1,972
Views
0
CrossRef citations to date
0
Altmetric
Applied & Interdisciplinary Mathematics

Weak convergence of balanced stochastic Runge–Kutta methods for stochastic differential equations

, ORCID Icon & | (Reviewing editor:)
Article: 2163546 | Received 04 Jul 2022, Accepted 23 Dec 2022, Published online: 14 Jan 2023

References

  • Abdulle, A., Vilmart, G., & Zygalakis, K. C. (2013). Mean-square A-stable diagonally drift-implicit integrators of weak second order for stiff Itô stochastic differential equations. BIT, Vol. 53(4), 827–6. http://dx.doi.org/10.1007/s10543-013-0430-8
  • Alcock, J., & Burrage, K. (2006). A note on the balanced method. BIT Numerical Mathematics, 46(4), 689–710. https://doi.org/10.1007/s10543-006-0098-4
  • Amiri, S., & Hosseini, S. M. (2015). A class of balanced stochastic Runge-Kutta methods for stiff SDE systems. Numerical Algorithms, 69(3), 531–552. https://doi.org/10.1007/s11075-014-9911-3
  • Buckwar, E., Rößler, A., & Winkler, R. (2010). Stochastic Runge-Kutta methods for Itô SODEs with small noise. SIAM J. Sci. Comput, 32(4), 1789–1808. https://doi.org/10.1137/090763275
  • Burrage, K., & Burrage, P. M. (1996). High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations. Applied Numerical Mathematics 22: 81–101. Special issue celebrating the centenary of Runge-Kutta methods https://doi.org/10.1016/S0168-9274-96-00027-X 1–3.
  • Debrabant, K., & Kværnø, A. (2008/09). B-series analysis of stochastic Runge-Kutta methods that use an iterative scheme to compute their internal stage values. SIAM J. Numer. Anal, Vol. 47(1), 181–203. https://doi.org/10.1137/070704307
  • Debrabant, K., & Rößler, A. (2008). Continuous weak approximation for stochastic differential equations. Journal of Applied Mathematics, Vol. 214(1), 259–273. https://doi.org/10.1016/j.cam.2007.02.040
  • Debrabant, K., & Rößler, A. (2009). Families of efficient second order Runge-Kutta methods for the weak approximation of Itô stochastic differential equations. Applied Numerical Mathematics, 59(3–4), 582–594. https://doi.org/10.1016/j.apnum.2008.03.012
  • Higham, D. J. (2000). Mean-square and asymptotic stability of the stochastic theta method. SIAM Journal on Numerical Analysis, 38(3), 753–769 (electronic). https://doi.org/10.1137/S003614299834736X
  • Kahl, C., & Schurz, H. (2006). Balanced Milstein methods for ordinary SDEs. Monte Carlo Methods and Applications, 12(2), 143–170. https://doi.org/10.1163/156939606777488842
  • Kloeden, P. E., & Platen, E. (1999). Numerical solution of stochastic differential equations. In Applications of Mathematics (2 edn), 21 Springer-Verlag. https://doi.org/10.1007/978-3-662-12616-5
  • Mao, X. (2008). Stochastic differential equations and applications (second edn). Horwood Publishing Limited. https://doi.org/10.1533/9780857099402
  • Mardones, H., & Mora, C. (2019). First-order weak balanced schemes for stochastic differential equations. In Methodol. Comput. Appl. Probab. https://doi.org/10.1007/s11009-019-09733-5
  • Milstein, G. N. (1985). Weak approximation of solutions of systems of stochastic differential equations. Theory of Probability & Its Applications, 30(4), 750–766. https://doi.org/10.1137/1130095
  • Milstein, G. N. (1995). Numerical integration of stochastic differential equations. In Mathematics and its Applications. Vol. 313. Kluwer Academic Publishers Group:. Translated and revised from the 1988 Russian original. https://doi.org/10.1007/978-94-015-8455-5
  • Milstein, G. N., Platen, E., & Schurz, H. (1998). Balanced implicit methods for stiff stochastic systems. SIAM Journal on Numerical Analysis, 35(3), 1010–1019 (electronic). https://doi.org/10.1137/S0036142994273525
  • Milstein, G. N., & Tretyakov, M. V. (2004). Stochastic numerics for mathematical physics. Scientific Computation. Springer. ixx. https://doi.org/10.1007/978-3-662-10063-9
  • Rathinasamy, A., Ahmadian, D., & Nair, P. (2020). Second-order balanced stochastic Runge-Kutta methods with multi-dimensional studies. J. Comput. Appl. Math, Vol. 377(112890), 23. https://doi.org/10.1016/j.cam.2020.112890
  • Rathinasamy, A., & Nair, P. (2018). Asymptotic mean-square stability of weak second-order balanced stochastic Runge-Kutta methods for multi-dimensional Itô stochastic differential systems. Applied Mathematics and Computing, 332, 276–303. https://doi.org/10.1016/j.amc.2018.03.065
  • Rößler, A. (2006). Rooted tree analysis for order conditions of stochastic Runge–Kutta methods for the weak approximation of stochastic differential equations. Stochastic Analysis and Applications, 24(1), 97–134. https://doi.org/10.1080/07362990500397699
  • Rößler, A. (2009). Second order Runge–Kutta methods for Itô stochastic differential equations. SIAM J. Numer. Anal, Vol. 47(3), 1713–1738 (electronic). https://doi.org/10.1137/060673308
  • Schurz, H. (2005). Convergence and stability of balanced implicit methods for systems of SDEs. International Journal of Numerical Analysis & Modeling, 2(2), 197–220.
  • Tang, X., & Xiao, A. (2017). Efficient weak second-order stochastic Runge-Kutta methods for Itô stochastic differential equations. BIT Numerical Mathematics, 57(1), 241–260. https://doi.org/10.1007/s10543-016-0618-9
  • Tang, X., & Xiao, A. (2018). Efficient stochastic Runge-Kutta methods for stochastic differential equations with small noises. Advances in Applied Mathematics and Mechanics, 10(4), 845–878. https://doi.org/10.4208/aamm.oa-2017-0181
  • Tang, X., & Xiao, A. (2019). New explicit stabilized stochastic Runge-Kutta methods with weak second order for stiff Itô stochastic differential equations. Numerical Algorithms, 82(2), 593–604. https://doi.org/10.1007/s11075-018-0615-y
  • Tocino, Á., & Vigo-Aguiar, J. (2002). Weak second order conditions for stochastic Runge–Kutta methods. SIAM Journal of Scientific Computing, Vol. 24(2), 507–523 (electronic). https://doi.org/10.1137/S1064827501387814