494
Views
0
CrossRef citations to date
0
Altmetric
APPLIED & INTERDISCIPLINARY MATHEMATICS

Algorithms based on a 3-derivative method for singular differential equations including equations with blow-up solutions

, & ORCID Icon | (Reviewing editor:)
Article: 2121361 | Received 16 May 2022, Accepted 01 Sep 2022, Published online: 29 Sep 2022

References

  • Bender, C. M., Milton, K. A., Pinsky, S. S., & Simmons, L. M. (1989). A new perturbative approach to nonlinear problems. Journal of Mathematical Physics, 30(7), 1447–11. https://doi.org/10.1063/1.528326
  • Budd, C. J., Collins, G. J., & Galaktionov, V. A. (1998). An asymptotic and numerical description of self-similar blow-up in quasilinear parabolic equations. Journal of Computational and Applied Mathematics, 97(1–2), 51–80. https://doi.org/10.1016/S0377-0427(98)00102-2
  • Cash, J. R. (1981). Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM Journal on Numerical Analysis, 18(1), 21–36. https://doi.org/10.1137/0718003
  • Cho, C. (2013). On the computation of the numerical blow-up time. Japan Journal of Industrial and Applied Mathematics, 30(2), 331–349. https://doi.org/10.1007/s13160-013-0101-9
  • Desaix, M., Anderson, D., & Lisak, M. (2004). Variational approach to the Thomas-Fermi equation. European Journal of Physics, 25(6), 699–705. https://doi.org/10.1088/0143-0807/25/6/001
  • Fatunla, S. O. (1991). Block methods for second order IVPs. International Journal of Computer Mathematics, 41(1–2), 55–63. https://doi.org/10.1080/00207169108804026
  • Groisman, P. (2006). Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions. Computing, 76(3–4), 325–352. https://doi.org/10.1007/s00607-005-0136-0
  • Guo, L., & Yang, Y. (2015). Positivity preserving high-order local discontinuous Galerkin method for parabolic equations with blow-up solutions. Journal of Computational Physics, 289, 181–195. https://doi.org/10.1016/j.jcp.2015.02.041
  • Henrici, P. (1962). Discrete variable methods for ODEs. John Wiley.
  • Hirota, C., & Ozawa, K. (2006). Numerical method of estimating the blow-up time and rate of the solution of ordinary differential equations-An application to the blow-up problems of partial differential equations. Journal of Computational and Applied Mathematics, 193(2), 614–637. https://doi.org/10.1016/j.cam.2005.04.069
  • Jator, S. N. (2012). A continuous two-step method of order 8 with a block extension for y″=f(x. Applied Mathematics and Computation, 219(3), 781–791. https://doi.org/10.1016/j.amc.2012.06.027
  • Jator, S. N., Coleman, N., & Katzourakis, N. (2017). A nonlinear second derivative method with a variable step-size based on continued fractions for singular initial value problems. Cogent Mathematics, 4(1), 1335498. https://doi.org/10.1080/23311835.2017.1335498
  • Jator, S. N., & Oladejo, H. B. (2017). Block Nyström method for singular differential equations of the Lane-Emden type and problems with highly oscillatory solutions. International Journal of Applied and Computational Mathematics, 3(Suppl S1), 1385–1402. https://doi.org/10.1007/s40819-017-0425-2
  • Jator, S. N., Swindle, S., & French, R. (2013). Trigonometrically fitted block Numerov type method for y″=f(x. y,y′), Numerical Algorithms, 62(1), 13–26. https://doi.org/10.1007/s11075-012-9562-1
  • Kaur, H., Mittal, R. C., & Mishra, V. (2013). Haar wavelet approximation solutions for the generalized Lane-Emden equations arising from astrophysics. Computer Physics Communications, 184(9), 2169–2177. https://doi.org/10.1016/j.cpc.2013.04.013
  • Koch, O., Kofler, P., & Weinmüller, E. B. (2000). The implicit Euler method for the numerical solution of singular initial value problems. Applied Numerical Mathematics, 34(2–3), 231–252. https://doi.org/10.1016/S0168-9274(99)00130-0
