441
Views
1
CrossRef citations to date
0
Altmetric
Applied & Interdisciplinary Mathematics

Analysis of thermal and surface roughness effects of slider bearing in the case of turbulent lubricant flow using finite element method

ORCID Icon, & | (Reviewing editor:)
Article: 2250492 | Received 10 Mar 2023, Accepted 17 Aug 2023, Published online: 30 Aug 2023

References

  • Adamu, G., & Sinha, P. (2012). Thermal and roughness effects in a tilted pad slider bearing considering heat conduction through the pad and slider. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 82(4), 323–333. https://doi.org/10.1007/s40010-012-0046-4
  • Belhocine, A., & Abdullah, O. I. (2019). Numerical simulation of thermally developing turbulent flow through a cylindrical tube. The International Journal of Advanced Manufacturing Technology, 102(5–8), 2001–2012. https://doi.org/10.1007/s00170-019-03315-y
  • Belhocine, A., & Afzal, A. (2022). Computational finite element analysis of brake disc rotors employing different materials. Australian Journal of Mechanical Engineering, 20(3), 637–650. https://doi.org/10.1080/14484846.2020.1733175
  • Belhocine, A., & Omar, W. Z. W. (2017). Three-dimensional finite element modeling and analysis of the mechanical behavior of dry contact slipping between the disc and the brake pads. The International Journal of Advanced Manufacturing Technology, 88(1–4), 1035–1051. https://doi.org/10.1007/s00170-016-8822-y
  • Belhocine, A., & Omar, W. Z. W. (2021). Analytical solution and numerical simulation of the generalized Levèque equation to predict the thermal boundary layer. Mathematics and Computers in Simulation, 180, 43–60. https://doi.org/10.1016/j.matcom.2020.08.007
  • Belhocine, A., Stojanovic, N., & Abdullah, O. I. (2021). Numerical simulation of laminar boundary layer flow over a horizontal flat plate in external incompressible viscous fluid. European Journal of Computational Mechanics, 337–386. https://doi.org/10.13052/ejcm2642-2085.30463
  • Belhocine, A., Stojanovic, N., & Abdullah, O. I. (2022). Numerical predictions of laminar flow and free convection heat transfer from an isothermal vertical flat plate. Archive of Mechanical Engineering, 69(4), 749–77. https://doi.org/10.24425/ame.2022.141523
  • Black, H. (1970). Empirical treatment of hydrodynamic journal bearing performance in the superlaminar regime. Journal of Mechanical Engineering Science, 12(2), 116–122. https://doi.org/10.1243/JMES_JOUR_1970_012_019_02
  • Brooks, A. N., & Hughes, T. J. (1982). Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32(1–3), 199–259. https://doi.org/10.1016/0045-7825(82)90071-8
  • Burton, R. (1974). Approximations in turbulent film analysis. Journal of Lubrication Technology, 96(1), 103–109. https://doi.org/10.1115/1.3451878
  • Christensen, H. (1969). Stochastic models for hydrodynamic lubrication of rough surfaces. Proceedings of the Institution of Mechanical Engineers, 184(1), 1013–1026. https://doi.org/10.1243/PIME_PROC_1969_184_074_02
  • Christensen, H., & Tonder, K. (1971). The hydrodynamic lubrication of rough bearing surfaces of finite width. Journal of Lubrication Technology, 93(3), 324–329. https://doi.org/10.1115/1.3451579
  • Constantinescu, V. (1959). On turbulent lubrication. Proceedings of the Institution of Mechanical Engineers, 173(1), 881–900. https://doi.org/10.1243/PIME_PROC_1959_173_068_02
  • Desu Tessema, G., Adamu Derese, G., Andargie Tiruneh, A., & Chen, X. (2022). Thermal and surface roughness effects on performance analysis of slider bearing via Petrov–Galerkin finite element method. Mathematical Problems in Engineering, 2022, 1–18. https://doi.org/10.1155/2022/4216136
  • Ding, A., Dong Ren, X., Song Li, X., & Wei Gu, C. (2018). Numerical investigation of turbulence models for a superlaminar journal bearing. Advances in Tribology, 2018, 1–14. https://doi.org/10.1155/2018/2841303
  • Elrod, H., Jr., & Ng, C. (1967). A theory for turbulent fluid films and its application to bearings. Journal of Lubrication Technology, 89(3), 346–362. https://doi.org/10.1115/1.3616989
  • Guha, S. (2000). Analysis of steady-state characteristics of misaligned hydrodynamic journal bearings with isotropic roughness effect. Tribology International, 33(1), 1–12. https://doi.org/10.1016/S0301-679X(00)00005-0
