Publication Cover
LHB
Hydroscience Journal
Volume 109, 2023 - Issue 1
1,765
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving the double mass curve method to analyse the variation trend of runoff and sediment load in watersheds

Amélioration de la méthode de la double courbe massique pour analyser la tendance à la variation du ruissellement et de la charge de sédiments dans les bassins versants

, , , , &
Article: 2236971 | Published online: 01 Sep 2023

References

  • Anderson, H. W. (1955). Detecting hydrologic effects of changes in watershed conditions by double‐mass analysis. Eos, Transactions American Geophysical Union, 36(1), 1–12. https://doi.org/10.1029/TR036i001p00119
  • Ashagrie, A. G., De Laat, P. J., De Wit, M. J., Tu, M., & Uhlenbrook, S. (2006). Detecting the influence of land use changes on discharges and floods in the Meuse River Basin – The predictive power of a ninety-year rainfall-runoff relation? Hydrology and Earth System Sciences, 10(5), 691–701. https://doi.org/10.5194/hess-10-691-2006
  • Awotwi, A., Anornu, G. K., Quaye‐Ballard, J. A., & Annor, T. (2018). Monitoring land use and land cover changes due to extensive gold mining, urban expansion, and agriculture in the Pra River Basin of Ghana, 1986–2025. Land Degradation & Development, 29(10), 3331–3343. https://doi.org/10.1002/ldr.3093
  • Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Ribbe, L., Nauditt, A., Giraldo-Osorio, J. D., & Thinh, N. X. (2018). Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmospheric Research, 213, 34–50. https://doi.org/10.1016/j.atmosres.2018.05.011
  • Bodoque, J. M., Amérigo, M., Díez-Herrero, A., García, J. A., Cortés, B., Ballesteros-Cánovas, J. A., & Olcina, J. (2016). Improvement of resilience of urban areas by integrating social perception in flash-flood risk management. Journal of Hydrology, 541, 665–676. https://doi.org/10.1016/j.jhydrol.2016.02.005
  • Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58(1–2), 11–27. https://doi.org/10.1016/0022-1694(82)90066-X
  • Chalov, S., Golosov, V., Tsyplenkov, A., Theuring, P., Zakerinejad, R., Märker, M., & Samokhin, M. (2017). A toolbox for sediment budget research in small catchments. Geography, Environment, Sustainability, 10(4), 43–68. https://doi.org/10.24057/2071-9388-2017-10-4-43-68
  • Chang, M., & Lee, R. (1974). Objective double‐mass analysis. Water Resources Research, 10(6), 1123–1126. https://doi.org/10.1029/WR010i006p01123
  • Chang, K. L., Schultz, M. G., Lan, X., McClure-Begley, A., Petropavlovskikh, I., Xu, X., & Ziemke, J. R. (2021). Trend detection of atmospheric time series: Incorporating appropriate uncertainty estimates and handling extreme events. Elementa: Science of the Anthropocene, 9(1), 00035. https://doi.org/10.1525/elementa.2021.00035
  • Choi, W., Nauth, K., Choi, J., & Becker, S. (2016). Urbanization and rainfall–runoff relationships in the Milwaukee River basin. The Professional Geographer, 68(1), 14–25. https://doi.org/10.1080/00330124.2015.1007427
  • Cluis, D., & Laberge, C. (2001). Climate change and trend detection in selected rivers within the Asia-Pacific region. Water International, 26(3), 411–424. https://doi.org/10.1080/02508060108686933
  • Cluis, D., Langlois, C., Van Coillie, R., & Laberge, C. (1989). Development of a software package for trend detection in temporal series: Application to water and industrial effluent quality data for the St. Lawrence River. Environmental Monitoring and Assessment, 13(2), 429–441. https://doi.org/10.1007/BF00394243
