356
Views
0
CrossRef citations to date
0
Altmetric
Applied & Interdisciplinary Mathematics

Uniform persistence and backward bifurcation of vertically transmitted vector-borne diseases

ORCID Icon | (Reviewing editor:) & (Reviewing editor:)
Article: 2264581 | Received 07 Jul 2022, Accepted 26 Sep 2023, Published online: 18 Oct 2023

References

  • Adams, B., & Boots, M. (2010). How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics, 2(1), 1–10. https://doi.org/10.1016/j.epidem.2010.01.001
  • Allen, L. (2007). An introduction to mathematical biology. Pearson Prentice Hall.
  • Anderson, B., Jackson, J., & Sitharam, M. (1998). Descarte’s rule of signs revisited. The American Mathematical Monthly, 105(5), 447–451. https://doi.org/10.1080/00029890.1998.12004907
  • Blayneh, K. W. (2017). Vertically transmitted vector-borne diseases and the effects of extreme temperature. International Journal of Apllied Mathematics, 30(2), 177–209. https://doi.org/10.12732/ijam.v30i2.8
  • Blayneh, K., Cao, Y., & Kwon, H.-D. (2009). Optimal control of vector-borne diseases: Treatment and prevention. Discrete and Continuous Dynamical Systems Series B, 11(3), 587–611. https://doi.org/10.3934/dcdsb.2009.11.587
  • Blayneh, K. W., Gumel, A. B., Lenhart, S., & Clayton, T. (2010). Backward bifurcation and optimal control in transmission dynamics of West Nile virus. Bulletin of Mathematical Biology, 72(4), 1006–1028. https://doi.org/10.1007/s11538-009-9480-0
  • Centers for Disease Control and Prevention. http://www.cdc.gov/dengue
  • Centers for Disease Control and Prevention: Malaria. http://www.cdc.gov/Malaria/faq.htm2
  • Chan, M., Johansson, M. A., & Vasilakis, N. (2012). The incubation periods of dengue viruses. PLoS ONE, 7(11), e50972. https://doi.org/10.1371/journal.pone.0050972
  • Chitnis, N., Cushing, J. M., & Hyman, J. M. (2006). Bifurcation analysis of a mathematical model for malaria transmission. SIAM Journal on Applied Mathematics, 67(1), 24–45. https://doi.org/10.1137/050638941
  • Chitnis, N., Hyman, J. M., & Manore, C. A. (2013). Modelling vertical transmission in vector-borne diseases with application to Rift Valley fever. Journal of Biological Dynamics, 7(1), 11–40. https://doi.org/10.1080/17513758.2012.733427
  • Cruz-Pacheco, G., Esteva, L., & Vargas, C. (2009). Seasonality and outbreaks in West Nile varus infection. Bulletin of Mathematical Biology, 71(6), 1378–1393. https://doi.org/10.1007/s11538-009-9406-x
  • Cushing, J. M. (1998). An introduction to structured population dynamics. SIAM.
  • Dushoff, J., Wenzhang, H., & Castillo-Chavez, C. (1998). Backwards bifurcations and catastrophe in simple models of fatal diseases. Journal of Mathematical Biology, 36(3), 227–248. https://doi.org/10.1007/s002850050099
  • Feng, Z., & Velasco-Hernández, J. X. (1997). Competitive exclusion in a vector-host model for the dengue fever. Journal of Mathematical Biology, 35(5), 523–544. https://doi.org/10.1007/s002850050064
  • Francisco, P. M. (2007). Factors affecting the emergence and prevalence of vector borne infections and the role of vertical transmission. Journal of Vector Borne Diseases, 44, 157–163.
  • Gaff, H. D., Hartley, D. M., & Leahy, N. P. (2007). An epidemiological model of Rift Valley fever. Electronic Journal of Differential Equations, 2007(115), 1–12.
  • Gordillo, L. F. (2013). Reducing mosquito-borne disease outbreak size: The relative importance of contact and tranmissibility in a network model. Applied Mathematical Modeling, 37(18–19), 8610–8616. https://doi.org/10.1016/j.apm.2013.03.056
  • Gourley, S. A., Röst, G., & Thieme, H. R. (2014). Uniform persistence in a model for bluetongue dynamics. SIAM Journal on Mathematical Analysis, 46(2), 1160–1184. https://doi.org/10.1137/120878197
  • Hall, J. K. (1969). Ordinary differential equations. Wiley-Interscience.
  • Hubálek, Z., & Halouzka, J. (1999). West Nile fever. A reemerging mosquito-borne viral disease in Europe. Emerging Infectious Diseases, 5(5), 643–650. https://doi.org/10.3201/eid0505.990505
  • Joseph, W., So, H., & Freedman, H. I. (1986). Persistence and global stability in a predator-prey model consisting of three prey genotypes with fertility differences. Bulletin of Mathematical Biology, 48(5), 469–484. https://doi.org/10.1016/S0092-8240(86)90002-9
  • Pu, L., Lin, Z., & Lou, Y. (2023). A West Nile virus nonlocal model with free boundaries and seasonal succession. Journal of Mathematical Biology, 86(2), 25. https://doi.org/10.1007/s00285-022-01860-x
  • Rabinowitz, P. H. (1971). Some global results for nolinear eigenvalue problems. Journal of Functional Analysis, 7(3), 487–513. https://doi.org/10.1016/0022-1236(71)90030-9
  • Robelo, C., Margheri, A., & Bacaër, N. (2014). Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete and Continuous Dynamical Systems-Series B(DCDS-B), 19(4), 1155–1170. https://doi.org/10.3934/dcdsb.2014.19.1155
  • Salako, R. B. (2023). The impact of population size and movement on the persistence of a two-strain infectious disease. Journal of Mathematical Biology, 86(1), 5. https://doi.org/10.007/s00285-022-01842-z
  • Stakgold, I. (1979). Green’s functions and boundary value problems. Wiley-Interscience.
  • Thieme, H. R. (1993). Persistence under relaxed point-dissipativity (with applications to an epidemic model). SIAM Journal on Mathematical Analysis, 24(2), 407–435. https://doi.org/10.1137/0524026
  • Thieme, H. R. (2001). Disease extinction and disease persistence in age structured epidemic models, H.R. Thieme, nonlinear analysis, theory. Methods & Applications, 47(9), 6181–6194. https://doi.org/10.1016/S0362-546X(01)00677-0
  • Thieme, H. R. (2004). Mathematics in population biology, Princeton series in theoretical and computational Biology. Princeton.
  • van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6
  • van den Driessche, P., & Yakubu, A.-A. (2019). Disease extinction versus persistence in discrete-time epidemic models. Bulletin of Mathematical Biology, 81(11), 4412–4446. https://doi.org/10.1007/s11538-018-0426-2
  • Wang, X., Chen, Y., & Martcheva, M. (2020). Asymptotic analysis of a vector-borne disease model with the age of infection. Journal of Biological Dynamics, 14(1), 332–367. https://doi.org/10.1080/17513758.2020.1745912
  • WHO. https://who.int/news-room/fact-sheets/detail/dengue-and-sever-dengue.
  • Zheng, B. (2022). Impact of releasing period and magnitude on mosquito population in a sterile release model with delay. Journal of Mathematical Biology, 85(2), 18. https://doi.org/10.1007/s00285-022-01785-5
  • Zhu, Z., Hui, Y., & Hu, L. (2023). The impact of predators of mosquito larvae on wolbachia spreading dynamics. Journal of Biological Dynamics, 17(1), 1. https://doi.org/10.1080/17513758.2023.2249024