125
Views
0
CrossRef citations to date
0
Altmetric
Hydrosphere

Identification of nitrate sources and transformation in karst cave water using hydrochemistry and NO3 isotopes (δ15N/δ18O) combined with a Bayesian mixing model

, , , , , , & show all
Pages 1-17 | Received 16 Dec 2023, Accepted 10 May 2024, Published online: 23 May 2024

References

  • Albertin, A. R., Sickman, J. O., Pinowska, A., & Stevenson, R. J. (2012). Identification of nitrogen sources and transformations within karst springs using isotope tracers of nitrogen. Biogeochemistry, 108(1–3), 219–232. https://doi.org/10.1007/s10533-011-9592-0
  • Amberger, A., & Schmidt, H. L. (1987). Natürliche isotopengehalte von nitratals indikatoren für dessen herkunft. Geochimica et Cosmochimica Acta, 175(4016), 1331–1334. https://doi.org/10.1016/0016-7037(87)90150-5
  • Andersson, K. K., & Hooper, A. B. (1983). O2 and H2O are each the source of one O in NO−2 produced from NH3 by nitrosomonas: 15N-NMR evidence. FEBS Letters, 164(2), 236–240. https://doi.org/10.1016/0014-5793(83)80292-0
  • Ata-Ul-Karim, S. T., Liu, X. J., Lu, Z. Z., Zheng, H. B., Cao, W. X., & Zhu, Y. (2017). Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Research, 201, 32–40. https://doi.org/10.1016/j.fcr.2016.10.009
  • Bu, H. M., Zhang, Y., Meng, W., & Song, X. F. (2016). Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China. Science of the Total Environment, 553, 232–242. https://doi.org/10.1016/j.scitotenv.2016.02.104
  • Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The evolution and future of Earth’s nitrogen cycle. Science, 330(6001), 192–196. https://doi.org/10.1126/science.1186120
  • Cao, M. D., Yin, X. J., Zhang, J., Jin, M. G., & Huang, X. (2022). Sources and transformations of nitrogen in an agricultural watershed on the Jianghan Plain, China: An integration of δ15N-NH4+, δ15N-NO3−, δ18-O-NO3− and a Bayesian isotope mixing model. Applied Geochemistry: Journal of the International Association of Geochemistry & Cosmochemistry, 142, 105329. https://doi.org/10.1016/j.apgeochem.2022.105329
  • Chen, X., Chen, C., Hao, Q. Q., Zhang, Z. C., & Shi, P. (2008). Simulation of rainfall–underground outflow responses of a karstic watershed in Southwest China with an artificial neural network. Water Science and Engineering, 433–443. https://doi.org/10.1061/41003(327)41
  • Chen, X., Jiang, L., Huang, X. L., & Cai, Z. C. (2021). Identifying nitrogen source and transport characteristics of the urban estuaries and gate-controlled rivers in northern Taihu Lake, China. Ecological Indicators, 30, 108035. https://doi.org/10.1016/j.ecolind.2021.108035
  • Chen, X., Jiang, C. L., Zheng, L. G., Dong, X. L., Chen, Y. C., & Li, C. (2020). Identification of nitrate source-s and transformations in basin using dual isotopes and hydrochemistry combined with a Bayesian mixing model: Application in a typical mining city. Environmental Pollution, 267, 115651. https://doi.org/10.1016/j.envpol.2020.115651
  • Chen, J. G., & Zhang, Y. J. (1994). Development and genesis of the Shuanghe Cave System in Suiyang, Guizhou. China Karst, 03, 247–255. In chinese.
