937
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Solving Lane–Emden equations with boundary conditions of various types using high-order compact finite differences

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2214303 | Received 15 Jun 2022, Accepted 04 May 2023, Published online: 29 May 2023

References

  • Chandrasekhar S. An introduction to study of stellar structure. New York: Dover; 1967.
  • Lima PM, Morgado L. Numerical modeling of oxygen diffusion in cells with Michaelis–Menten uptake kinetics. J Math Chem. 2010;48(1):145–158.
  • Dz̆urina J, Grace SR, Jadlovská I, et al. Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term. Math Nachr. 2020;293:910–922.
  • Li T, Rogovchenko YV. Oscillation of second-order neutral differential equations. Math Nachr. 2015;288(10):1150–1162.
  • Li T, Rogovchenko YV. Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations. Monatsh Math. 2017;184:489–500.
  • Li T, Rogovchenko YV. On asymptotic behavior of solutions to higher-order sublinear Emden–Fowler delay differential equations. Appl Math Lett. 2017;67:53–59.
  • Frassu S, Li T, Viglialoro G. Improvements and generalizations of results concerning attraction-repulsion chemotaxis models. Math Methods Appl Sci.. 2022;45(17):11067–11078. doi:10.1002/mma.843711078.
  • Frassu S, Viglialoro G. Boundedness criteria for a class of indirect (and direct) chemotaxis-consumption models in high dimensions. Appl Math Lett. 2022;132:108108.
  • Lane JH. ARR.X–On the law of electric conduction in metals. Am J Sci Arts (1820–1879). 1846;1(2):230.
  • Hosseini SG, Abbasbandy S. Solution of Lane–Emden type equations by combination of the spectral method and Adomian decomposition method. Math Probl Eng. 2015;2015:1–10. doi:10.1155/2015/534754.
  • Liao S. A new analytic algorithm of Lane–Emden type equations. Appl Math Comput. 2003;142(1):1–16. doi:10.1016/S0096-3003(02)00943-8.
  • Wazwaz AM. A new algorithm for solving differential equations of Lane–Emden type. Appl Math Comput. 2001;118(2–3):287–310. doi:10.1016/S0096-3003(99)00223-4.
  • Mittal RC, Nigam R. Solution of a class of singular boundary value problems. Numer Algorithms. 2008;47(2):169–179.
  • Ghorbani A, Bakherad M. A variational iteration method for solving nonlinear Lane–Emden problems. New Astron. 2017;54:1–6. doi:10.1016/j.newast.2016.12.004.
  • Wazwaz AM, Rach R. Comparison of the Adomian decomposition method and the variational iteration method for solving the Lane–Emden equations of the first and second kinds. Kybernetes. 2011;40(9/10):1305–1318.
  • Wazwaz AM. Variational iteration method for solving nonlinear singular boundary value problems arising in various physical models. Commun Nonlinear Sci Numer Simul. 2011;16(10):3881–3886. doi:10.1016/j.cnsns.2011.02.026.
  • Kanth AR, Aruna K. He's variational iteration method for treating nonlinear singular boundary value problems. Comput Math Appl. 2010;60(3):821–829. doi:10.1016/j.camwa.2010.05.029.
  • Sharma P, Gupta VG. Solving singular initial value problems of Emden–Fowler and Lane–Emden type. Int J Appl Math Comput. 2009;1(4):206–212.
  • Khan Y, Svoboda Z, Šmarda Z. Solving certain classes of Lane–Emden type equations using the differential transformation method. Adv Differ Equ. 2012;2012(1):1–11.
  • Singh OP, Pandey RK, Singh VK. An analytic algorithm of Lane–Emden type equations arising in astrophysics using modified homotopy analysis method. Comput Phys Commun. 2009;180(7):1116–1124. doi:10.1016/j.cpc.2009.01.012.
  • Chawla MM, Subramanian R, Sathi HL. A fourth order method for a singular two-point boundary value problem. BIT Numer Math. 1988;28(1):88–97.
