1,033
Views
1
CrossRef citations to date
0
Altmetric
Earth Observations

Earthquake-triggered landslides and Environmental Seismic Intensity: insights from the 2018 Papua New Guinea earthquake (Mw 7.5)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 195-209 | Received 02 Jan 2023, Accepted 30 Jun 2023, Published online: 12 Jul 2023

References

  • Basharat, M., Riaz, M. T., Jan, M. Q., et al. (2021). A review of landslides related to the 2005 Kashmir Earthquake: Implication and future challenges. Natural Hazards, 108(1), 1–30. https://doi.org/10.1007/s11069-021-04688-8
  • Basharat, M., Rohn, J., Baig, M. S., & Khan, M. R. (2014a). Spatial distribution analysis of mass movements triggered by the 2005 Kashmir earthquake in the Northeast Himalayas of Pakistan. Geomorphology, 206, 203–214. https://doi.org/10.1016/j.geomorph.2013.09.025
  • Basharat, M., Rohn, J., Baig, M. S., Khan, M. S., & Schleier, M. (2014b). Large scale mass movements triggered by the Kashmir earthquake 2005, Pakistan. Journal of Mountain Science, 11(1), 19–30. https://doi.org/10.1007/s11629-012-2629-6
  • Bojadjieva, J., Sheshov, V., & Bonnard, C. (2018). Hazard and risk assessment of earthquake-induced landslides—case study. Landslides, 15(1), 161–171. https://doi.org/10.1007/s10346-017-0905-9
  • Burrows, K., Milledge, D., Walters, R., & Bellugi, D. (2021). Improved rapid landslide detection from integration of empirical models and satellite radar. Natural Hazards and Earth System Sciences, 1–34. https://doi.org/10.5194/nhess-2021-148
  • Caccavale, M., Sacchi, M., Spiga, E., & Porfido, S. (2019). The 1976 Guatemala earthquake: ESI Scale and probabilistic/deterministic seismic hazard analysis approaches. Geosciences, 9(9), 403. https://doi.org/10.3390/geosciences9090403
  • Chang, M., Zhou, Y., Zhou, C., & Hales, T. C. (2021). Coseismic landslides induced by the 2018 Mw 6.6 Iburi, Japan, Earthquake: Spatial distribution, key factors weight, and susceptibility regionalization. Landslides, 18(2), 755–772. https://doi.org/10.1007/s10346-020-01522-3
  • Chen, R. F., Chang, K. J., Angelier, J., Chan, Y. C., Deffontaines, B., Lee, C. T., Lin, & M. L. (2006). Topographical changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi–Chi earthquake. Engineering Geology, 88(3–4), 160–172. https://doi.org/10.1016/j.enggeo.2006.09.008
  • Chen, R. F., Chang, K. J., Angelier, J., Dahne, A., Ronchetti, F., & Sterzai, P. (2009). Estimating mass-wasting processes in active earth slides – earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR. Natural Hazards and Earth System Sciences, 9(2), 433–439. https://doi.org/10.5194/nhess-9-433-2009
  • Chong, J.-H., & Huang, M.-H. (2021). Refining the 2018 Mw 7.5 Papua New Guinea earthquake fault-slip model using subpixel offset. Bulletin of the Seismological Society of America, 111(2), 1032–1042. https://doi.org/10.1785/0120200250
  • Dewitte, O., Jasselette, J.-C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., & Demoulin, A. (2008). Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Engineering Geology, 99(1–2), 11–22. https://doi.org/10.1016/j.enggeo.2008.02.006
  • Esposito, E., Guerrieri, L., Porfido, S., Vittori, E., Blumetti, A. M., Comerci, V., Michetti, A. M., & Serva, L. (2013). Landslides induced by historical and recent earthquakes in Central-Southern Apennines (Italy): A tool for intensity assessment and seismic hazard. In Landslide Science and Practice (pp. 295–303). Springer. https://doi.org/10.1007/978-3-642-31427-8_38