  • Cui, R. Y., Fu, B., Mao, K. M., Chen, A. Q., & Zhang, D. (2020). Identification of the sources and fate of NO3−-N in shallow groundwater around a plateau lake in southwest China using NO3− isotopes (δ15N and δ18O) and a Bayesian model. Journal of Environmental Management, 270, 110897. https://doi.org/10.1016/j.jenvman.2020.110897
  • Desimone, L. A., & Howes, B. L. (1998). Nitrogen transport and transformations in a shallow aquifer receiving wastewater discharge: A mass balance approach. Water Resources Research, 34(2), 271–285. https://doi.org/10.1029/97WR03040
  • Ding, J. T., Xi, B. D., Gao, R. T., He, L. S., Liu, H. L., Dai, X. L., & Yu, Y. J. (2014). Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach. Science of the Total Environment, 484, 10–18. https://doi.org/10.1016/j.scitotenv.2014.03.018
  • Fadhullah, W., Yaccob, N. S., Syakir, M. I., Muhammad, S. A., Yue, F. J., & Li, S. L. (2019). Nitrate sources and processes in the surface water of a tropical reservoir by stable isotopes and mixing model. Science of the Total Environment, 700, 134517. https://doi.org/10.1016/j.scitotenv.2019.134517
  • Fan, A. M., & Steinberg, V. E. (1996). Health implication of nitrite and nitrate in drinking water: An update on methemoglobinemia occurrence and reproductive and development toxicity. Regulatory Toxicology and Pharmacology: RTP, 23(1), 35–43. https://doi.org/10.1006/rtph.1996.0006
  • Ford, D., & Williams, P. W. (1989). Karst geomorphology and hydrology. Chapman & Hall.
  • Ford, D., & Williams, P. W. (2007). Karst hydrogeology and geomorphology. John Wiley and Sons, Ltd. ( p. 562)
  • Fry, B. (2006). Stable isotope ecology. Springer.
  • Gaillardet, J., Dupré, B., & Louvat, P. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(4), 3–30. https://doi.org/10.1016/S0009-2541(99)00031-5
  • Gillham, R. W., & Cherry, J. A. (1978). Field evidence of denitrification in shallow groundwater flow systems. Water Quality Research Journal, 13(1), 53–72. https://doi.org/10.2166/wqrj.1978.006
  • Gong, X. H., Zhou, Z. F., Su, D., Dong, H., Yan, L. H., Ding, S. J., Wang, X. D., & Zhang, Y. (2024). Sulfur-oxygen isotope analysis of SO42− sources in cave dripwater and their influence on the karst carbon cycle. Environmental Research, 240, 117508. https://doi.org/10.1016/j.envres.2023.117508
  • Guo, X. J., Tang, Y. C., Xu, Y., Zhang, S. S., Ma, J., Xiao, S. B., Ji, D. B., Yang, Z. J., & Liu, D. F. (2020). Using stable nitrogen and oxygen isotopes to identify nitrate sources in the Lancang River, upper Mekong. Journal of Environmental Management, 274, 111197. https://doi.org/10.1016/j.jenvman.2020.111197
  • Han, L., Huang, M., Ma, M., Wei, J., Hu, W., & Chouhan, S. (2018). Evaluating sources and processing of nonpoint source nitrate in a small suburban watershed in China. Journal of Hydrology, 559, 661–668. https://doi.org/10.1016/j.jhydrol.2017.04.057
  • Harris, S. J., Cendón, D. I., Hankin, S. I., Peterson, M. A., Xiao, S., & Kelly, B. F. J. (2022). Isotopic evidence for nitrate sources and controls on denitrification in groundwater beneath an irrigated agricultural district. Science of the Total Environment, 817, 152606. https://doi.org/10.1016/j.scitotenv.2021.152606
  • Heaton, T. H. E., Stuart, M. E., Sapiano, M., & Sultana, M. M. (2012). An isotope study of the sources of nitrate in Malta’s groundwater. Journal of Hydrology, 414-415, 244–254. https://doi.org/10.1016/j.jhydrol.2011.10.037
  • Jiang, H., Zhang, Q., Liu, W., Zhang, J., Pan, K., Zhao, T., & Xu, Z. (2021). Isotopic compositions reveal the driving forces of high nitrate level in an urban river: Implications for pollution control. Journal of Cleaner Production, 298, 126693. https://doi.org/10.1016/j.jclepro.2021.126693
