308
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimal control of thermal and mechanical loads in activation processes of mechanical components

, &
Article: 2313645 | Received 21 Aug 2023, Accepted 25 Jan 2024, Published online: 16 Feb 2024

References

  • Zasadna KE. Numerical solution of the problem of optimal control of the heating of a thermoelastic plate by internal heat sources. J Sov Math. 1993;63(1):70–74. doi: 10.1007/BF01103085
  • Saadi M. Shape sensitivities for the failure probability of mechanical components [dissertation]. Bergische Universität Wuppertal; 2021.
  • Zhang H, Xie D, Yu Y, et al. Online optimal control schemes of inlet steam temperature during startup of steam turbines considering low cycle fatigue. Energy. 2016;117:105–115. https://www.sciencedirect.com/science/article/pii/S0360544216315092. doi: 10.1016/j.energy.2016.10.075
  • Banaszkiewicz M, Dominiczak K. Steam turbine start-up optimization based on finite element analysis of rotor thermoelastic stresses. Energy. 2016;CMM2016.
  • Liu JS, Parks GT, Clarkson PJ. Optimization of turbine disk profiles by metamorphic development. J Mech Des. 2002;124(2):192–200. doi: 10.1115/1.1467079
  • Alkebsi EAA, Ameddah H, Outtas T, et al. Design of graded lattice structures in turbine blades using topology optimization. Int J Comput Integr Manuf. 2021;34(4):370–384. doi: 10.1080/0951192X.2021.1872106
  • Wang B, Wang G, Shi Y, et al. Stress-constrained thermo-elastic topology optimization of axisymmetric disks considering temperature-dependent material properties. Mech Adv Mater Struct. 2021;29:1–17.
  • Khan SA, Razaq A, Alsaedi A, et al. Modified thermal and solutal fluxes through convective flow of reiner-rivlin material. Energy. 2023;283:Article ID 128516.
  • Khan SA, Hayat T, Alsaedi A. Bioconvection entropy optimized flow of reiner-rivlin nanoliquid with motile microorganisms. Alex Eng J. 2023;79:81–92. https://www.sciencedirect.com/science/article/pii/S1110016823006592. doi: 10.1016/j.aej.2023.07.069
  • Razaq A, Hayat T, Khan SA, et al. Atss model based upon applications of Cattaneo-Christov thermal analysis for entropy optimized ternary nanomaterial flow with homogeneous-heterogeneous chemical reactions. Alex Eng J. 2023;79:390–401. doi: 10.1016/j.aej.2023.08.013
  • Tröltzsch F. Optimale steuerung partieller differentialgleichungen: theorie, verfahren und anwendungen. Wiesbaden: Vieweg+Teubner Verlag; 2015. https://books.google.de/books?id=lt98BwAAQBAJ.
  • Logg A, Mardal KA, Wells GN, et al. Automated solution of differential equations by the finite element method. Berlin: Springer; 2012.
  • Alnaes MS, Blechta J, Hake J, et al. The fenics project version 1.5. archive of numerical software. Vol. 3; 2015.
  • Hoffmann M, Seeger T. A generalized method for estimating multiaxial elastic-plastic notch stresses and strains, part 1: theory. J Eng Mater Technol. 1985;107(4):250–254. doi: 10.1115/1.3225814
  • Kirby R, Logg A, Terrel A. Common and unusual finite elements. In: Automated solution of differential equations by the finite element method; Lecture notes in computational science and engineering. Vol. 84; 2012.
  • Chatzipantelidis P, Horváth Z, Thomée V. On preservation of positivity in some finite element methods for the heat equation. Comput Methods Appl Math. 2015;15(4. doi: 10.1515/cmam-2015-0018
  • Kraft D. A software package for sequential quadratic programming. Wiss. Berichtswesen d. DFVLR; 1988. Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht. Available from: https://books.google.de/books?id=4rKaGwAACAAJ
  • Bradbury J, Frostig R, Hawkins P, et al. JAX: composable transformations of Python+NumPy programs; 2018. Available from: http://github.com/google/jax
  • Bynum ML, Hackebeil GA, Hart WE, et al. Pyomo–optimization modeling in python. 3rd ed. Vol. 67. Cham: Springer Science & Business Media; 2021.
  • Mitusch SK, Funke SW, Dokken JS. dolfin-adjoint 2018.1: automated adjoints for fenics and firedrake. J Open Source Softw. 2019;4(38):1292–doi: 10.21105/joss.01292
  • Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous systems; 2015. Software available from tensorflow.org. Available from: https://www.tensorflow.org/
  • Powell MJD. A fast algorithm for nonlinearly constrained optimization calculations. In: Watson GA, editor. Numerical analysis. Berlin, Heidelberg: Springer Berlin Heidelberg; 1978. p. 144–157.
  • Han SP. A globally convergent method for nonlinear programming. J Optim Theory Appl. 1977;22(3):297–309. doi: 10.1007/BF00932858
  • Hock W, Schittkowski K. Test examples for nonlinear programming codes. J Optim Theory Appl. 1980;30:127–129. doi: 10.1007/BF00934594
  • Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine learning algorithms; 2012. Available from: https://arxiv.org/abs/1206.2944
  • Raissi M, Perdikaris P, Karniadakis G. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019;378:686–707. https://www.sciencedirect.com/science/article/pii/S0021999118307125. doi: 10.1016/j.jcp.2018.10.045