  • Fan, X., Scaringi, G., Xu, Q., Zhan, W., Dai, L., Li, Y., Pei, X., Yang, Q., & Huang, R. (2018). Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): Factors controlling their spatial distribution and implications for the seismogenic blind fault identification. Landslides, 15(5), 967–983. https://doi.org/10.1007/s10346-018-0960-x
  • Ferrario, M. F. (2019). Landslides triggered by multiple earthquakes: Insights from the 2018 Lombok (Indonesia) events. Natural Hazards, 98(2), 575–592. https://doi.org/10.1007/s11069-019-03718-w
  • Ferrario, M. F. (2022). Landslides triggered by the 2015 Mw.0 Sabah (Malaysia) earthquake: Inventory and ESI-07 intensity assignment. Natural Hazards and Earth System Sciences, 22(10), 3527–3542. https://doi.org/10.5194/nhess-22-3527-2022
  • Ferrario, M. F., Livio, F., & Michetti, A. M. (2022). Fifteen years of Environmental Seismic Intensity (ESI-07) scale: Dataset compilation and insights from empirical regressions. Quaternary International: The Journal of the International Union for Quaternary Research, 625, 107–119. https://doi.org/10.1016/j.quaint.2022.04.011
  • Google Earth. (2018). https://earth.google.com/web/@-6.03925069,142.8987457,1151.06753221a,3421.78612853d,35y,0.00000009h,0.65855459t,0r
  • Gosar, A. (2012). Application of Environmental Seismic Intensity scale (ESI 2007) to Krn Mountains 1998 Mw = 5.6 earthquake (NW Slovenia) with emphasis on rockfalls. Natural Hazards and Earth System Sciences, 12(5), 1659–1670. https://doi.org/10.5194/nhess-12-1659-2012
  • Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3–4), 222–229. https://doi.org/10.1016/j.epsl.2009.01.005
  • Harilal, G. T., Madhu, D., Ramesh, M. V., & Pullarkatt, D. (2019). Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim, India. Landslides, 16(12), 2395–2408. https://doi.org/10.1007/s10346-019-01244-1
  • Harp, E. L., & Jibson, R. (1996). Landslides triggered by the 1994 Northridge, California, earthquake. Bulletin of the Seismological Society of America, 86(1B), S319–S332. https://doi.org/10.1785/BSSA08601BS319
  • Harp, E. L., Keefer, D. K., Sato, H. P., & Yagi, H. (2011). Landslide inventories: The essential part of seismic landslide hazard analyses. Engineering Geology, 122(1–2), 9–21. https://doi.org/10.1016/j.enggeo.2010.06.013
  • Hsieh, Y. C., Chan, Y. C., & Hu, J. C. (2016). Digital elevation model differencing and error estimation from multiple sources: A case study from the Meiyuan Shan landslide in Taiwan. https://doi.org/10.3390/rs8030199
  • Jaboyedoff, M., Carrea, D., Derron, M.-H., Thiery, O., Maria, P. I., & Benjamin, R. (2020). A review of methods used to estimate initial landslide failure surface depths and volumes. Engineering Geology, 267, 105478. https://doi.org/10.1016/j.enggeo.2020.105478
  • Jay Wald, D., Quitoriano, V., Worden, B., Hopper, M., & Dewey, W. J. (2012). USGS “Did You Feel It?” Internet-based macroseismic intensity maps. Annals of Geophysics, 54(6). https://doi.org/10.4401/ag-5354
  • Ju, L.-Y., Zhang, L.-M., & Xiao, T. (2023). Power laws for accurate determination of landslide volume based on high-resolution LiDAR data. Engineering Geology, 312, 106935. https://doi.org/10.1016/j.enggeo.2022.106935
  • Keefer, D. K. (2002). Investigating landslides caused by earthquakes - a historical review. Surveys in Geophysics, 23(6), 473–510. https://doi.org/10.1023/A:1021274710840
  • Koulali, A., Tregoning, P., McClusky, S., Stanaway, R., Wallace, L., & Lister, G. (2015). New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS. Geophysical Journal International, 202(2), 993–1004. https://doi.org/10.1093/gji/ggv200
