 413–418. doi: 10.1007/978-3-642-34413-8_37