  • Jin, Z. F., Cen, J. R., Hu, Y. M., Li, L. J., Shi, Y. S., Fu, G. W., & Li, F. L. (2018). Quantifying nitrate sources in a large reservoir for drinking water by using stable isotopes and a Bayesian isotope mixing model. Environmental Science and Pollution Research, 26(20), 20364–20376. https://doi.org/10.1007/s11356-019-05296-7
  • Jin, Z. F., Qin, X., Chen, L. X., Jin, M. T., & Li, F. L. (2015). Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake Watershed, Eastern China. Journal of Contaminant Hydrology, 177, 64–75. https://doi.org/10.1016/j.jconhyd.2015.02.008
  • Jin, Z. X., Wang, J. F., Chen, J. A., Zhang, R. X., Li, Y., & Lu, Y. T. (2020). Identifying the sources of nitrate in a small watershed using δ15N-δ18O isotopes of nitrate in the Kelan Reservoir, Guangxi, China. Agriculture, Ecosystems & Environment, 297, 106936. https://doi.org/10.1016/j.agee.2020.106936
  • Kang, X. Q., Niu, Y., Yu, H., Gou, P., Hou, Q. Y., Lu, X. F., & Wu, Y. L. (2022). Effect of rainfall-runoff process on sources and transformations of nitrate using a combined approach of dual isotopes, hydrochemical and Bayesian model in the Dagang River basin. Science of the Total Environment, 837, 155674. https://doi.org/10.1016/j.scitotenv.2022.155674
  • Kelley, C. J., Keller, C. K., Evans, R. D., Orr, C. H., Smith, J. L., & Harlow, B. A. (2013). Nitrate–nitrogen and oxygen isotope ratios for identification of nitrate sources and dominant nitrogen cycle processes in a tile-drained dryland agricultural field. Soil Biology & Biochemistry, 57, 731–738. https://doi.org/10.1016/j.soilbio.2012.10.017
  • Kellman, L., & Hillaire-Marcel, C. (1998). Nitrate cycling in streams: Using natural abundances of NO3−-δ15N to measure in-situ denitrification. Biogeochemistry, 43(3), 273–292. https://doi.org/10.1023/A:1006036706522
  • Kendall, C. (1998). Tracing nitrogen sources and cycling in catchments. In C. Kendall & J. H. McoDonnell (Eds.), Isotope tracers in catchment hydrology (pp. 519–576). Elsevier.
  • Kendall, C., Elliott, E. M., & Wankel, S. D. (2007). Tracing anthropogenic inputs of nitrogen to ecosystems. Stable Isotopes in Ecology and Environmental Science, 375–449. https://doi.org/10.1002/9780470691854
  • Kim, K., Yun, S., Mayer, B., Lee, J., Kim, T., & Kim, H. (2015). Quantification of nitrate sources in groundwater using hydrochemical and dual isotopic data combined with a Bayesian mixing model. Agriculture, Ecosystems & Environment, 199, 369–381. https://doi.org/10.1016/j.agee.2014.10.014
  • Kohl, D. H., Shearer, G. B., & Commoner, B. (1971). Fertilizer nitrogen: Contribution to nitrate in surface water in a corn belt watershed. Science, 174(4016), 1331–1334. https://doi.org/10.1126/science.174.4016.1331
  • Li, P., He, W., & Qian, Z. (2008). Study on Shuanghe dong Geopark. Guizhou People’s Publishing House. (pp. 58–101) in chinese.
  • Li, C., Li, S. L., Yue, F. J., Liu, J., Zhong, J., Yan, Z. F., Zhang, R. C., Wang, Z. J., & Xu, S. (2019). Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model. Science of the Total Environment, 646, 801–810. https://doi.org/10.1016/j.scitotenv.2018.07.345
  • Li, R. F., Ruan, X. H., Bai, Y., Ma, T., & Liu, C. (2017). Effect of wheat-maize straw return on the fate of nitrate in groundwater in the Huaihe River Basin, China. Science of the Total Environment, 592, 78–85. https://doi.org/10.1016/j.scitotenv.2017.03.029
  • Liu, P. (2008). Basic features and causes of caves in Suiyang Shuanghe Cave National Geopark, Guizhou. Guizhou Geology, 04, 302–305. chinese.