  • Larsen, I. J., Montgomery, D. R., & Korup, O. (2010). Landslide erosion controlled by hillslope material. Nature Geoscience, 3(4), 247–251. https://doi.org/10.1038/ngeo776
  • Lekkas, E. L. (2010). The 12 may 2008 Mw 7.9 Wenchuan, China, earthquake: Macroseismic intensity assessment using the ems-98 and esi 2007 scales and their correlation with the geological structure. Bulletin of the Seismological Society of America, 100(5B), 2791–2804. https://doi.org/10.1785/0120090244
  • Ling, S., Sun, C., Li, X., Ren, Y., Xu, J., & Huang, T. (2021). Characterizing the distribution pattern and geologic and geomorphic controls on earthquake-triggered landslide occurrence during the 2017 Ms 7.0 Jiuzhaigou earthquake, Sichuan, China. Landslides, 18(4), 1275–1291. https://doi.org/10.1007/s10346-020-01549-6
  • Livio, F., & Ferrario, M. F. (2020). Assessment of attenuation regressions for earthquake-triggered landslides in the Italian Apennines: Insights from recent and historical events. Landslides, 17(12), 2825–2836. https://doi.org/10.1007/s10346-020-01464-w
  • Mahoney, L., Stanaway, R., McLaren, S., Hill, K., & Bergman, E. (2021). The 2018 Mw 7.5 highlands earthquake in Papua New Guinea: Implications for structural style in an active fold and thrust belt. Tectonics, 40(4), e2020TC006667. https://doi.org/10.1029/2020TC006667
  • Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687–711. https://doi.org/10.1002/esp.1064
  • Massey, C. I., Townsend, D., Jones, K., Lukovic, B., Rhoades, D., Morgenstern, R., Rosser, B., Ries, W., Howarth, J., Hamling, I., Petley, D., Clark, M., Wartman, J., Litchfield, & Olsen, M. (2019). Volume characteristics of landslides triggered by the Mw 7.8 2016 Kaikōura earthquake, New Zealand, derived from digital surface difference modeling. Journal of Geophysical Research: Earth Surface, 125(7). https://doi.org/10.1029/2019JF005163
  • Massey, C., Townsend, D., Rathje, E., Allstadt, K. E., Lukovic, B., Kaneko, Y., Bradley, B., Wartman, J., Jibson, R. W., Petley, D. N., Horspool, N., Hamling, I., Carey, J., Cox, S., Davidson, J., Dellow, S., Godt, J. W., Holden, C. … Singeisen, C. (2018). Landslides triggered by the 14 November 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Bulletin of the Seismological Society of America, 108(3B), 1630–1648. https://doi.org/10.1785/0120170305
  • Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3–4), 221–232. https://doi.org/10.1016/j.epsl.2008.07.020
  • Michetti, A. M., Esposito, E., Guerrieri, L., Porfido, S., Serva, L., Tatevossian, R., Vittori, E., Audemard, F., Azuma, T., Clague, J., Comerci, V., Gurpinar, A., MCCaplin, J., Mahammadioun, B., Morner, N. A., Ota, Y., & Roghozin, E. (2007). Environmental Seismic Intensity Scale 2007 - ESI 2007. Memorie Descrittive della Carta Geologica d’Italia, 74, 7–54. https://www.isprambiente.gov.it/files/pubblicazioni/periodicitecnici/memorie/memorielxxiv/esi-environmental.pdf
  • Michetti, A. M., Esposito, E., Mohammadioun, B., Mohammadioun, J., Gurpinar, A., Porfido, S., Rogozhin, E., Serva, L., Tatevossia, R., & Vittori, E. (2004). The INQUA Scale: An innovative approach for assessing earthquake intensities based on seismically-induced ground effects in natural environment: Special paper. Memorie Descrittive della Carta Geologica d’Italia, 67, 1. https://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/memorie-descrittive-della-carta-geologica-ditalia/the-inqua-scale
  • Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., Wald, D. J., Robinson, S. M., Tanyaş, H., Hearne, M., & Thompson, E. M. (2018). A Global empirical model for near‐real‐time assessment of seismically induced landslides. Journal of Geophysical Research: Earth Surface, 123(8), 1835–1859. https://doi.org/10.1029/2017JF004494
  • Ota, Y., Azuma, T., & Lin, Y. N. (2009). Application of INQUA Environmental Seismic Intensity Scale to recent earthquakes in Japan and Taiwan. Geological Society Special Publication, 316(1), 55–71. https://doi.org/10.1144/SP316.4
  • Papathanassiou, G., & Pavlides, S. (2007). Using the INQUA scale for the assessment of intensity: Case study of the 2003 Lefkada (Ionian Islands), Greece earthquake. Quaternary International: The Journal of the International Union for Quaternary Research, 173–174, 4–14. https://doi.org/10.1016/j.quaint.2006.10.038
  • Papathanassiou, G., Valkaniotis, S., Ganas, A., Grendas, N., & Kollia, E. (2017). The November 17th, 2015 Lefkada (Greece) strike-slip earthquake: Field mapping of generated failures and assessment of macroseismic intensity ESI-07. Engineering Geology, 220, 13–30. https://doi.org/10.1016/j.enggeo.2017.01.019
  • Pieters, P. E. (1982). Geology of New Guinea. In J. Illies & F. Schlitz, Eds., 1st, Biogeography and ecology of New Guinea 1981 (pp. 15–38). Dr W. Junk Publishers The Hague-Boston-London 1982, P.O. Box 13713, 2501 ES The Hague. https://doi.org/10.1007/978-94-009-8632-9_2
  • Ramesh, V., & M, V. N. (2012). The deployment of deep-earth sensor probes for landslide detection. Landslides, 9(4), 457–474. https://doi.org/10.1007/s10346-011-0300-x
  • Roback, K., Clark, M. K., West, A. J., Zekos, D., Li, G., Gallen, S. F., Chmlagain, D., & Godt, J. W. (2018). The size, distribution, and mobility of landslides caused by the 2015 Mw.8 Gorkha earthquake, Nepal. Geomorphology, 301, 121–138. https://doi.org/10.1016/j.geomorph.2017.01.030
  • Sanchez, J. J., & Maldonado, R. F. (2016). Application of the ESI 2007 Scale to Two large earthquakes: South Island, New Zealand (2010 Mw 7.1), and Tohoku, Japan (2011 Mw 9.0). Bulletin of the Seismological Society of America, 106(3), 1151–1161. https://doi.org/10.1785/0120150188
  • Scheip, C. M., & Wegmann, K. W. (2021). HazMapper: A global open-source natural hazard mapping application in Google Earth Engine. Natural Hazards and Earth System Sciences, 21(5), 1495–1511. https://doi.org/10.5194/nhess-21-1495-2021
  • Serva, L. (2019). History of the Environmental Seismic Intensity Scale ESI-07. Geosciences, 9(5), 210. https://doi.org/10.3390/geosciences9050210
  • Serva, L., Vittori, E., Comerci, V., Esposito, E., Guerrieri, L., Michetti, A. M., Mohammadioun, B., Mohammadioun, G. C., Porfido, S., & Tatevossian, R. E. (2016). Earthquake hazard and the Environmental Seismic Intensity (ESI) Scale. Pure & Applied Geophysics, 173(5), 1479–1515. https://doi.org/10.1007/s00024-015-1177-8
  • Silva, P., Perez-Lopez, R., Rodriguez-Pacua, M., Giner, J. L., Huerta, P., Bardaji, T., & Martin-Gonzalez, F. (2013) Earthquake Environmental Earthquakes (EEEs) triggered by the 2011 Lorca earthquake (Mw 5.2, Betic Cordillera, SE Spain): Application of the ESI-07 macroseismic scale. Proceedings of the 4th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), Aachen, Germany (pp 238–240).
  • Simonett, D. (1967). Landslide distribution and earthquakes in the Bewani and Torricelli Mountains, New Guinea. In J. Jennings & J. Mabbutt (Eds.), Landf stud from Aust New Guinea (pp. 64–68). Cambridge.
  • Singh, M. (2010). Management of Geohazards at Lihir Gold Mine Papua New Guinea. University of Alberta.
