2,392
Views
0
CrossRef citations to date
0
Altmetric
Atmosphere

Potential of rice (Oryza sativa L.) cultivars to mitigate methane emissions from irrigated systems in Latin America and the Caribbean

ORCID Icon, , &
Pages 149-157 | Received 24 Aug 2022, Accepted 24 Apr 2023, Published online: 09 May 2023

References

  • Aulakh, M. S., Bodenbender, J., Wassmann, R., & Rennenberg, H. (2000). Methane transport capacity of rice plants. II. Variations among different rice cultivars and relationship with morphological characteristics. Nutrient Cycling in Agroecosystems, 58(1/3), 367–375. https://doi.org/10.1023/A:1009839929441
  • Aulakh, M. S., Wassmann, R., Bueno, C., Rennenberg, H., & Rennenberg, H. (2001). Characterization of root exudates at different growth stages of rice (Oryza sativa L.) cultivars. Plant Biology, 3(2), 139–148. https://doi.org/10.1055/s-2001-12905
  • Balakrishnan, D., Kulkarni, K., Latha, P. C., & Subrahmanyam, D. (2018). Crop improvement strategies for mitigation of methane emissions from rice. Emirates Journal of Food and Agriculture, 30, 45–462.
  • Baruah, K. K., Gogoi, B., & Gogoi, P. (2010). Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy. Physiology and Molecular Biology of Plants, 16(1), 79–91. https://doi.org/10.1007/s12298-010-0010-1
  • Bhattacharyya, P., Dash, P. K., Swain, C. K., Padhy, S. R., Roy, K. S., Neogi, S., Berliner, J., Adak, T., Pokhare, S. S., Baig, M. J., & Mohapatra, T. (2019). Mechanism of plant mediated methane emission in tropical lowland rice. The Science of the Total Environment, 651, 84–92. https://doi.org/10.1016/j.scitotenv.2018.09.141
  • Butterbach-Bahl, K., Papen, H., & Rennenberg, H. (1997). Impact of gas transport through rice cultivars on methane emission from paddy fields. Plant, Cell & Environment, 20(9), 1175–1183. https://doi.org/10.1046/j.1365-3040.1997.d01-142.x
  • Cheng, H., Shu, K., Zhu, T., Wang, L., Liu, X., Cai, W., Qi, Z., & Feng, S. (2022). Effects of alternate wetting and drying irrigation on yield, water and nitrogen use, and greenhouse gas emissions in rice paddy fields. Journal of Cleaner Production, 349, 131487. https://doi.org/10.1016/j.jclepro.2022.131487
  • Chirinda, N., Arenas, L., Katto, M., Loaiza, S., Correa, F., Isthitani, M., Loboguerrero, A., Martínez-Barón, D., Graterol, E., Jaramillo, S., Torres, C., Arango, M., Guzmán, M., Avila, I., Hube, S., Kurtz, D., Zorrilla, G., Terra, J., Irisarri, P. … Bayer, C. (2018). Sustainable and low greenhouse gas emitting rice production in Latin America and the Caribbean: A review on the transition from ideality to reality. Sustainability, 10(3), 671. https://doi.org/10.3390/su10030671
  • Chirinda, N., Arenas, L., Loaiza, S., Trujillo, C., Katto, M., Chaparro, P., Nuñez, J., Arango, J., Martinez-Baron, D., Loboguerrero, A., Becerra Lopez-Lavalle, L., Avila, I., Guzmán, M., Peters, M., Twyman, J., García, M., Serna, L., Escobar, D., Arora, D. … Barahona, R. (2017). Novel technological and management options for accelerating transformational changes in rice and livestock systems. Sustainability, 9(11), 1891. https://doi.org/10.3390/su9111891
  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V. (2013). ‘Carbon and Other Biogeochemical Cycles’. Climate Change 2013 –The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 465–570.
  • Corre, M. D., van Kessel, C., & Pennock, D. J. (1996). Landscape and seasonal patterns of nitrous oxide emissions in a semiarid region Soil Sci. Soil Science Society of America Journal, 60(6), 1806–1816. https://doi.org/10.2136/sssaj1996.03615995006000060028x
  • Durand-Morat, A., & Bairagi, S. (2021). International Rice Outlook: International Rice Baseline Projections 2020-2030. Research Reports and Research Bulletins. Retrieved from https://scholarworks.uark.edu/aaesrb/49, Series Number 1006.
  • Espinosa, J. (2002). Rice nutrition management in Latin America. Better Crops International, 16, 36–39.
  • FAOSTAT. (2018). Food and agriculture data. https://www.fao.org/faostat/en/#data. Retrieved January 31, 2023.
  • FLAR Monitoring and Follow-up Survey of the Rice Sector in Latin America – EMSAL. (2021). Latin American Fund for Irrigated Rice.
