852
Views
0
CrossRef citations to date
0
Altmetric
PURE MATHEMATICS

Wigner function and weyl transform, trace class

| (Reviewing editor:)
Article: 2065744 | Received 16 Feb 2022, Accepted 06 Apr 2022, Published online: 11 May 2022

References

  • Adcock, B., Brugiapaglia, S., Dexter, N., & Moraga, S. (2020). Deep neural networks are effective at learning high-dimensional Hilbert-valued functions from limited data. arXiv preprint arXiv:2012.06081.
  • Arvidsson-Shukur, D. R. M., Yunger Halpern, N., Lepage, H. V., Lasek, A. A., Barnes, C. H. W., & Lloyd, S. (2020). Quantum advantage in postselected metrology. Nat. Commun, 11(1), 3775. https://doi.org/10.1038/s41467-020-17559-w
  • Bach, F. (2017). On the equivalence between kernel quadrature rules and random feature expansions. The Journal of Machine Learning Research, 18, 714–7.
  • Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P., Learning data-driven discretizations for partial differential equations, Proceedings of the national academy of sciences, 116 (2019), pp. 15344–15349.
  • Batty, C., Gomilko, A., & Tomilov, Y. (2015). Product formulas in functional calculi for sectorial operators. Math. Z, 279(1–2), 479–507. https://doi.org/10.1007/s00209-014-1378-3
  • Belkin, M., Hsu, D., & Ma, S.(2019). Mandal Reconciling modern machine-learning practice and the classical bias-variance trade-off, Proceedings of the national academy of sciences, 116, pp. 15849–15854.
  • Benner, P., Cohen, A., Ohlberger, M., & Willcox, K. 2017. Model Reduction and Approximation: Theory and Algorithms, 15 SIAM .
  • Bhattacharya, K., Hosseini, B., Kovachki, N. B., & Stuart, A. M. (2020). Model reduction and neural networks for parametric PDEs. arXiv preprint arXiv:2005.03180.
  • Bigoni, D., Chen, Y., Trillos, N. G., Marzouk, Y., & Sanz-Alonso, D.(2020). Data-driven forward discretizations for Bayesian inversion. Inverse Problems, 36(10), 105008. arXiv preprint arXiv:2003.07991. https://doi.org/10.1088/1361-6420/abb2fa
  • Bonetti, P. M. (2020). Accessing the ordered phase of correlated Fermi systems: Vertex bosonization and mean-field theory within the functional renormalization group. Phys. Rev. B, 102(23), 235160. https://doi.org/10.1103/PhysRevB.102.235160
  • Cao, Y., & Gu, Q. (2019). Generalization bounds of stochastic gradient descent for wide and deep neural networks. Advances in Neural Information Processing Systems, 10835–10845.
  • Chalupa, P., Sch¨afer, T., Reitner, M., Springer, D., Andergassen, S., & Toschi, A. (2021). Fingerprints of the local moment formation and its kondo screening in the generalized susceptibilities of many-electron problems. Phys. Rev. Lett, 126(5), 056403. https://doi.org/10.1103/PhysRevLett.126.056403
  • Dunlop, M. M., Iglesias, M. A., & Stuart, A. M. (2017). Hierarchical Bayesian level set inversion. Statistics and Computing, 27(6), 1555–1584. https://doi.org/10.1007/s11222-016-9704-8
  • Dupuis, N., Canet, L., Eichhorn, A., Metzner, W., Pawlowski, J., Tissier, M., & Wschebor, N. (2021). The nonperturbative functional renormalization group and its applications. Physics Reports, 910, 1–114.
  • Fan, Y., & Ying, L. (2020). Solving electrical impedance tomography with deep learning. Journal of Computational Physics, 404, 109–119. https://doi.org/10.1016/j.jcp.2019.109119
  • Feliu-Faba, J., Fan, Y., & Ying, L. (2020). Meta-learning pseudo-differential operators with deep neural networks. Journal of Computational Physics, 408, 109309. https://doi.org/10.1016/j.jcp.2020.109309
  • Gao, H., Wang, J.-X., & Zahr, M. J. (2019). Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning. arXiv preprint arXiv:1911.03808.
  • Geist, M., Petersen, P., Raslan, M., Schneider, R., & Kutyniok, G. (2020). Numerical solution of the parametric diffusion equation by deep neural networks. arXiv preprint arXiv:2004.12131.