  • Sridharan, A., Ajai, S. R., & Gopalan, S. (2020). A novel methodology for the classification of debris scars using discrete wavelet transform and support vector machine. Procedia computer science, 171, 609–616. https://doi.org/10.1016/j.procs.2020.04.066
  • Tanyaş, H., Hill, K., Mahoney, L., Fadel, I., & Lombardo, L. (2022). The world’s second-largest, recorded landslide event: Lessons learnt from the landslides triggered during and after the 2018 Mw 7.5 Papua New Guinea earthquake.
  • Tanyaş, H., & Lombardo, L. (2020). Completeness index for Earthquake-Induced landslide inventories. Engineering Geology, 264, 105331. https://doi.org/10.1016/j.enggeo.2019.105331
  • Tanyaş, H., van Westen, C. J., Allstadt, K. E., Anna Nowicki Jessee, M., Görüm, T., Jibson, R. W., Godt, J. W., Sato, H. P., Schmitt, R. G., Marc, O., & Hovius, N. (2017). Presentation and analysis of a worldwide database of earthquake-induced landslide inventories. Journal of Geophysical Research: Earth Surface, 122(10), 1991–2015. https://doi.org/10.1002/2017JF004236
  • Tarolli, P. (2014). High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology, 216, 295–312. https://doi.org/10.1016/j.geomorph.2014.03.008
  • Thambidurai, P., & Ramesh, M. V. (2017). Slope stability investigation of Chandmari in Sikkim, Northeastern India. In Advancing culture of living with landslides (pp. 363–369). Springer International Publishing. https://doi.org/10.1007/978-3-319-53498-5_42
  • USGS. (2019). Earthquake overview - United States geological survey. https://earthquake.usgs.gov/earthquakes/eventpage/us2000d7q6/executive
  • Velázquez-Bucio, M. M., Ferrario, M. F., Muccignato, E., Porfido, S., Sridharan, A., Chunga, K., Livio, F., Gopalan, S., & Michetti, A. M. (2023). Environmental effects caused by the Mw 8.2, September 8, 2017, and Mw .4, June 23, 2020, Chiapas-Oaxaca (Mexico) subduction events: Comparison of large intraslab and interface earthquakes. Quaternary International, 651, 62–76. https://doi.org/10.1016/j.quaint.2021.11.028
  • Wang, F., Fan, X., Yunus, A. P., Subramanian, S. S., Alonso-Rodriguez, A., Dai, L., Xu, Q., & Huan, R. (2019). Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 6.6), earthquake: Spatial distribution, controlling factors, and possible failure mechanism. Landslides, 16(8), 1551–1566. https://doi.org/10.1007/s10346-019-01187-7
  • Wang, S., Xu, C., Li, Z., Wen, Y., & Song, C. (2020). The 2018 Mw 7.5 Papua New Guinea earthquake: a possible complex multiple faults failure event with deep-seated reverse faulting. Earth and Space Science, 7(3). https://doi.org/10.1029/2019EA000966
  • Xu, C. (2014). Do buried-rupture earthquakes trigger less landslides than surface-rupture earthquakes for reverse faults? Geomorphology, 216, 53–57. https://doi.org/10.1016/j.geomorph.2014.03.029
  • Xu, C., Ma, S., Tan, Z., Xie, C., Toda, S., & Huang, X. (2018). Landslides triggered by the 2016 Mj 7.3 Kumamoto, Japan, earthquake. Landslides, 15(3), 551–564. https://doi.org/10.1007/s10346-017-00929-1
  • Xu, C., Xu, X., Shen, L., Yao, Q., Tan, X., Kang, W., Ma, S., Wu, X., Cai, J., Gao, M., & Li, K. (2016). Optimized volume models of earthquake-triggered landslides. Scientific Reports, 6(1). https://doi.org/10.1038/srep29797
  • Xu, C., Xu, X., Yao, X., & Dai, F. (2014). Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides, 11(3), 441–461. https://doi.org/10.1007/s10346-013-0404-6
  • Zhang, X., Feng, W., Du, H., Li, L., Wang, S., Yi, L., & Wang, Y. (2020). The 2018 Mw 7.5 Papua New Guinea earthquake: a dissipative and cascading rupture process. Geophysical Research Letters, 47(17). https://doi.org/10.1029/2020GL089271