  • Gururajan, K., & Prakash, J. (1999). Surface roughness effects in infinitely long porous journal bearings. Journal of Tribology, 121(1), 139–147. https://doi.org/10.1115/1.2833795
  • Hashimoto, H., & Wada, S. (1989). Theoretical approach to turbulent lubrication problems including surface roughness effects. Journal of Tribology, 111(1), 17–22. https://doi.org/10.1115/1.3261870
  • Hirs, G. G. (1973). A bulk-flow theory for turbulence in lubricant films. Journal of Lubrication Technology, 95(2), 137–145. https://doi.org/10.1115/1.3451752
  • Hooke, C. (1999). Fluid film lubrication: Theory and design (p. 414). 0521 48100 7. Cambridge University Press.
  • Ho, M.-K., & Vohr, J. (1974). Application of energy model of turbulence to calculation of lubricant flows. Journal of Lubrication Technology, 96(1), 95–102. https://doi.org/10.1115/1.3451920
  • King, K., & Taylor, C. (1977). An estimation of the effect of fluid inertia on the performance of the plane inclined slider thrust bearing with particular regard to turbulent lubrication. Journal of Lubrication Technology, 99(1), 129–135. https://doi.org/10.1115/1.3452961
  • Kumar, B. R. (2001). A segregated supg/fem for thdl analysis in high speed slider bearings with injection effect. Journal of Tribology, 123(4), 732–741. https://doi.org/10.1115/1.1339980
  • Lahmar, M., Bou-Saïd, B., & Tichy, J. (2013). The homogenization method of roughness analysis in turbulent lubrication. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(10), 1090–1100. https://doi.org/10.1177/1350650113479844
  • Lin, J.-R. (2000). Surface roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings. International Journal of Machine Tools and Manufacture, 40(11), 1671–1689. https://doi.org/10.1016/S0890-6955(00)00012-2
  • NB, N., & Angadi, A. (2022). On the dynamic characteristics of rough porous inclined slider bearing lubricated with micropolar fluid. Tribology Online, 17(1), 59–70. https://doi.org/10.2474/trol.17.59
  • Ng, C.-W., & Pan, C. (1965). A linearized turbulent lubrication theory. Journal of Basic Engineering, 87(3), 675–682. https://doi.org/10.1115/1.3650640
  • Pinkus, O., & Sternlicht, B. (1961). Theory of hydrodynamic lubrification. plus 0.5em minus 0.4em McGraw-Hill.
  • Rathish Kumar, B., & Srinivasa Rao, P. (2000). Streamline upwind Petrov–Galerkin finite element analysis of thermal effects on load carrying capacity in slider bearings. Numerical Heat Transfer Part A-Applications, 38(3), 305–328. https://doi.org/10.1080/10407780050136549
  • Schumack, M. (1996). Application of the pseudospectral method to thermohydrodynamic lubrication. International Journal for Numerical Methods in Fluids, 23(11), 1145–1161. https://doi.org/10.1002/(SICI)1097-0363(19961215)23:11<1145:AID-FLD459>3.0.CO;2-V
  • Singh, D., Singh, N., & Awasthi, R. (2018). Effect of surface texture parameters on the performance of finite slider bearing. Materials Today: Proceedings, 5(9), 19349–19358. https://doi.org/10.1016/j.matpr.2018.06.294
  • Sinha, P., & Adamu, G. (2009). Thd analysis for slider bearing with roughness: Special reference to load generation in parallel sliders. Acta Mechanica, 207(1–2), 11–27. https://doi.org/10.1007/s00707-008-0094-7
  • Taylor, C. M. (1969). Paper 6: Turbulent lubrication theory applied to fluid film bearing design.
  • Taylor, C., & Dowson, D. (1974). Turbulent lubrication theory-application to design.
  • Wang, Y., Shan Liu, M., Qin, D., & Yan, Z. (2020). Performance of high-speed hydrodynamic sliding bearings with lubricating oils combining laminar and turbulent flows. Advances in Mechanical Engineering, 12(6), 168781402093338. https://doi.org/10.1177/1687814020933389
  • Zhang, Z.-M., Wang, X.-J., & Sun, M.-L. (2003). Turbulence models of hydrodynamic lubrication. Journal of Shanghai University (English Edition), 7(4), 305–314. https://doi.org/10.1007/s11741-003-0001-3
  • Zhu, S., Sun, J., Li, B., Zhao, X., Wang, H., Teng, Q., Ren, Y., & Zhu, G. (2019). Stochastic models for turbulent lubrication of bearing with rough surfaces. Tribology International, 136, 224–233. https://doi.org/10.1016/j.triboint.2019.03.063
  • Zienkiewicz, O. (1957). Temperature distribution within lubricating films between parallel bearing surfaces and its effect on the pressures developed. Proceedings the Conference on Lubrication and Wear, 135. https://cir.nii.ac.jp/crid/1572543024553290624