  • Liu, C. Q., Li, S. L., Lang, Y. C., & Xiao, H. Y. (2006). Using δ15N- and δ18O-values to identify nitrate sources in karst ground water, Guiyang, Southwest China. Environmental Science & Technology, 40(22), 6928–6933. https://doi.org/10.1021/es0610129
  • Liu, J., Shen, Z. Y., Yan, T. Z., & Yang, Y. C. (2018). Source identification and impact of landscape pattern on riverine nitrogen pollution in a typical urbanized watershed, Beijing, China. Science of the Total Environment, 628-629, 1296–1307. https://doi.org/10.1016/j.scitotenv.2018.02.161
  • Li Vigni, L., Daskalopoulou, K., Calabrese, S., Brusca, L., Bellomo, S., Cardellini, C., Kyriakopoulos, K., Brugnone, F., Parello, F., & Alessandro, W. D. (2023). Hellenic karst waters: Geogenic and anthropogenic processes affecting their geochemistry and quality. Scientific Reports, 13(1), 11191. https://doi.org/10.1038/s41598-023-38349-6
  • Lu, L., Cheng, H. G., Pu, X., Liu, X. L., & Cheng, Q. D. (2015). Nitrate behaviors and source apportionment in an aquatic system from a watershed with intensive agricultural activities. Environmental Sciences: An International Journal of Environmental Physiology and Toxicology, 17(1), 131–144. https://doi.org/10.1039/C4EM00502C
  • Ma, P., Liu, S. X., Yu, Q. B., Li, X. Y., & Han, X. Q. (2019). Sources and transformations of anthropogenic nitrogen in the highly disturbed Huai River Basin, Eastern China. Environmental Science and Pollution Research, 26(11), 11153–11169. https://doi.org/10.1007/s11356-019-04470-1
  • Matiatos, I. (2016). Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (central Greece). Science of the Total Environment, 541, 802–814. https://doi.org/10.1016/j.scitotenv.2015.09.134
  • Mengis, M., Schiff, S. L., & Harris, M. (1999). Multiple geochemical and isotopic approaches for assessing ground water NO3−Elimination in a Riparian Zone. Ground Water, 37(3), 448–459. https://doi.org/10.1111/j.1745-6584.1999.tb01124.x
  • Musgrove, M., Opsahl, S. P., Mahlera, B. J., Herrington, C., Sample, T. L., & Banta, J. R. (2016). Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas. Science of the Total Environment, 568, 457–469. https://doi.org/10.1016/j.scitotenv.2016.05.201
  • Oscar, D. P., Usamentiaga, R., Trichakis, Y., & Bouraoui, F. (2023). Remote sensing for detecting freshly manure-d fields. Ecological Informatics, 75, 102006. https://doi.org/10.1016/j.ecoinf.2023.102006
  • Panno, S. V., Kelly, W. R., Martinsek, A. T., & Hackley, K. C. (2006). Estimating background and threshold nitrate concentrations using probability graphs. Groundwater, 44(5), 697–709. https://doi.org/10.1111/j.1745-6584.2006.00240.x
  • Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: Coping with too much variation. Public Library of Science ONE, 5(3), e9672. https://doi.org/10.1371/journal.pone.0009672
  • Ryabenko, E., Altabet, M. A., & Wallace, D. W. R. (2009). Effect of chloride on the chemical conversion of nitrate to nitrous oxide for δ15N analysis. Limnology and Oceanography, 7, 545–552. https://doi.org/10.4319/lom.2009.7.545
  • Saccon, P., Leis, A., Marca, A., Kaiser, J., Campisi, L., Böttcher, M. E., Savarino, J., Escher, P., Eisenhauer, A., & Erbland, J. (2013). Multi-isotope approach for the identification and characterisation of nitrate pollution sources in the Marano lagoon (Italy) and parts of its catchment area. Applied Geochemistry: Journal of the International Association of Geochemistry & Cosmochemistry, 34, 75–89. https://doi.org/10.1016/j.apgeochem.2013.02.007
  • Song, X. W., Gao, Y., Green, S. M., Wen, X. F., Dungait, J. A. J., Xiong, B. L., Quine, T. A., & He, N. P. (2019). Rainfall driven transport of carbon and nitrogen along karst slopes and associative interaction characteristic. Journal of Hydrology, 573, 246–254. https://doi.org/10.1016/j.jhydrol.2019.03.083