  • Gaihre, Y. K., Singh, U., Islam, S. M. M., Huda, A., Islam, M. R., Sanabria, J., Satter, M. A., Islam, M. R., Biswas, J. C., Jahiruddin, M., & Jahan, M. S. (2018). Nitrous oxide and nitric oxide emissions and nitrogen use efficiency as affected by nitrogen placement in lowland rice fields. Nutrient Cycling in Agroecosystems, 110(2), 277–291. https://doi.org/10.1007/s10705-017-9897-z
  • Gaihre, Y. K., Singh, U., Islam, S. M., Huda, A., Islam, M., Satter, M. A., Sanabria, J., Islam, R., & Shah, A. (2015). Impacts of urea deep placement on nitrous oxide and nitric oxide emissions from rice fields in Bangladesh. Geoderma, 259–260, 370–379. https://doi.org/10.1016/j.geoderma.2015.06.001
  • Gerard, G., & Chanton, J. (1993). Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: Defining upper limits. Biogeochemistry, 23(2), 79–97. https://doi.org/10.1007/BF00000444
  • Gogoi, N., Baruah, K. K., & Gupta, P. K. (2008). Selection of rice genotypes for lower methane emission. Agronomy for Sustainable Development, 28(2), 181–186. https://doi.org/10.1051/agro:2008005
  • GRiSP (Global Rice Science Partnership). (2013). Rice almanac (4th ed., pp. 283). International Rice Research Institute.
  • Gutierrez, J., Atulba, S. L., Kim, G., & Kim, P. J. (2014). Importance of rice root oxidation potential as a regulator of CH4 production under waterlogged conditions. Biology and Fertility of Soils, 50(5), 861–868. https://doi.org/10.1007/s00374-014-0904-0
  • Holzapfel-Pschorn, A., Conrad, R., & Seiler, W. (1986). Effects of vegetation on the emission of methane from submerged paddy soil. Plant and Soil, 92(2), 223–391. https://doi.org/10.1007/BF02372636
  • Islam, S. M. M., Gaihre, Y. K., Biswas, J. C., Singh, U., Ahmed, M. N., Sanabria, J., & Saleque, M. A. (2018). Nitrous oxide and nitric oxide emissions from lowland rice cultivation with urea deep placement and alternate wetting and drying irrigation. Scientific Reports, 8(1), 17623. https://doi.org/10.1038/s41598-018-35939-7
  • Islam, S. M. M., Gaihre, Y. K., Islam, M. R., Akter, M., Mahmud, A. A., Upendra, S., & Sander, B. O. (2020). Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh. The Science of the Total Environment, 734, 139382. 2020. https://doi.org/10.1016/j.scitotenv.2020.139382
  • Islam, S. M. M., Gaihre, Y. K., Islam, M. R., Khatun, A., & Islam, A. (2022). Integrated plant nutrient systems improve rice yields without affecting greenhouse gas emissions from lowland rice cultivation. Sustainability, 14, 11338. https://doi.org/10.3390/su141811338
  • Islam, S. M. M., Gaihre, Y. K., Shah, A. L., Singh, U., Sarkar, M. I. U., Abdus Satter, M., Sanabria, J., & Biswas, J. C. (2016). Rice yields and nitrogen use efficiency with different fertilizers and water management under intensive lowland rice cropping systems in Bangladesh. Nutrient Cycling in Agroecosystems, 106(2), 143–156. https://doi.org/10.1007/s10705-016-9795-9
  • Islam, S. F., Groenigen, J. W. V., Jensen, L. S., Sander, B. O., & de Neergaard, A. (2018). The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. The Science of the Total Environment, 612, 1329–1339. https://doi.org/10.1016/j.scitotenv.2017.09.022
  • Jia, Z., & Cai, Z. (2003). Effects of rice plants on methane emission from paddy fields. The Journal of Applied Ecology, 14, 2049–2053.
  • Khosa, M. K., Sidhu, B. S., & Benbi, D. K. (2010). Effect of organic materials and rice cultivars on methane emission from rice field. Journal of Environmental Biology, 31(3), 281–285.
  • Maclean, J. L., Dawe, D. C., & Hardy, B. (2002). Rice Almanac: Sourcebook for the most important economic activity on earth (Hettel GP, Eds). International Rice Research Institute, CABI Publishing.
