542
Views
1
CrossRef citations to date
0
Altmetric
Pure Mathematics

A novel algorithm for singularly perturbed parabolic differential-difference equations

ORCID Icon & ORCID Icon | (Reviewing editor:)
Article: 2133211 | Received 19 Aug 2022, Accepted 30 Sep 2022, Published online: 04 Dec 2022

References

  • Andre Longtin, J. G. M. (1988). Complex oscillations in the human pupil light reflex with mixed and delayed feedback. Mathematical Biosciences, 90(1–2), 183–16. https://doi.org/10.1016/0025-5564(88)90064-8
  • Bansal, K., & Kapil, K. (2017). Sharma Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments. Numerical Algorithms, 75(1), 113–145. https://doi.org/10.1007/s11075-016-0199-3
  • Bansal, K., & Pratima Rai, K. K. S. (2017). Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments. Differential Equations and Dynamical Systems, 25(2), 327–436. https://doi.org/10.1007/s12591-015-0265-7
  • Culshaw, R. V., & Ruan, S. (2000). A delay-differential equation model of HIV infection of CD4+ T-cells. Mathematical Biosciences, 165(1), 27–39. https://doi.org/10.1016/S0025-5564(00)00006-7
  • Daba, I. (2021a). Takele and Duressa, gemechis file, extended cubic B-spline collocation method for singularly perturbed parabolic differential-difference equation arising in computational neuroscience. International Journal for Numerical Methods in Biomedical Engineering, 37(2), e3418. https://doi.org/10.1002/cnm.3418
  • Daba, I. (2021b). Takele and Duressa, gemechis file,hybrid algorithm for singularly perturbed delay parabolic partial differential equations. Applications and Applied Mathematics: An International Journal (AAM), 16(1), 21. http://pvamu.edu/aam.
  • Daba, I. (2021c). Takele and Duressa, Gemechis file, A hybrid numerical scheme for singularly perturbed parabolic differential-difference equations arising in the modeling of neuronal variability. Computational and Mathematical Methods, 3(5), e1178. https://doi.org/10.1002/cmm4.1178
  • Daba, I. (2021d). Takele and Duressa, Gemechis file, uniformly convergent numerical scheme for a singularly perturbed differential-difference equations arising in computational neuroscience. Journal of Applied Mathematics and Informatics, 39(5–6), 655–676. https://doi.org/10.1002/cmm4.1178
  • Daba, I. (2022a). Takele and Duressa, Gemechis file. Collocation Method Using Artificial Viscosity for Time Dependent Singularly Perturbed differential–difference Equations Mathematics and Computers in Simulation, 192, 201–220,. https://doi.org/10.1002/cmm4.1178
  • Daba, I. (2022b). Takele and Duressa, Gemechis File,A Robust computational method for singularly perturbed delay parabolic convection-diffusion equations arising in the modeling of neuronal variability. Computational Methods for Differential Equations, 10(2), 475–488. https://cmde.tabrizu.ac.ir/article_12797.html
  • Derstine, M. W., Gibbs, H. M., Hopf, F. A., & Kaplan, D. L. (1982). Bifurcation gap in a hybrid optically bistable system. Physical Review A, 26(6), 3720–3722. https://doi.org/10.1103/PhysRevA.26.3720
  • Edward, P. D., John, J. H., & Miller, Willy, H. A. (1980). Schilders, Uniform numerical methods for problems with initial and boundary layers. Boole Press.
  • Glizer, V. Y. (2000). Asymptotic solution of a boundary-value problem for linear singularly-perturbed functional differential equations arising in optimal control theory. Journal of Optimization Theory and Applications, 106(2), 309–335. https://doi.org/10.1023/A:1004651430364
  • Glizer, V. Y. (2003). Blockwise estimate of the fundamental matrix of linear singularly perturbed differential systems with small delay and its application to uniform asymptotic solution. Journal of Mathematical Analysis and Applications, 278(2), 409–433. https://doi.org/10.1016/S0022-247X(02)00715-1
  • John Mallet-Paret, R. D. (1989). Nussbaum. A differential-delay Equation Arising in Optics and Physiology, SIAM Journal on Mathematical Analysis, 20(2), 249–292. https://doi.org/10.1137/0520019
  • John Wilbur, W., & Rinzel, J. (1982). An analysis of Stein’s model for stochastic neuronal excitation. Biological Cybernetics, 45(2), 107–114. https://doi.org/10.1007/BF00335237
  • Khan, A., Khan, I., & Tariq Aziz, M. (2004). Stojanovic. A variable-mesh Approximation Method for Singularly Perturbed boundary-value Problems Using Cubic Spline in Tension, International Journal of Computer Mathematics, 81(12), 1513–1518. https://doi.org/10.1080/00207160412331284169
  • Kostikov, Y. A., & Romanenkov, A. M. (2020). Approximation of the multidimensional optimal control problem for the heat equation (applicable to computational fluid dynamics (CFD)). Civil Engineering Journal, 6(4), 743–768. https://doi.org/10.28991/cej-2020-03091506
  • Kot, M. (2001). Elements of mathematical ecology. Cambridge University Press.
  • Kuang, Y. (1993). Delay differential equations: With applications in population dynamics. cademic press.