  • Kamenshchik, A. Y., Tronconi, A., & Venturi, G. (2021). Born–Oppenheimer meets Wigner–Weyl in quantum gravity. Classical and Quantum Gravity, 38(18), 185006. https://doi.org/10.1088/1361-6382/ac1b0a
  • Korolev, Y. (2021). Two-layer neural networks with values in a Banach space. arXiv preprint arXiv:2105.02095.
  • Krien, F., Lichtenstein, A. I., & Rohringer, G. (2020). Fluctuation diagnostic of the nodalantinodal dichotomy in the Hubbard model at weak coupling: A parquet dual fermion approach. Phys. Rev. B, 102(23), 235133. https://doi.org/10.1103/PhysRevB.102.235133
  • Kutyniok, G., Petersen, P., Raslan, M., & Schneider, R. (2019). A theoretical analysis of deep neural networks and parametric PDEs. arXiv preprint arXiv:1904.00377.
  • Li, Y., Lu, J., & Mao, A. (2020). Variational training of neural network approximations of solution maps for physical models. Journal of Computational Physics, 409, 109338. https://doi.org/10.1016/j.jcp.2020.109338
  • Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020a). Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895.
  • Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020b). Neural operator: Graph kernel network for partial differential equations. arXiv preprint arXiv:2003.03485.
  • MI. (2021). Yaremenko calderon-zygmund operators and singular integrals. Applied Mathematics & Information Sciences, 15 (1). Article 13.
  • Nokkala, J., Martínez-Peña, R., Giorgi, G. L., Parigi, V., Soriano, M. C., & Zambrini, R. (2021). Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing, Commun. Physics, 4, 53.
  • O’Leary-Roseberry, T., Villa, U., Chen, P., & Ghattas, O., Derivative-informed projected neural networks for high-dimensional parametric maps governed by PDEs, arXiv preprint arXiv:2011.15110, (2020).
  • Qin, M., Schafer, T., Andergassen, S., Corboz, P., & Gull, E. (2021). The Hubbard model: A computational perspective.
  • Rohringer, G., Hafermann, H., Toschi, A., Katanin, A. A., Antipov, A. E., Katsnelson, M. I., Lichtenstein, A. I., Rubtsov, A. N., & Held, K. (2018). Diagrammatic routes to nonlocal correlations beyond dynamical mean-field theory. Rev. Mod. Phys, 90(2), 025003. https://doi.org/10.1103/RevModPhys.90.025003
  • Schafer, T., & Toschi, A. (2021). How to read between the lines of electronic spectra: The diagnostics of fluctuations in strongly correlated electron systems. Journal of Physics: Condensed Matter.
  • Shi, T., Demler, E., & Cirac, J. I. (2017). Variational study of fermionic and bosonic systems with non-Gaussian states: Theory and applications. Annals of Physics.
  • Srinivas, M. D., & Wolf, E. (1975). Some nonclassical features of phase-space representations of quantum mechanics. Phys. Rev. D, 11(6), 1477–1485. https://doi.org/10.1103/PhysRevD.11.1477
  • Stevens, B., & Colonius, T. (2020). Finitenet: A fully convolutional l-st network architecture for time-dependent partial differential equations. arXiv preprint arXiv:2002.03014.
  • Vilardi, D., Bonetti, P. M., & Metzner, W. (2020). Dynamical functional renormalization group computation of order parameters and critical temperatures in the two-dimensional hubbard model. Phys. Rev. B, 102(24), 245128. https://doi.org/10.1103/PhysRevB.102.245128
  • Walschaers, M., Treps, N., Sundar, B., Carr, L. D., & Parigi, V. (2021). Emergent complex quantum networks in continuous-variables non-Gaussian states. arXiv:2012. 15608 [quant-ph].
  • Wentzell, N., Li, G., Tagliavini, A., Taranto, C., Rohringer, G., Held, K., Toschi, A., & Andergassen, S. (2020). High-frequency asymptotics of the vertex function: diagrammatic parametrization and algorithmic implementation. Phys. Rev. B, 102(8), 085106. https://doi.org/10.1103/PhysRevB.102.085106