  • Dias, J. P., Ekwaro-Osire, S., Cunha, A., Jr, Dabetwar, S., Nispel, A., Alemayehu, F. M., & Endeshaw, H. B. (2019). Parametric probabilistic approach for cumulative fatigue damage using double linear damage rule considering limited data. International Journal of Fatigue, 127, 246–258. https://doi.org/10.1016/j.ijfatigue.2019.06.011
  • Dike, J., & Tilburg, C. (2007). Climatic timescale temperature and precipitation increases on Long Island, New York. Atmosphere-ocean, 45(2), 93–105. https://doi.org/10.3137/ao.450203
  • Du, M., Mu, X., Zhao, G., Gao, P., & Sun, W. (2021). Changes in runoff and sediment load and potential causes in the Malian River basin on the Loess Plateau. Sustainability, 13(2), 443. https://doi.org/10.3390/su13020443
  • Easterling, D. R., & Peterson, T. C. (1995). A new method for detecting undocumented discontinuities in climatological time series. International Journal of Climatology, 15(4), 369–377. https://doi.org/10.1002/joc.3370150403
  • Gao, P., Li, P., Zhao, B., Xu, R., Zhao, G., Sun, W., & Mu, X. (2017). Use of double mass curves in hydrologic benefit evaluations. Hydrological Processes, 31(26), 4639–4646. https://doi.org/10.1002/hyp.11377
  • Gao, P., Mu, X. M., Wang, F., & Li, R. (2011). Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrology and Earth System Sciences, 15(1), 1–10. https://doi.org/10.5194/hess-15-1–2011
  • Gebremicael, T. G., Mohamed, Y. A., Betrie, G. D., Van der Zaag, P., & Teferi, E. (2013). Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. Journal of Hydrology, 482, 57–68. https://doi.org/10.1016/j.jhydrol.2012.12.023
  • Guo, A., Chang, J., Liu, D., Wang, Y., Huang, Q., & Li, Y. (2016). Variations in the precipitation–runoff relationship of the Weihe River basin. Hydrology Research, 48(1), 295–310. https://doi.org/10.2166/nh.2016.032
  • Guo, C., Jin, Z., Guo, L., Lu, J., Ren, S., & Zhou, Y. (2020). On the cumulative dam impact in the upper Changjiang River: Streamflow and sediment load changes. Catena, 184, 104250. https://doi.org/10.1016/j.catena.2019.104250
  • Han, J., Gao, J., & Luo, H. (2019). Changes and implications of the relationship between rainfall, runoff and sediment load in the Wuding River basin on the Chinese Loess Plateau. Catena, 175, 228–235. https://doi.org/10.1016/j.catena.2018.12.024
  • Huang, X. R., Gao, L. Y., Yang, P. P., & Xi, Y. Y. (2018). Cumulative impact of dam constructions on streamflow and sediment regime in lower reaches of the Jinsha River, China. Journal of Mountain Science, 15(12), 2752–2765. https://doi.org/10.1007/s11629-018-4924-3
  • Hu, C., Wang, Y., Guan, J., & Shi, Z. (2012). The causes of runoff variation based on double cumulative curve analysis method. Journal of Water Resources Research, 1(4), 204–210. https://doi.org/10.12677/JWRR.2012.14028
  • Jiang, S., Wang, M., Ren, L., Xu, C. Y., Yuan, F., Liu, Y., Lu, Y., & Shen, H. (2019). A framework for quantifying the impacts of climate change and human activities on hydrological drought in a semiarid basin of Northern China. Hydrological Processes, 33(7), 1075–1088. https://doi.org/10.1002/hyp.13386
  • Kleinhans, M. G., Wilbers, A. W. E., & Ten-Brinke, W. B. M. (2007). Opposite hysteresis of sand and gravel transport upstream and downstream of a bifurcation during a flood in the River Rhine. Netherlands Journal of Geosciences, 86(3), 273–285. https://doi.org/10.1017/S0016774600077854
