791
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of dielectric-loaded waveguide filters as an inverse problem

ORCID Icon & ORCID Icon
Pages 376-396 | Received 24 Sep 2020, Accepted 18 May 2022, Published online: 01 Jun 2022

References

  • Cameron RJ, Kudsia CM, Mansour RR. Microwave filters for communication systems, John Wiley and Sons, Inc.; 2018.
  • Bui LQ, Ball D, Itoh T. Broad-band millimeter-wave e-plane bandpass filters (short papers). IEEE Trans Microw Theory Tech. 1984;32:1655–1658.
  • Vahldieck R. Quasi-planar filters for millimeter-wave applications. IEEE Trans Microw Theory Tech. 1989;37:324–334.
  • Craven GF, Mok CK. The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic. IEEE Trans Microw Theory Tech. 1971;19:295–308.
  • Bachiller C, Esteban H, Boria VE. CAD of evanescent mode waveguide filters with circular dielectric resonators. 2006 IEEE Antennas and Propagation Society International Symposium; 2006.
  • Morro JV, Esteban González H, Bachiller C, et al. Automated design of complex waveguide filters for space systems: a case study. Int J RF and Microw Comput-Aided Eng. 2007;17:84–89.
  • Aydoğan A. A hybrid MoM/MM method for fast analysis of e-plane dielectric loaded waveguides. AEU - Int J Electron Commun. 2019;100:9–15.
  • Khalaj-Amirhosseini M. Microwave filters using waveguide filled by multi-layer dielectric. Prog Electromagn Res. 2006;66:105–110.
  • Ghorbaninejad H, Khalaj-Amirhosseini M. Compact bandpass filters utilizing dielectric filled waveguides. Prog Electromagn Res B. 2008;7:105–115.
  • Khalaj-Amirhosseini M. Wideband differential phase shifters using waveguides filled by inhomogeneous dielectrics. Prog Electromagn Res. 2009;2:1486–1489.
  • Khalaj-Amirhosseini M, Ghorbaninezhad H. Microwave impedance matching using waveguides filled by inhomogeneous dielectrics. Int J RF Microw Comput-Aided Eng. 2009;19:69–74.
  • Khalaj-amirhosseini M, Ghorbaninejad-foumani H. Waveguide bandpass filters utilizing only dielectric pieces. Prog Electromagn Res. 2010;4:553–557.
  • George EMTJ, Matthaei Leo Young L. Microwave filters, impedance-matching networks, and coupling structures. Dedham (MA): Artech House; 1980.
  • Cohn SB. Direct-coupled-resonator filters. Proc IRE. 1957;45:187–196.
  • Şimşek S, Topuz E, Niver E. A novel design method for electromagnetic bandgap based waveguide filters with periodic dielectric loading. AEU – Int J Electron Commun. 2012;66:228–234.
  • Arndt F, Bornemann J, Vahldieck R. Design of multisection impedance-matched dielectric-slab filled waveguide phase shifters. IEEE Trans Microw Theory Tech. 1984;32:34–39.
  • Arndt F, Frye A, Wellnitz M, et al. Double dielectric-slab-filled waveguide phase shifter. IEEE Trans Microw Theory Tech. 1985;33:373–381.
  • Aydoğan A, Akleman F, Yıldız S. Dielectric loaded waveguide filter design. 2016 International Symposium on Fundamentals of Electrical Engineering (ISFEE); 2016.
  • Aydoğan A, Akleman F. An approximation for direct and inverse problems related to longitudinally inhomogeneous waveguides. 2016 International Symposium on Fundamentals of Electrical Engineering (ISFEE); 2016.
  • Coleman TF, Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim. 1996;6:418–445.
  • Branch MA, Coleman TF, Li Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J Sci Comput. 1999;21:1–23.
  • Shestopalov Y, Smirnov Y. Determination of permittivity of an inhomogeneous dielectric body in a waveguide. Inverse Probl. 2011;27:095010.
  • Shestopalov Y, Smirnov Y. Numerical-analytical methods for the analysis of forward and inverse scattering by dielectric bodies in waveguides. 2012 19th International Conference on Microwaves, Radar & Wireless Communications; 2012.