  • Minoda, T., & Kimura, M. (1994). Contribution of photosynthesized carbon to the methane emitted from paddy fields, Geophys. Geophysical Research Letters, 21(18), 2007–2010. https://doi.org/10.1029/94GL01595
  • Ogawa, S., Selvaraj, M. G., Fernando, A. J., Lorieux, M., Ishitani, M., McCouch, S., & Arbelaez, J. D. (2014). N-and P-mediated seminal root elongation response in rice seedlings. Plant and Soil, 375(1–2), 303–315. https://doi.org/10.1007/s11104-013-1955-y
  • Pittelkow, C. M., Adviento-Borbe, M. A., Hill, J. E., Six, J., van Kessel, C., & Linquist, B. A. (2013). Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agriculture, Ecosystems & Environment, 177, 10–20. https://doi.org/10.1016/j.agee.2013.05.011
  • Qin, X., Li, Y., Wang, H., Li, J., Wan, Y., Gao, Q., Liao, Y., & Fan, M. (2015). Effect of rice cultivars on yield-scaled methane emissions in a double rice field in South China. Journal of Integrative Environmental Sciences, 12(Suppl. 1), 47–66. https://doi.org/10.1080/1943815X.2015.1118388
  • Sass, R. L., Fisher, F. M., Wang, Y. B., Turner, F. T., & Jund, M. F. (1992). Methane emission from rice fields: The effect of floodwater management. Global Biogeochemical Cycles, 6(3), 249–262. https://doi.org/10.1029/92GB01674
  • Sass, R. L., & FM, F. (1997). Methane emissions from rice paddies: A process study summary. Nutrient Cycling in Agroecosystems, 49(1/3), 119–127. https://doi.org/10.1023/A:1009702223478
  • Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H., & Seiler, W. (1989). A three-year continuous record on the influence of daytime season and fertilizer treatment on methane emission rates from an Italian rice paddy field. Journal of Geophysical Research, 94(D13), 16405–16416. https://doi.org/10.1029/JD094iD13p16405
  • Setyanto, P., Rosenani, A. B., Boer, R., Fauziah, C. I., & Khanif, M. J. (2004). The effect of rice cultivars on methane emission from irrigated rice field. Indonesian Journal of Agricultural Science, 5(1), 20–31. https://doi.org/10.21082/ijas.v5n1.2004.p20-31
  • Su, J., Hu, C., Yan, X., Jin, Y., Chen, Z., Guan, Q., Wang, Y., Zhong, D., Jansson, C., Wang, F., Schnürer, A., & Sun, C. (2015). Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature, 523(7562), 602–606. 7562. https://doi.org/10.1038/nature14673
  • Wang, C., Lai, D. Y. F., Sardans, J., Wang, W., Zeng, C., Peñuelas, J., & Hui, D. (2017). Factors Related with CH4 and N2O Emissions from a Paddy Field: Clues for Management implications. PloS One, 12(1), e0169254. https://doi.org/10.1371/journal.pone.0169254
  • Wassmann, R., & Aulakh, M. S. (2000). The role of rice plants in regulating mechanisms of methane emissions. Biology and Fertility of Soils, 31(1), 20–29. https://doi.org/10.1007/s003740050619
  • Wassmann, R., Lantin, R. S., Neue, H. U., Buendia, L. V., Corton, T. M., & Lu, Y. (2000). Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutrient Cycling in Agroecosystems, 58(1/3), 23–36. https://doi.org/10.1023/A:1009874014903
  • Wassmann, R., Papen, H., & Rennenberg, H. (1993). Methane emission from rice paddies and possible mitigation strategies. Chemosphere, 26(1–4), 201–217. https://doi.org/10.1016/0045-6535(93)90422-2
  • Williams, A., Langridge, H., Straathof, A. L., Muhamadali, H., Hollywood, K. A., Goodacre, R., & de Vries, F. T. (2022). Root functional traits explain root exudation rate and composition across a range of grassland species. The Journal of Ecology, 110(1), 21–33. https://doi.org/10.1111/1365-2745.13630
  • Win, K. T., Nonaka, R., Win, A. T., Sasada, Y., Toyota, K., Motobayashi, T., & Hosomi, M. (2012). Comparison of methanotrophic bacteria, methane oxidation activity, and methane emission in rice fields fertilized with anaerobically digested slurry between a fodder rice and a normal rice variety. Paddy Water Environment, 10(4), 281–289. https://doi.org/10.1007/s10333-011-0279-x
  • Yagi, K., Tsuruta, H., & Minami, K. (1997). Possible options for mitigating methane emission from rice cultivation. Nutrient Cycling in Agroecosystems, 49(1/3), 213–220. https://doi.org/10.1023/A:1009743909716
  • Zhang, H., Liu, H., Hou, D., Zhou, Y., Liu, M., Wang, Z., Liu, L., Gu, J., & Yang, J. (2019). The effect of integrative crop management on root growth and methane emission of paddy rice. The Crop Journal, 7(4), 444–457. https://doi.org/10.1016/j.cj.2018.12.011
  • Zhou, Q., Ju, C. X., Wang, Z. Q., Zhang, H., Liu, L. J., Yang, J. C., & Zhang, J. H. (2017). Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. Journal of Integrative Agriculture, 16(5), 1028–1043. https://doi.org/10.1016/S2095-3119(16)61506-X