  • Klemeš, V. (1979). Storage mass‐curve analysis in a systems‐analytic perspective. Water Resources Research, 15(2), 359–370. https://doi.org/10.1029/WR015i002p00359
  • Klemeš, V. (1983). Conceptualization and scale in hydrology. Journal of Hydrology, 65(1–3), 1–23. https://doi.org/10.1016/0022-1694(83)90208-1
  • Kohler, M. A. (1949). On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustments. Bulletin of the American Meteorological Society, 30(5), 188–195. https://doi.org/10.1175/1520-0477-30.5.188
  • Li, P., Chen, J., Zhao, G., Holden, J., Liu, B., Chan, F. K. S., Hu, J., Wu, P., & Mu, X. (2022). Determining the drivers and rates of soil erosion on the Loess Plateau since 1901. Science of the Total Environment, 823, 153674. https://doi.org/10.1016/j.scitotenv.2022.153674
  • Li, D., Lu, X. X., Yang, X., Chen, L., & Lin, L. (2018). Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: A case study of the Jinsha River. Geomorphology, 322, 41–52. https://doi.org/10.1016/j.geomorph.2018.08.038
  • Liu, S. W., Zhang, X. F., Xu, Q. X., Liu, D. C., Yuan, J., & Wang, M. L. (2019). Variation and driving factors of water discharge and sediment load in dierent regions of the Jinsha River Basin in China in the past 50 years. Water, 11(1109), w11051109.
  • Manson, S. S., & Halford, G. R. (1981). Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. International Journal of Fracture, 17(2), 169–192. https://doi.org/10.1007/BF00053519
  • Meysam, S., Ali-Mohammad, A. A., Arash, A., & Alireza, D. (2012). Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station. African Journal of Agricultural Research, 7(32), 4540–4552.
  • Moret-Fernández, D., Latorre, B., Giner, M. D. L. L., Ramos, J., Alados, C. L., Castellano, C., López, M. V., Jimenez, J. J., & Pueyo, Y. (2019). Estimation of the soil hydraulic properties from the transient infiltration curve measured on soils affected by water repellency. Catena, 178, 298–306. https://doi.org/10.1016/j.catena.2019.03.031
  • Peeters, S. H., Van Zwet, E. W., Oepkes, D., Lopriore, E., Klumper, F. J., & Middeldorp, J. M. (2014). Learning curve for fetoscopic laser surgery using cumulative sum analysis. Acta obstetricia et gynecologica Scandinavica, 93(7), 705–711. https://doi.org/10.1111/aogs.12402
  • Pettitt, A. N. (1981). Posterior probabilities for a change-point using ranks. Biometrika, 68(2), 443–450. https://doi.org/10.1093/biomet/68.2.443
  • Pirnia, A., Darabi, H., Choubin, B., Omidvar, E., Onyutha, C., & Haghighi, A. T. (2019). Contribution of climatic variability and human activities to stream flow changes in the Haraz River basin, northern Iran. Journal of Hydro-Environment Research, 25, 12–24. https://doi.org/10.1016/j.jher.2019.05.001
  • Pirnia, A., Golshan, M., Darabi, H., Adamowski, J., & Rozbeh, S. (2019). Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. Journal of Water and Climate Change, 10(4), 725–742. https://doi.org/10.2166/wcc.2018.162
  • Potter, K. W. (1981). Illustration of a new test for detecting a shift in mean in precipitation series. Monthly Weather Review, 109(9), 2040–2045. https://doi.org/10.1175/1520-0493(1981)109<2040:IOANTF>2.0.CO;2
  • Schaubel, D. E., & Wei, G. (2011). Double inverse‐weighted estimation of cumulative treatment effects under nonproportional hazards and dependent censoring. Biometrics, 67(1), 29–38. https://doi.org/10.1111/j.1541-0420.2010.01449.x