  • Kumar, D. (2018). An implicit scheme for singularly perturbed parabolic problem with retarded terms arising in computational neuroscience. Numerical Methods for Partial Differential Equations, 34(6), 1933–1952. https://doi.org/10.1002/num.22269
  • Kumar, M., & Gupta, Y. (2010). Methods for solving singular boundary value problems using splines: A review. Journal of Applied Mathematics and Computing, 32(1), 265–278. https://doi.org/10.1007/s12190-009-0249-2
  • Ladyzhenskaia, O. A., Solonnikov, V. A., & Nina, N. (1968). Ural’tseva, Linear and quasi-linear equations of parabolic type, 23. American Mathematical Soc.
  • Lánskỳ, P. (1984). On approximations of Stein’s neuronal model. Journal of Theoretical Biology, 107(4), 631–647. https://doi.org/10.1016/S0022-5193(84)80136-8
  • Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197(4300), 287–289. https://doi.org/10.1126/science.267326
  • Mayer, H., Zaenker, K. S., & An Der Heiden, U. (1995). A basic mathematical model of the immune response, Chaos: An interdisciplinary. Journal of Nonlinear Science, 5(1), 155–161. https://aip.scitation.org/doi/abs/10.1063/1.166098
  • MihajloviC, G., & Zivkovic, M. (2020). Sieving extremely wet earth mass by means of oscillatory transporting platform. Emerging Science Journal, 4(3), 172–182. https://doi.org/10.28991/esj-2020-01221
  • Murray, J. D. (2007). Mathematical biology: I. An Introduction, 17. https://link.springer.com/content/pdf/10.1007/b98868.pdf%20http://www.ulb.tu-darmstadt.de/tocs/127987207.pdf
  • Musila, M., & Lánskỳ, P. (1991). Generalized Stein’s model for anatomically complex neurons. BioSystems, 25(3), 179–191. https://doi.org/10.1016/0303-2647(91)90004-5
  • Nageshwar Rao, R., & Pramod Chakravarthy, P. (2019). Fitted numerical methods for singularly perturbed one-dimensional parabolic partial differential equations with small shifts arising in the modelling of neuronal variability. Differential Equations and Dynamical Systems, 27(1–3), 1–18. https://doi.org/10.1007/s12591-017-0363-9
  • Nelson, P. W., & Perelson, A. S. (2002). Mathematical analysis of delay differential equation models of HIV-1 infection. Mathematical Biosciences, 179(1), 73–94. https://doi.org/10.1016/S0025-5564(02)00099-8
  • Nichols, N. K. (1989). On the numerical integration of a class of singular perturbation problems. Journal of Optimization Theory and Applications, 60(3), 439–452. https://doi.org/10.1007/BF00940347
  • O’Malley, R. E. (1991). Singular perturbation methods for ordinary differential equations. New York: Springer.
  • Pramod Chakravarthy, P., Dinesh Kumar, S., & Nageshwar Rao, R. (2017). Numerical solution of second order singularly perturbed delay differential equations via cubic spline in tension. International Journal of Applied and Computational Mathematics, 3(3), 1703–1717. https://doi.org/10.1007/s40819-016-0204-5
  • Ramesh, V. P., & Priyanga, B. (2019). Higher order uniformly convergent numerical algorithm for time-dependent singularly perturbed differential-difference equations, (pp. 1–25). Differential Equations and Dynamical Systems.
  • Ravi Kanth, A. S. V., Murali, P., & Mohan, K. (2017). A numerical approach for solving singularly perturbed convection delay problems via exponentially fitted spline method. Calcolo, 54(3), 943–961. https://doi.org/10.1007/s10092-017-0215–6
  • Stein, R. B. (1967). Some models of neuronal variability. Biophysical Journal,7(1), 7(1), 37–68. https://doi.org/10.1016/S0006-3495(67)86574-3
  • Tene, T., Guevara, M., Svozil, J., Tene-Fernandez, R., & Gomez, C. V. (2021). Analysis of covid-19 outbreak in Ecuador using the logistic model. Emerging Science Journal, 5, 105–118. https://doi.org/10.28991/esj-2021-SPER-09
  • Vikas Gupta, M. K., & Kadalbajoo, R. K. (2019). Dubey. A parameter-uniform Higher Order Finite Difference Scheme for Singularly Perturbed time-dependent Parabolic Problem with Two Small Parameters, International Journal of Computer Mathematics, 96(3), 474–499. https://doi.org/10.1080/00207160.2018.1432856
  • Wazewska-Czyzewska, M., & Lasota, A. (9176). Mathematical models of the red cell system. Matematyta Stosowana, 6(1), 25–40.
  • Woldaregay, M. M., & Duressa, G. F. (2019). Parameter uniform numerical method for singularly perturbed parabolic differential difference equations. Journal of the Nigerian Mathematical Society, 38(2), 223–245. https://ojs.ictp.it/jnms/index.php/jnms/article/view/474
  • Woldaregay, M. M., & Duressa, G. F. (2020). Uniformly convergent numerical scheme for singularly perturbed parabolic delay differential equations. ITM Web of Conferences, 34, 02011. https://doi.org/10.1051/itmconf/20203402011
  • Woldaregay, M. M., & Duressa, G. F. (2022). Uniformly convergent numerical method for singularly perturbed delay parabolic differential equations arising in computational neuroscience. Kragujevac Journal of mathematics, 46(1), 65–84.