283
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Parameter uniform hybrid numerical method for time-dependent singularly perturbed parabolic differential equations with large delay

ORCID Icon &
Article: 2328254 | Received 31 Oct 2023, Accepted 02 Mar 2024, Published online: 13 Mar 2024

References

  • Arino O, Hbid ML, Dads EA. Delay differential equations and applications: Proceedings of the nato advanced study institute held in marrakech, morocco: September 2002. Vol. 205. Springer Science & Business Media; 2007. p. 90–21.
  • Murray JD. Mathematical biology: I an introduction. New York, NY: Springer; 2002.
  • Wu J. Theory and applications of partial functional differential equations. Vol.119. New York: Springer Science & Business Media; 1996.
  • Musila M, Lánskỳ P. Generalized stein's model for anatomically complex neurons. BioSystems. 1991;25(3):179–191. doi: 10.1016/0303-2647(91)90004-5
  • Farrell P, Hegarty A, Miller JM, et al. Robust computational techniques for boundary layers. Boca Raton: Chapman and hall/CRC; 2000.
  • Roos HG, Stynes M, Tobiska L. Robust numerical methods for singularly perturbed differential equations: convection–diffusion–reaction and flow problems. Vol. 24. Berlin, Heidelberg: Springer Science & Business Media; 2008.
  • Singh J, Kumar S, Kumar M. A domain decomposition method for solving singularly perturbed parabolic reaction-diffusion problems with time delay. Numer Methods Partial Differ Equ. 2018;34(5):1849–1866. doi: 10.1002/num.v34.5
  • Rao SCS, Kumar S. An almost fourth order uniformly convergent domain decomposition method for a coupled system of singularly perturbed reaction–diffusion equations. J Comput Appl Math. 2011;235(11):3342–3354. doi: 10.1016/j.cam.2011.01.047
  • Kumar S. A parameter-uniform grid equidistribution method for singularly perturbed degenerate parabolic convection–diffusion problems. J Comput Appl Math. 2022;404:113273. doi: 10.1016/j.cam.2020.113273
  • Kumar S, Kumar M. High order parameter-uniform discretization for singularly perturbed parabolic partial differential equations with time delay. Comput Math Appl. 2014;68(10):1355–1367. doi: 10.1016/j.camwa.2014.09.004
  • Hailu WS, Duressa GF. Parameter-uniform cubic spline method for singularly perturbed parabolic differential equation with large negative shift and integral boundary condition. Res Math. 2022;9(1):2151080. doi: 10.1080/27684830.2022.2151080
  • Hailu WS, Duressa GF. Uniformly convergent numerical method for singularly perturbed parabolic differential equations with non-smooth data and large negative shift. Res Math. 2022;9(1):2119677. doi: 10.1080/27684830.2022.2119677
  • Kumar S. Layer-adapted methods for quasilinear singularly perturbed delay differential problems. Appl Math Comput. 2014;233:214–221.
  • Hassen ZI, Duressa GF. New approach of convergent numerical method for singularly perturbed delay parabolic convection–diffusion problems. Res Math. 2023;10(1):2225267. doi: 10.1080/27684830.2023.2225267
  • Hassen ZI, Duressa GF. Parameter-uniformly convergent numerical scheme for singularly perturbed delay parabolic differential equation via extended b-spline collocation. Front Appl Math Stat. 2023;9:1255672. doi: 10.3389/fams.2023.1255672
  • Natividad MC, Stynes M. Richardson extrapolation for a convection–diffusion problem using a Shishkin mesh. Appl Numer Math. 2003;45(2-3):315–329. doi: 10.1016/S0168-9274(02)00212-X
  • Mukherjee K, Natesan S. Richardson extrapolation technique for singularly perturbed parabolic convection–diffusion problems. Computing. 2011;92(1):1–32. doi: 10.1007/s00607-010-0126-8
  • Clavero C, Gracia JL. A higher order uniformly convergent method with richardson extrapolation in time for singularly perturbed reaction–diffusion parabolic problems. J Comput Appl Math. 2013;252:75–85. doi: 10.1016/j.cam.2012.05.023
  • Majumdar A, Natesan S. Second-order uniformly convergent richardson extrapolation method for singularly perturbed degenerate parabolic pdes. Int J Appl Comput Math. 2017;3(S1):31–53. doi: 10.1007/s40819-017-0380-y
  • Negero NT, Duressa GF. An exponentially fitted spline method for singularly perturbed parabolic convection–diffusion problems with large time delay. Tamkang J Math. 2022;54:313–338.