  • Tayefeh, M., Sadeghi, S. M., Noorhosseini, S. A., Bacenetti, J., & Damalas, C. A. (2018). Environmental impact of rice production based on nitrogen fertilizer use. Environmental Science and Pollution Research, 25(16), 15885–15895. https://doi.org/10.1007/s11356-018-1788-6
  • Tutmez, B. (2009). Assessing uncertainty of nitrate variability in groundwater. Ecological Informatics, 4(1), 42–47. https://doi.org/10.1016/j.ecoinf.2008.10.001
  • Tutmez, B., & Hatipoglu, Z. (2010). Comparing two data driven interpolation methods for modeling nitrate distribution in aquifer. Ecological Informatics, 5(4), 311–315. https://doi.org/10.1016/j.ecoinf.2009.08.001
  • Vidueira, R. G., Oteroa, R. R., Nocelo, M. L. G., Gonzalez, E. R., Gonzalez, D. M., Roca, D. F., Itziar Santos, I. V., & Gandara, G. S. (2020). Identification of nitrates origin in Limia river basin and pollution-determinant factors. Agriculture, Ecosystems & Environment, 290, 106775. https://doi.org/10.1016/j.agee.2019.106775
  • Wang, Z. J., Li, S. L., Yue, F. J., Qin, C. Q., Buckerfield, B., & Zeng, J. (2020). Rainfall driven nitrate transport in agricultural karst surface river system: Insight from high resolution hydrochemistry and nitrate isotopes. Agriculture, Ecosystems & Environment, 291, 106787. https://doi.org/10.1016/j.agee.2019.106787
  • Wang, S. Q., Zheng, W. B., Currell, M., Yang, Y. H., Zhao, H., & Lv, M. (2017). Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain. Science of the Total Environment, 609, 607–620. https://doi.org/10.1016/j.scitotenv.2017.07.176
  • Wassenaar, L. I. (1995). Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of15N and18O in NO3−. Applied Geochemistry: Journal of the International Association of Geochemistry & Cosmochemistry, 10(4), 391–405. https://doi.org/10.1016/0883-2927(95)00013-a
  • Wei, Y. N., Wen, F., Wei, W., & Deng, L. S. (2017). Identification of nitrate pollution sources of groundwater and analysis of potential pollution paths in loess regions: A case study in Tongchuan region, China. Environmental Earth Sciences, 76(12), 4231–423.13. https://doi.org/10.1007/s12665-017-6756-9
  • WHO. (2011). Guidelines for drinking-water quality (4th ed.). WHO Press.
  • Wu, Y. G. (2002). Denitrification in groundwater environments. Environmental Pollution Control Technology and Equipment, 3(3), 27–31. in Chinese.
  • Xing, M., & Liu, W. G. (2016). Using dual isotopes to identify sources and transformations of nitrogen in water catchments with different land uses, Loess Plateau of China. Environmental Science and Pollution Research, 23(1), 388–401. https://doi.org/10.1007/s11356-015-5268-y
  • Xing, M., Liu, W. G., Wang, Z. J., & Hu, J. (2013). Relationship of nitrate isotopic character to population de-nsity in the Loess Plateau of Northwest China. Applied Geochemistry: Journal of the International Association of Geochemistry & Cosmochemistry, 35, 110–119. https://doi.org/10.1016/j.apgeochem.2013.04.002
  • Xue, D. M., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M., & Boeckx, P. (2009). Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research, 43(5), 1159–1170. https://doi.org/10.1016/j.watres.2008.12.048
  • Xu, S. G., Kang, P. P., & Sun, Y. (2016). A stable isotope approach and its application for identifying nitrate source and transformation process in water. Environmental Science and Pollution Research, 23(2), 1133–1148. https://doi.org/10.1007/s11356-015-5309-6
  • Yan, X. Y., Ti, C. P., Vitousek, P., Chen, D. L., Leip, A., Cai, Z. C., & Zhu, Z. L. (2014). Fertilizer nitrogen recovery efficiencies in crop production systems of china with and without consideration of the residual effect of nitrogen. Environmental Research Letters, 9(9), 095002. https://doi.org/10.1088/1748-9326/9/9/095002