  • Pandey RK, Singh AK. On the convergence of fourth-order finite difference method for weakly regular singular boundary value problems. Int J Comput Math. 2004;81(2):227–238. doi:10.1080/00207160310001650116.
  • Jamet P. On the convergence of finite-difference approximations to one-dimensional singular boundary-value problems. Numer Math. 1970;14(4):355–378.
  • Kadalbajoo MK, Kumar V. B-spline method for a class of singular two-point boundary value problems using optimal grid. Appl Math Comput. 2007;188(2):1856–1869. doi:10.1016/j.amc.2006.11.050.
  • Çağlar H, Çağlar N, Özer M. B-spline solution of non-linear singular boundary value problems arising in physiology. Chaos Solitons Fract. 2009;39(3):1232–1237. doi:10.1016/j.chaos.2007.06.007.
  • Alam MP, Begum T, Khan A. A new spline algorithm for solving non-isothermal reaction diffusion model equations in a spherical catalyst and spherical biocatalyst. Chem Phys Lett. 2020;754:137651. doi:10.1016/j.cplett.2020.137651.
  • Alam MP, Begum T, Khan A. A high-order numerical algorithm for solving Lane–Emden equations with various types of boundary conditions. Comput Appl Math. 2021;40(6):1–28. doi:10.1007/s40314-021-01591-7.
  • Singh R, Das N, Kumar J. The optimal modified variational iteration method for the Lane–Emden equations with Neumann and Robin boundary conditions. Eur Phys J Plus. 2017;132(6):1–11. doi:10.1140/epjp/i2017-11521-x.
  • Singh R, Kumar J, Nelakanti G. Numerical solution of singular boundary value problems using Green's function and improved decomposition method. J Appl Math Comput. 2013;43:409–425. doi:10.1007/s12190-013-0670-4.
  • Singh R, Kumar J. An efficient numerical technique for the solution of nonlinear singular boundary value problems. Comput Phys Commun. 2014;185(4):1282–1289. doi:10.1016/j.cpc.2014.01.002.
  • Kanth AR, Reddy YN. A numerical method for singular two point boundary value problems via Chebyshev economizition. Appl Math Comput. 2003;146(2–3):691–700. doi:10.1016/S0096-3003(02)00613-6.
  • Danish M, Kumar S, Kumar S. A note on the solution of singular boundary value problems arising in engineering and applied sciences: use of OHAM. Comput Chem Eng. 2012;36:57–67. doi:10.1016/j.compchemeng.2011.08.008.
  • Singh R, Garg H, Guleria V. Haar wavelet collocation method for Lane–Emden equations with Dirichlet, Neumann and Neumann–Robin boundary conditions. J Comput Appl Math. 2019;346:150–161. doi:10.1016/j.cam.2018.07.004.
  • Al-Khaled K. Theory and computation in singular boundary value problems. Chaos Solitons Fract. 2007;33(2):678–684. doi:10.1016/j.chaos.2006.01.047.
  • Kanth AR, Aruna K. Solution of singular two-point boundary value problems using differential transformation method. Phys Lett A. 2008;372(26):4671-4673. doi:10.1016/j.physleta.2008.05.019.
  • Yildirim A, Agirseven D. The homotopy perturbation method for solving singular initial value problems. Int J Nonlinear Sci Numer Simul. 2009;10(2):235–238. doi:10.1515/IJNSNS.2009.10.2.235.
  • Iqbal S, Javed A. Application of optimal homotopy asymptotic method for the analytic solution of singular Lane–Emden type equation. Appl Math Comput. 2011;217(19):7753–7761. doi:10.1016/j.amc.2011.02.083.
  • Isik OR, Sezer M. Bernstein series solution of a class of Lane–Emden type equations. Math Probl Eng. 2013;2013:1–9. doi:10.1155/2013/423797.
  • Lele SK. Compact finite difference schemes with spectral-like resolution. J Comput Phys. 1992;103(1):16–42.
