660
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sensitivity analysis for active electromagnetic field manipulation in free space

ORCID Icon, ORCID Icon, , &
Pages 661-687 | Received 21 Jan 2022, Accepted 23 Aug 2022, Published online: 19 Sep 2022

References

  • Chen A, Monticone F. Active scattering-cancellation cloaking: broadband invisibility and stability constraints. IEEE Trans Antennas Propag. 2019;68:1655–1664.
  • Bisht MS, Srivastava KV. Controlling electromagnetic scattering of a cylindrical obstacle using concentric array of current sources. IEEE Trans Antennas Propag. 2020;68:8044–8052.
  • Mitri F. Active electromagnetic invisibility cloaking and radiation force cancellation. J Quant Spectrosc Radiat Transf. 2018;207:48–53.
  • Norris AN, Amirkulova FA, Parnell WJ. Source amplitudes for active exterior cloaking. Inverse Probl. 2012;28:105002.
  • Kwon DH. Lossless tensor surface electromagnetic cloaking for large objects in free space. Phys Rev B. 2018;98:125137.
  • Selvanayagam M, Eleftheriades GV. An active electromagnetic cloak using the equivalence principle. IEEE Antennas Wirel Propag Lett. 2012;11:1226–1229.
  • Sengupta S, Council H, Jackson DR, et al. Active radar cross section reduction of an object using microstrip antennas. Radio Sci. 2020;55:1–20.
  • Onofrei D. On the active manipulation of fields and applications: I. the quasistatic case. Inverse Probl. 2012;28:105009.
  • Brown T, Narendra C, Vahabzadeh Y, et al. On the use of electromagnetic inversion for metasurface design. IEEE Trans Antennas Propag. 2019;68:1812–1824.
  • Pang Y, Mo M, Li Y, et al. Dynamically controlling electromagnetic reflection using reconfigurable water-based metasurfaces. Smart Mater Struct. 2020;29:115018.
  • Luo XY, Guo WL, Chen K, et al. Active cylindrical metasurface with spatial reconfigurability for tunable backward scattering reduction. IEEE Trans Antennas Propag. 2020;69:3332–3340.
  • Zhu BO, Chen K, Jia N, et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Sci Rep. 2014;4:1–7.
  • Huang C, Zhang C, Yang J, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv Opt Mater. 2017;5:1700485.
  • Ma Q, Hong QR, Bai GD, et al. Editing arbitrarily linear polarizations using programmable metasurface. Phys Rev Appl. 2020;13:021003.
  • Ayestarán RG, León G, Pino MR, et al. Wireless power transfer through simultaneous near-field focusing and far-field synthesis. IEEE Trans Antennas Propag. 2019;67:5623–5633.
  • Clauzier S, Mikki SM, Antar YM. Design of near-field synthesis arrays through global optimization. IEEE Trans Antennas Propag. 2014;63:151–165.
  • Xiao JJ, Nehorai A. Optimal polarized beampattern synthesis using a vector antenna array. IEEE Trans Signal Process. 2008;57:576–587.
  • Wu JW, Wu RY, Bo XC, et al. Synthesis algorithm for near-field power pattern control and its experimental verification via metasurfaces. IEEE Trans Antennas Propag. 2018;67:1073–1083.
  • Gao F, Zhang F, Wakatsuchi H, et al. Synthesis and design of programmable subwavelength coil array for near-field manipulation. IEEE Trans Microw Theory Tech. 2015;63:2971–2982.
  • Lopéz YA, Andrés FLH, Pino MR, et al. An improved super-resolution source reconstruction method. IEEE Trans Instrum Meas. 2009;58:3855–3866.
  • Quijano JLA, Vecchi G. Improved-accuracy source reconstruction on arbitrary 3-d surfaces. IEEE Antennas Wirel Propag Lett. 2009;8:1046–1049.
  • Álvarez Y, Las-Heras F, Pino MR. Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms. IEEE Trans Antennas Propag. 2007;55:3460–3468.
  • Angell TS, Kirsch A. Optimization methods in electromagnetic radiation. New York: Springer Science & Business Media; 2004.
  • Egarguin NJA, Onofrei D, Platt E. Sensitivity analysis for the active manipulation of helmholtz fields in 3d. Inverse Probl Sci Eng. 2020;28:314–339.
  • Onofrei D, Platt E. On the synthesis of acoustic sources with controllable near fields. Wave Motion. 2018;77:12–27.
  • Onofrei D. Active manipulation of fields modeled by the helmholtz equation. J Int Equ Appl. 2014;26:553–572.
  • Qi C, Egarguin NJA, Onofrei D, et al. Feasibility analysis for active near/far field acoustic pattern synthesis in free space and shallow water environments. Acta Acust. 2021;5:39.
  • Egarguin NJA, Onofrei D, Qi C, et al. Active manipulation of helmholtz scalar fields in an ocean of two homogeneous layers of constant depth. Inverse Probl Sci Eng. 2021;29(13):1–25.
  • Onofrei D, Platt E, Egarguin NJA. Active manipulation of exterior electromagnetic fields by using surface sources. Q Appl Math. 2020;78:641–670.
  • Marengo EA, Devaney AJ. The inverse source problem of electromagnetics: linear inversion formulation and minimum energy solution. IEEE Trans Antennas Propag. 1999;47:410–412.
  • Marengo EA, Ziolkowski RW. Nonradiating and minimum energy sources and their fields: generalized source inversion theory and applications. IEEE Trans Antennas Propag. 2000;48:1553–1562.
  • Mohajer M, Safavi-Naeini S, Chaudhuri SK. Surface current source reconstruction for given radiated electromagnetic fields. IEEE Trans Antennas Propag. 2009;58:432–439.
  • Qi C, Chen J, Egarguin NJA, et al. Feasibility analysis for active manipulation of electromagnetic fields in free space. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). Singapore: IEEE; 2021, p. 1841–1842.
  • Egarguin NJA, Zeng S, Onofrei D, et al. Active control of helmholtz fields in 3d using an array of sources. Wave Motion. 2020;94:102523.
  • Colton D, Kress R. Integral equation methods in scattering theory. Philadelphia: SIAM; 2013.
  • Smyshlyaev VP. The high-frequency diffraction of electromagnetic waves by cones of arbitrary cross sections. SIAM J Appl Math. 1993;53:670–688.
  • Rowe E. Decomposition of vector fields by scalar potentials. J Phys A Math Gen. 1979;12:145.
  • O'Neil M. A generalized debye source approach to electromagnetic scattering in layered media. J Math Phys. 2014;55:012901.
  • Wilcox CH. Debye potentials. J Math Mech. 1957;6:167–201.
  • Colton DL, Kress R, Kress R. Inverse acoustic and electromagnetic scattering theory. Vol. 93. New York: Springer; 1998.
  • Rao S, Wilton D, Glisson A. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag. 1982;30:409–418.
  • Nikolova NK. Introduction to microwave imaging. Cambridge: Cambridge University Press; 2017.
  • Mueller JL, Siltanen S. Linear and nonlinear inverse problems with practical applications. Philadelphia: SIAM; 2012.
  • Bonesky T. Morozov's discrepancy principle and tikhonov-type functionals. Inverse Probl. 2008;25:015015.
  • Pozar DM. Microwave engineering. New York: John Wiley & Sons; 2011.
  • Balanis CA. Antenna theory: analysis and design. New York: John Wiley & Sons; 2015.
  • Rodriguez JAO Regularization methods for inverse problems. Minneapolis: University of Minnesota; 2011.