  • Kumar, M., & Singh, N. (2010). Modified adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems. Computers and Chemical Engineering, 34(11), 1750–1760. https://doi.org/10.1016/j.compchemeng.2010.02.035
  • Liao, S. (2003). A new analytic algorithm of Lane-Emden type equation. Applied Mathematics and Computation, 142 (1) , 1–16 https://doi.org/10.1016/S0096-3003(02)00943-8.
  • Li, B., & Zhang, Z. (2015). A new approach for numerical simulation of the time-dependent Ginzburg-Landau equations. Journal of Computational Physics, 303, 238–250. https://doi.org/10.1016/j.jcp.2015.09.049
  • MacLaurin, J., Chapman, J., Jones, G. W., & Roose, T. (2012). The buckling of capillaries in solid tumours. Proc. R. Soc. A, 468(2148), 4123–4145. https://doi.org/10.1098/rspa.2012.0418
  • Ngwane, F. F., & Jator, S. N. (2013). Block hybrid method using trigonometric basis for initial value problems with oscillating solutions. Numerical Algorithms, 63(4), 713–725. https://doi.org/10.1007/s11075-012-9649-8
  • Parand, K., Dehghan, M., Rezaei, A. R., & Ghaderi, S. M. (2010). An approximation algorithm for the solution of nonlinear Lane-Emden type equations arising in astrophysics using hermite function collocation method. Computer Physics Communications, 181(6), 1096–1108. https://doi.org/10.1016/j.cpc.2010.02.018
  • Rashidinia, J., Mohammadi, R., & Jalilian, R. (2007). The numerical solution of non-linear singular boundary value problems arising in physiology. Applied Mathematics and Computation, 185(1), 360–367. https://doi.org/10.1016/j.amc.2006.06.104
  • Russell, R. D., & Shampine, L. F. (1975). Numerical methods for singular boundary value problems. SIAM J. Numer. Anal, 12(1), 13–36. https://doi.org/10.1137/0712002
  • Sahlan, M. N., & Hashemizadeh, E. (2015). Wavelet Galerkin method for solving nonlinear singular boundary value problems arising in physiology. Applied Mathematics and Computation, 250, 260–269. https://doi.org/10.1016/j.amc.2014.10.118
  • Shiralashetti, S. C., Deshi, A. B., & Mutalik Desai, P. B. (2016). Haar wavelet collocation method for the numerical solution of singular initial value problems. Ain Shams Engineering Journal, 7(2), 663–670. https://doi.org/10.1016/j.asej.2015.06.006
  • Sommeijer, B. P. (1993). Explicit high-order Runge-Kutta-Nyström methods for parallel computers. Applied Numerical Mathematics, 13(1–3), 221–240. https://doi.org/10.1016/0168-9274(93)90145-H
  • Takayasu, A., Matsue, K., Sasaki, T., Tanaka, K., Mizuguchi, M., & Oishi, S. (2017). Numerical validation of blow-up solutions of ordinary differential equations. Journal of Computational and Applied Mathematics, 314, 10–29. https://doi.org/10.1016/j.cam.2016.10.013
  • Wazwaz, A. M. (2001a). A new algorithm for solving differential equations of Lane-Emden type. Applied Mathematics and Computation, 118 (2–3) , 287–310 https://doi.org/10.1016/S0096-3003(99)00223-4.
  • Wazwaz, A. M. (2001b). Blow-up for solutions of some linear wave equations with mixed nonlinear boundary conditions. Applied Mathematics and Computation, 123(1), 133–140. https://doi.org/10.1016/S0096-3003(00)00069-2
  • Weinmüller, E. B. (1986). On the numerical solution of singular boundary value problems of second order by a difference method. Mathematics of Computation, 46(173), 93–117. https://doi.org/10.1090/S0025-5718-1986-0815834-X
  • Xie, L., Zhou, C., & Xu, S. (2016). An effective numerical method to solve a class of nonlinear singular boundary value problems using improved differential transform method. SpringerPlus, 5(1), 1066. https://doi.org/10.1186/s40064-016-2753-9