220
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mathematical model of mosquito population dynamics with constants and periodic releases of Wolbachia-infected males

, &
Article: 2372581 | Received 09 Oct 2023, Accepted 20 Jun 2024, Published online: 08 Jul 2024

References

  • Caraballo H, King K. Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus. Emerg Med Pract. 2014;16(5):1–23.
  • Tolle M. Mosquito-borne diseases. Curr Probl Pediatr Adolesc Health Care. 2009;39:97–140.
  • Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–91. doi: 10.1146/ento.2000.45.issue-1
  • Saha S, Dutta P, Samanta G. Dynamical behavior of SIRS model incorporating government action and public response in presence of deterministic and fluctuating environments. Chaos Solit Fractals. 2022;164:Article ID 112643. doi: 10.1016/j.chaos.2022.112643
  • Traoré B, Sangaré B, Traoré S. A mathematical model of malaria transmission in a periodic environment. J Biol Dyn. 2018;12:400–432. doi: 10.1080/17513758.2018.1468935
  • Engelstädter J, Telschow A. Cytoplasmic incompatibility and host population structure. J Hered. 2009;103:196–207. doi: 10.1038/hdy.2009.53
  • Zheng B, Liu X, Tang M, et al. Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control. J Theor Biol. 2019;472:95–109. doi: 10.1016/j.jtbi.2019.04.010
  • Bian G, Joshi D, Dong Y, et al. Wolbachia invades Anopheles stephensi populations and induces refractoriness to plasmodium infection. Science. 2013;340:748–751. doi: 10.1126/science.1236192
  • Xianghong Z, Sanyi T, Robert AC. Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations. Math Biosci. 2015;269:164–177. doi: 10.1016/j.mbs.2015.09.004
  • Dutta P, Samanta G, Nieto JJ. Periodic transmission and vaccination effects in epidemic dynamics: a study using the SIVIS model. Nonlinear Dyn. 2024;112:2381–2409. doi: 10.1007/s11071-023-09157-4
  • Koutou O, Traoré B, Sangaré B. Mathematical modeling of malaria transmission global dynamics: taking into account the immature stages of the vectors. Adv Differ Equ. 2018;2018(220):1–34.
  • Saha S, Samanta G. Analysis of a host–vector dynamics of a dengue disease model with optimal vector control strategy. Math Comput Simul. 2022;195:31–55. doi: 10.1016/j.matcom.2021.12.021
  • Sangaré B. Contribution à la modélisation mathématique en épidémiologie et en écologie et à la résolution numérique des EDP évolutives. Habilitation à Diriger des Recherches, Université Franche-Comté; 02 Juin 2023.
  • Traoré B, Koutou O, Sangaré B. A global mathematical model of malaria transmission dynamics with structured mosquito population and temperature variations. Nonlinear Anal Real World Appl. 2020;53:Article ID 103081.
  • Luz PM, Codeço CT, Medlock J, et al. Impact of insecticide interventions on the abundance and resistance profile of Aedes aegypti. Epidemiol Infect. 2009;137:1203–1215. doi: 10.1017/S0950268808001799
  • Oki M, Sunahara T, Hashizume M, et al. Optimal timing of insecticide fogging to minimize dengue cases: modeling dengue transmission among various seasonalities and transmission intensities. PLoS Negl Trop Dis. 2011;5:1–7. doi: 10.1371/journal.pntd.0,001,367
  • Alphey N, Alphey L, Bonsall MB. A model framework to estimate impact and cost of genetics-based sterile insect methods for dengue vector control. PLoS One. 2011;6:1–12. doi: 10.1371/journal.pone.0025384
  • Anguelov R, Dumont Y, Lubuma J. Mathematical modeling of sterile insect technology for control of anopheles mosquito. Comput Math Appl. 2012;64:374–389. doi: 10.1016/j.camwa.2012.02.068