  • Negero NT, Duressa GF. Uniform convergent solution of singularly perturbed parabolic differential equations with general temporal-lag. Iran J Sci Technol, Trans A: Sci. 2022;46(2):507–524. doi: 10.1007/s40995-021-01258-2
  • Megiso EA, Woldaregay MM, Dinka TG. Fitted tension spline method for singularly perturbed time delay reaction diffusion problems. Math Probl Eng. 2022;2022:1–10.doi: 10.1155/2022/8669718
  • Kumar P, Ravi Kanth A. Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline. Comput Appl Math. 2020;39(1):1–19. doi: 10.1007/s40314-019-0964-8
  • Ejere AH, Duressa GF, Woldaregay MM, et al. A uniformly convergent numerical scheme for solving singularly perturbed differential equations with large spatial delay. SN Appl Sci. 2022;4(12):324. doi: 10.1007/s42452-022-05203-9
  • Rao RN, Chakravarthy PP. A fitted numerov method for singularly perturbed parabolic partial differential equation with a small negative shift arising in control theory. Numer Math: Theory, Methods Appl. 2014;7(1):23–40.
  • Govindarao L, Mohapatra J. A second order numerical method for singularly perturbed delay parabolic partial differential equation. Eng Comput. 2018;36(2):420–444. doi: 10.1108/EC-08-2018-0337
  • Niyogi P. Introduction to computational fluid dynamics. Don Mills: Pearson Education Canada; 2006.
  • Das P, Mehrmann V. Numerical solution of singularly perturbed convection–diffusion–reaction problems with two small parameters. BIT Numerl Math. 2016;56:51–76. doi: 10.1007/s10543-015-0559-8
  • Chandru M, Das P, Ramos H. Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. Math Methods Appl Sci. 2018;41(14):5359–5387. doi: 10.1002/mma.v41.14
  • Saini S, Das P, Kumar S. Computational cost reduction for coupled system of multiple scale reaction diffusion problems with mixed type boundary conditions having boundary layers. Rev De La Real Acad De Cienc Exactas, Fís Y Nat Serie A Mat. 2023;117(2):66. doi: 10.1007/s13398-023-01397-8
  • Shiromani R, Shanthi V, Das P. A higher order hybrid-numerical approximation for a class of singularly perturbed two-dimensional convection–diffusion elliptic problem with non-smooth convection and source terms. Comput Math Appl. 2023;142:9–30. doi: 10.1016/j.camwa.2023.04.004
  • Saini S, Das P, Kumar S. Parameter uniform higher order numerical treatment for singularly perturbed robin type parabolic reaction diffusion multiple scale problems with large delay in time. Appl Numer Math. 2024;196:1–21. doi: 10.1016/j.apnum.2023.10.003
  • Das P, Rana S, Ramos H. On the approximate solutions of a class of fractional order nonlinear volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis. J Comput Appl Math. 2022;404:113116. doi: 10.1016/j.cam.2020.113116
  • Ladyzhenskaia OA, Solonnikov VA, Ural'tseva NN. Linear and quasi-linear equations of parabolic type. Vol. 23, Providence, RI: American Mathematical Soc.; 1968.
  • Miller J, O'Riordan E, Shishkin G. Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions. Singapore: World Scientific; 2012.