  • Yin, C., Yang, H. Q., Wang, J. F., Guo, J. Y., Tang, X. Y., & Chen, J. A. (2020). Combined use of stable nitrogen and oxygen isotopes to constrain the nitrate sources in a karst lake. Agriculture, Ecosystems & Environment, 303, 107089. https://doi.org/10.1016/j.agee.2020.107089
  • Yue, F. J., Liu, C. Q., Li, S. L., Zhao, Z. Q., Liu, X. L., Ding, H., Liu, B. J., & Zhong, J. (2014). Analysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast China. Journal of Hydrology, 519, 329–339. https://doi.org/10.1016/j.jhydrol.2014.07.026
  • Yue, F. J., Li, S. L., Waldron, S. S., Oliver, D. M., Chen, X., Li, P., Peng, T., & Liu, C. Q. (2023). Source availability and hydrological connectivity determined nitrate-discharge relationships during rainfall events in karst catchment as revealed by high-frequency nitrate sensing. Water Research, 231, 119616. https://doi.org/10.1016/j.watres.2023.119616
  • Yue, F. J., Li, S. L., Waldron, S. S., Wang, Z. J., Oliver, D. M., Chen, X., & Liu, C. Q. (2020). Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: Insights from stable isotope tracing and high-frequency nitrate sensing. Water Research, 186, 116388. https://doi.org/10.1016/j.watres.2020.116388
  • Yue, F. J., Li, S. L., Zhong, J., & Liu, J. (2018). Evaluation of factors driving seasonal nitrate variations in surface and underground systems of a Karst Catchment. Vadose Zone Journal, 17(1), 1–10. https://doi.org/10.2136/vzj2017.04.0071
  • Yu, Y., Jin, Z., Chu, G., Zhang, J., Wang, Y., & Zhao, Y. (2020). Effects of valley reshaping and damming on surface and groundwater nitrate on the Chinese Loess Plateau. Journal of Hydrology, 584, 124702. https://doi.org/10.1016/j.jhydrol.2020.124702
  • Zhang, J., Cao, M. D., Jin, M. G., Huang, X., Zhang, Z. X., & Kang, F. X. (2022). Identifying the source and transformation of riverine nitrates in a karst watershed, North China: Comprehensive use of major ions, multiple isotopes and a Bayesian model. Journal of Contaminant Hydrology, 246, 103957. https://doi.org/10.1016/j.jconhyd.2022.103957
  • Zhang, Q. Y., Shu, W., Li, F. D., Li, M., Zhou, J., Tian, C., Liu, S. B., Ren, F. T., & Chen, G. (2022). Nitrate source apportionment and risk assessment: A study in the largest ion-adsorption rare earth mine in China. Environmental Pollution, 302, 119052. https://doi.org/10.1016/j.envpol.2022.119052
  • Zhang, H., Xu, Y., Cheng, S. Q., Li, Q. L., & Yu, H. R. (2020). Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain, China. Science of the Total Environment, 717, 137134. https://doi.org/10.1016/j.scitotenv.2020.137134
  • Zhang, H., Zhou, Z. F., Dong, H., Yan, L. H., Ding, S. J., Huang, J., Gong, X. H., & Su, D. (2023). Seasonal variations of cave dripwater hydrogeochemical parameters and δ13CDIC in the subtropical monsoon region and links to regional hydroclimate. Science of the Total Environment, 881, 163509. https://doi.org/10.1016/j.scitotenv.2023.163509
  • Zhang, J., Zhou, Z. F., Wang, Y. L., Pan, Y. X., Xue, B. Q., Zhang, H. T., & Tian, Z. H. (2018). Characterization of cave CO2 changes and response to drip hydrogeochemistry under short-term high-intensity tourism activities. Journal of Geography, 73(9), 1687–1701. chinese.
  • Zhao, H. J., Xiao, Q., Miao, Y., Wang, Z. J., & Wang, Q. G. (2020). Sources and transformations of nitrate constrained by nitrate isotopes and Bayesian model in karst surface water, Guilin, Southwest China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-08612-8
  • Zhou, Z. F., Tian, L. Y., Yin, C., Yan, L. H., & Chen, Q. (2017). Soil physicochemical properties of different land use types in karst basin under human intervention. Journal of Guizhou Normal University (Natural Science Edition), 35(4). in chinese. https://doi.org/10.16614/j.cnki.issn1004-5570.2017.04.001
  • Zhu, W. X., & Li, P. (2004). Introduction to Shuanghe Cave National Geopark, Suiyang, Guizhou. Guizhou Geology, 03, 205–212. In chinese.