  • Gupta MM, Kouatchou J, Zhang J. Comparison of second-and fourth-order discretizations for multigrid Poisson solvers. J Comput Phys. 1997;132(2):226–232.
  • Sari M, Gürarslan G. A sixth-order compact finite difference scheme to the numerical solutions of Burgers’ equation. Appl Math Comput. 2009;208(2):475–483.
  • Liao W. An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation. Appl Math Comput. 2008;206(2):755–764.
  • Zhao J, Davison M, Corless RM. Compact finite difference method for American option pricing. J Comput Appl Math. 2007;206(1):306–321. doi:10.1016/j.cam.2006.07.006.
  • Shah A, Yuan L, Khan A. Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier–Stokes equations. Appl Math Comput. 2010;214(9):320–3213.
  • Zhao J, Corless RM. Compact finite difference method for integro-differential equations. Appl Math Comput. 2006;177(1):271–288. doi:10.1016/j.amc.2005.11.007.
  • Zhao J. Compact finite difference methods for high order integro-differential equations. Appl Math Comput. 2013;221:66–78. doi:10.1016/j.amc.2013.06.030.
  • Li J, Visbal MR. High-order compact schemes for nonlinear dispersive waves. J Sci Comput. 2006;26(1):1–23.
  • Düring B, Fournié M, Jüngel A. High order compact finite difference schemes for a nonlinear Black–Scholes equation. Int J Theor Appl Finance. 2003;6(07):767–789.
  • Fournie M. High order compact finite difference schemes for a nonlinear Black–Scholes equation. University of Konstanz Center of Finance and Econometrics Discussion Paper (01/07); 2001.
  • Mathale D, Dlamini PG, Khumalo M. Compact finite difference relaxation method for chaotic and hyperchaotic initial value systems. Comput Appl Math. 2018;37(4):5187–5202.
  • Kouagou JN, Dlamini PG, Simelane SM. On the multi-domain compact finite difference relaxation method for high dimensional chaos: the nine-dimensional Lorenz system. Alex Eng J. 2020;59(4):2617–2625. doi:10.1016/J.AEJ.2020.04.025.
  • Dlamini PG, Khumalo M. A new compact finite difference quasilinearization method for nonlinear evolution partial differential equations. Open Math. 2017;15(1):1450–1462.
  • Zhao J. Highly accurate compact mixed methods for two point boundary value problems. Appl Math Comput. 2007;188(2):1402–1418. doi:10.1016/j.amc.2006.11.006.
  • Zhao J, Zhang T, Corless RM. Convergence of the compact finite difference method for second-order elliptic equations. Appl Math Comput. 2006;182(2):1454–1469. doi:10.1016/j.amc.2006.05.033.
  • Pettigrew MF, Rasmussen HA. Compact method for second-order boundary value problems on nonuniform grids. Comput Math Appl. 1996;31(9):1–16. doi:10.1016/0898-1221(96)00037-5.
  • Holsapple R, Venkataraman R, Doman D. New, fast numerical method for solving two-point boundary-value problems. J Guid Control Dyn. 2004;27(2):301–304. doi:10.2514/1.1329.
  • Bellman RE, Kalaba RE. Quasilinearization and nonlinear boundary-value problems. New York: Elsevier; 1965.
  • Mandelzweig VB, Tabakin F. Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput Phys Commun. 2001;141(2):268–281.
  • Keller HB. Numerical solution of two point boundary value problems. Philadelphia; Society for Industrial and Applied Mathematics: 1976. (CBMS regional conference series in applied mathematics; vol. 24).
  • Gümgüm S. Taylor wavelet solution of linear and nonlinear Lane–Emden equations. Appl Numer Math. 2020;158:44–53. doi:10.1016/j.apnum.2020.07.019.
  • Singh R, Shahni J, Garg H, et al. Haar wavelet collocation approach for Lane–Emden equations arising in mathematical physics and astrophysics. Eur Phys J Plus. 2019;134(11):548. doi:10.1140/epjp/i2019-12889-1.