  • Shestopalov Y, Smirnov Y. Inverse scattering in guides. J Phys: Conf Ser. 2012;346: 012019.
  • Smirnov YG, Shestopalov YV, Derevyanchuk ED. Inverse problem method for complex permittivity reconstruction of layered media in a rectangular waveguide. Phys Status Solidi (C) Current Top Solid State Phys. 2014;11:969–974.
  • Chen J, Huang G. A direct imaging method for inverse electromagnetic scattering problem in rectangular waveguide. Commun Comput Phys. 2018;23:1415–1433.
  • Smirnov YG, Medvedik MY, Moskaleva MA. Two-step method for permittivity determination of an inhomogeneous body placed in a rectangular waveguide. Lobachevskii J Math. 2018;39:1140–1147.
  • Shestopalov Y. Justification of mathematical imaging technique for the permittivity determination of layered dielectrics in a waveguide. 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA); 2019.
  • Sheina EA, Shestopalov YV, Smirnov AP. Stability of least squares for the solution of an ill-posed inverse problem of reconstructing real value of the permittivity of a dielectric layer in a rectangular waveguide.  2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring); 2019.
  • Sheina EA, Shestopalov YV, Smirnov AP. Advantages of a multi-frequency experiment for determining the dielectric constant of a layer in a rectangular waveguide and free space. Radio Sci. 2021;56: 1–4.
  • Shestopalov Y. On unique solvability of multi-parameter waveguide inverse problems. 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA); 2017.
  • Mironov DA, Smirnov YG. On the existence and uniqueness of solutions of the inverse boundary value problem for determining the permittivity of materials. Comput Math Math Phys. 2010;50:1511–1521.
  • Felici T, Engl HW. On shape optimization of optical waveguides using inverse problem techniques. Inverse Probl. 2001;17:1141–1162.
  • Skaar J, Risvik KM. A genetic algorithm for the inverse problem in synthesis of fiber gratings. J Lightwave Technol. 1998;16:1928–1932.
  • Minzioni P, Tormen M. Bragg gratings: impact of apodization lobes and design of a dispersionless optical filter. J Lightwave Technol. 2006;24:605–611.
  • Kabir H, Zhang L, Yu M, et al. Smart modeling of microwave devices. IEEE Microw Mag. 2010;11:105–118.
  • Norgren M. Chebyshev collocation and newton-type optimization methods for the inverse problem on nonuniform transmission lines. IEEE Trans Microw Theory Tech. 2005;53:1561–1568.
  • Abazid MA, Lakhal A, Louis AK. Inverse design of anti-reflection coatings using the nonlinear approximate inverse. Inverse Probl Sci Eng. 2016;24:917–935.
  • Amaya I, Correa R. Reconstructing design parameters of a rectangular resonator via peak signal-to-noise ratio and global optimization algorithms. Inverse Probl Sci Eng. 2017;25:864–886.
  • Frickey DA. Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans Microw Theory Tech. 1994;42:205–211.
  • Khalaj-Amirhosseini M. Analysis of longitudinally inhomogeneous waveguides using the method of moment. Prog Electromagn Res. 2007;74:57–67.
  • Chu TS, Itoh T. Generalized scattering matrix method for analysis of cascaded and offset microstrip step discontinuities. IEEE Trans Microw Theory Tech. 1986;34:280–284.
  • Collin RE. Field theory of guided waves. 2nd ed. New York: Wiley-IEEE Press; 1991.
  • Ansys HFSS Software. Available from: https://www.ansys.com/products/electronics/ansys-hfss.
  • Aydoğan A, Akıncı MN, Akleman F. Complex permittivity determination only with reflection coefficient in partially filled waveguides. Meas Sci Technol. 2018;29:115601.
  • Knott EF. Dielectric constant of plastic foams. IEEE Trans Antennas Propag. 1993;41:1167–1171.