  • Das P, Rana S, Vigo-Aguiar J. Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature. Appl Numer Math. 2020;148:79–97. doi: 10.1016/j.apnum.2019.08.028
  • Das P, Rana S, Ramos H. A perturbation-based approach for solving fractional-order volterra–fredholm integro differential equations and its convergence analysis. Int J Comput Math. 2020;97(10):1994–2014. doi: 10.1080/00207160.2019.1673892
  • Choudhary R, Singh S, Das P, et al. A higher order stable numerical approximation for time-fractional non-linear kuramoto–sivashinsky equation based on quintic b-spline. Math Methods Appl Sci. 2024. doi: 10.1002/mma.9778
  • Negero NT, Duressa GF. A method of line with improved accuracy for singularly perturbed parabolic convection–diffusion problems with large temporal lag. Res Appl Math. 2021;11:100174. doi: 10.1016/j.rinam.2021.100174
  • Das A, Natesan S. Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection–diffusion problems on shishkin mesh. Appl Math Comput. 2015;271:168–186.
  • Shishkin GI, Shishkina LP. Difference methods for singular perturbation problems. Boca Raton: Chapman and Hall/CRC; 2008.
  • Linß T. An upwind difference scheme on a novel Shishkin-type mesh for a linear convection–diffusion problem. J Comput Appl Math. 1999;110(1):93–104. doi: 10.1016/S0377-0427(99)00198-3
  • Ramesh V, Kadalbajoo MK. Upwind and midpoint upwind difference methods for time-dependent differential difference equations with layer behavior. Appl Math Comput. 2008;202(2):453–471.
  • Stynes M, Roos HG. The midpoint upwind scheme. Appl Numer Math. 1997;23(3):361–374. doi: 10.1016/S0168-9274(96)00071-2
  • Santra S, Mohapatra J, Das P, et al. Higher order approximations for fractional order integro-parabolic partial differential equations on an adaptive mesh with error analysis. Comput Math Appl. 2023;150:87–101. doi: 10.1016/j.camwa.2023.09.008
  • Varga RS. Matrix iterative analysis. 2nd ed. Berlin: Springer; 2009. (Springer series in computational mathematics; 27).
  • Woldaregay M, Duressa G. Exponentially fitted tension spline method for singularly perturbed differential difference equations. Iran J Numer Anal Optim. 2021;11(2):261–282.
  • Kellogg T, Tsan A. Analysis of some difference approximations for a singular perturbation problem without turning points. Math Comput. 1978;32(144):1025–1039. doi: 10.1090/mcom/1978-32-144
  • Das P. A higher order difference method for singularly perturbed parabolic partial differential equations. J Differ Equ Appl. 2018;24(3):452–477. doi: 10.1080/10236198.2017.1420792
  • Das P. An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh. Numer Algorithms. 2019;81(2):465–487. doi: 10.1007/s11075-018-0557-4
  • Das P. Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems. J Comput Appl Math. 2015;290:16–25. doi: 10.1016/j.cam.2015.04.034
  • Das A, Govindarao L, Mohapatra J. A second order weighted monotone numerical scheme for time-delayed parabolic initial-boundary-value problem involving a small parameter. Int J Math Model Numer Optim. 2022;12(3):233–251.
  • Bala S, Govindarao L, Das A, et al. Numerical scheme for partial differential equations involving small diffusion term with non-local boundary conditions. J Appl Math Comput. 2023;69(6):4307–4331. doi: 10.1007/s12190-023-01927-y
  • Das A, Natesan S. Second-order uniformly convergent numerical method for singularly perturbed delay parabolic partial differential equations. Int J Comput Math. 2018;95(3):490–510. doi: 10.1080/00207160.2017.1290439
  • Kumar K, Podila PC, Das P, et al. A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems. Math Methods Appl Sci. 2021;44(16):12332–12350. doi: 10.1002/mma.v44.16
  • Kumar D. A parameter-uniform scheme for the parabolic singularly perturbed problem with a delay in time. Numer Methods Partial Differ Equ. 2021;37(1):626–642. doi: 10.1002/num.v37.1
  • Negero N, Duressa G. An efficient numerical approach for singularly perturbed parabolic convection-diffusion problems with large time-lag. J Math Model. 2022;10(2):173–110.
  • Babu G, Bansal K. A high order robust numerical scheme for singularly perturbed delay parabolic convection diffusion problems. J Appl Math Comput. 2022;68(1):363–389. doi: 10.1007/s12190-021-01512-1