  • Smith, H. G., & Dragovich, D. (2009). Interpreting sediment delivery processes using suspended sediment-discharge hysteresis patterns from nested upland catchments, south-eastern Australia. Hydrological Processes, 23(17), 2415–2426. https://doi.org/10.1002/hyp.7357
  • Sy, S., Madonna, F., Rosoldi, M., Tramutola, E., Gagliardi, S., Proto, M., & Pappalardo, G. (2021). Sensitivity of trends to estimation methods and quantification of subsampling effects in global radiosounding temperature and humidity time series. International Journal of Climatology, 41(S1), E1992–E2014. https://doi.org/10.1002/joc.6827
  • Tsirkunov, V. V., Nikanorov, A. M., Laznik, M. M., & Dongwei, Z. (1992). Analysis of long-term and seasonal river water quality changes in Latvia. Water Research, 26(9), 1203–1216. https://doi.org/10.1016/0043-1354(92)90181–3
  • Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Meng, X. L., Choi, D., Cheang, W. K., Keller, T., DeLuisi, J., Wuebbles, D. J., Kerr, J. B., Miller, A. J., Oltmans, S. J., & Frederick, J. E. (1998). Factors affecting the detection of trends: Statistical considerations and applications to environmental data. Journal of Geophysical Research: Atmospheres, 103(D14), 17149–17161. https://doi.org/10.1029/98JD00995
  • Weiss, L. L., & Wilson, W. T. (1953). Evaluation of significance of slope changes in double‐mass curves. Eos, Transactions American Geophysical Union, 34(6), 893–896. https://doi.org/10.1029/TR034i006p00893
  • Wei, X., & Zhang, M. (2010). Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study. Water Resources Research, 46(12). https://doi.org/10.1029/2010WR009250
  • Whelan, D. E. (1950). A method of evaluating the hydrologic effects of land use on large watersheds. Eos, Transactions American Geophysical Union, 31(2), 253–261. https://doi.org/10.1029/TR031i002p00253
  • Zhang, P. P., Cai, Y. P., Wei, Y., Yi, Y. J., & Yang, Z. F. (2019). Climatic and anthropogenic impacts on water and sediment generation in the middle reach of the Jinsha River basin. River Research and Applications, 36(12), 1–13.
  • Zhang, F., Shi, X., Zeng, C., Wang, L., Xiao, X., Wang, G., Chen, Y., Zhang, H., Lu, X., & Immerzeel, W. (2020). Recent stepwise sediment flux increase with climate change in the Tuotuo River in the central Tibetan Plateau. Science Bulletin, 65(5), 410–418. https://doi.org/10.1016/j.scib.2019.12.017
  • Zhang, Q., Xu, C. Y., Becker, S., & Jiang, T. (2006). Sediment and runoff changes in the Yangtze River basin during past 50 years. Journal of Hydrology, 331(3–4), 511–523. https://doi.org/10.1016/j.jhydrol.2006.05.036
  • Zhang, X. F., Yan, H. C., Yue, Y., & Xu, Q. X. (2019). Quantifying natural and anthropogenic impacts on runoff and sediment load: An investigation on the middle and lower reaches of the Jinsha River basin. Journal of Hydrology: Regional Studies, 25, 100617. https://doi.org/10.1016/j.ejrh.2019.100617
  • Zhao, W. W., Fu, B. J., Chen, L. D., Zhang, Q. J., & Zhang, Y. H. (2004). Effects of land-use pattern change on rainfall-runoff and runoff-sediment relations: A case study in Zichang watershed of the Loess Plateau of China. Journal of Environmental Sciences, 16(3), 436–442.
  • Zhu, S. P., Liao, D., Liu, Q., Correia, J. A., & De Jesus, A. M. (2019). Nonlinear fatigue damage accumulation: Isodamage curve-based model and life prediction aspects. International Journal of Fatigue, 128, 105185. https://doi.org/10.1016/j.ijfatigue.2019.105185