  • Dumont Y, Yatat–Djeumen I. Sterile insect technique with accidental releases of sterile females. impact on mosquito-borne diseases control when viruses are circulating. Math Biosci. 2022;343:Article ID 108724. doi: 10.1016/j.mbs.2021.108724
  • Huang M, Song X, Li J. Modelling and analysis of impulsive releases of sterile mosquitoes. J Biol Dyn. 2017;11:147–171. doi: 10.1080/17513758.2016.1254286
  • Roberto CT, Mo YH, Lourdes E. Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Math Biosci. 2010;223(1):12–23. doi: 10.1016/j.mbs.2009.08.009
  • Strugarek M, Bossin H, Dumont Y. On the use of the sterile insect release technique to reduce or eliminate mosquito populations. Appl Math Model. 2018;68:443–470. doi: 10.1016/j.apm.2018.11.026
  • Bliman P-A, Aronna M, Coelho F, et al. Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control. J Math Biol. 2018;76:1269–1300. doi: 10.1007/s00285-017-1174-x
  • Himanshu J, Arvind KS. Modeling the effect of Wolbachia to control malaria transmission. Expert Syst Appl. 2023;221:Article ID 119769.
  • Hoffmann A, Montgomery B, Popovici J, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476:454–457. doi: 10.1038/nature10356
  • Jair K, Moacyr AHS, Max OS, et al. Aedes, Wolbachia and dengue; 2014.
  • Putri Y, Rozi S, Tasman H, et al. Assessing the effect of extrinsic incubation period (EIP) prolongation in controlling dengue transmission with Wolbachia-infected mosquito intervention.AIP Conference Proceedings, Vol. 1825. Makassar, Indonesia. 2017.
  • Arias J, Martínez H, Sepúlveda-Salcedo L, et al. Predator–prey model for analysis of Aedes aegypti population dynamics in Cali, Colombia. Int J Pure Appl Math. 2015;105(4):561–597. doi: 10.12732/ijpam.v105i4.2
  • Zhongcai Z, Yuanxian H, Linchao H. The impact of predators of mosquito larvae on Wolbachia spreading dynamics. J Biol Dyn. 2023;17(1):Article ID 2249024.
  • Nundloll S, Mailleret L, Grognard F. Two models of interfering predators in impulsive biological control. J Biol Dyn. 2010;4:102–114. doi: 10.1080/17513750902968779
  • Pliego-Pliego E, Vasilieva O, Velázquez-Castro J, et al. Control strategies for a population dynamics model of Aedes aegypti with seasonal variability and their effects on dengue incidence. Appl Math Model. 2020;81:296–319. doi: 10.1016/j.apm.2019.12.025
  • Dumont Y, Chiroleu F, Domerg C. On a temporal model for the Chikungunya disease: modeling, theory and numerics. Math Biosci. 2008;213(1):80–91. doi: 10.1016/j.mbs.2008.02.008
  • Dumont Y, Tchuenche J. Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus. J Math Biol. 2012;65:809–854. doi: 10.1007/s00285-011-0477-6
  • Hamdan N, Kilicman A. Mathematical modelling of dengue transmission with intervention strategies using fractional derivatives. Bull Math Biol. 2022;84:138. doi: 10.1007/s11538-022-01096-2
  • Pulecio-Montoya A, López-Montenegro L, Medina-García J. Description and analysis of a mathematical model of population growth of Aedes aegypti. J Appl Math Comput. 2021;65:335–349. doi: 10.1007/s12190-020-01394-9
  • Djeumen V, Couteron P, Jules TJ, et al. An impulsive modelling framework of fire occurrence in a size structured model of tree-grass interactions for savanna ecosystems. J Math Biol. 2017;74:1425–1482. doi: 10.1007/s00285-016-1060-y
  • Miranda GAN, Teboh-Ewungkem I. Infectious diseases and our planet. Cham: Springer; 2021.
  • Ngwa GA, Teboh-Ewungkem MI, Dumont Y, et al. On a three-stage structured model for the dynamics of malaria transmission with human treatment, adult vector demographics and one aquatic stage. J Theor Biol. 2019;481:202–222. doi: 10.1016/j.jtbi.2018.12.043
  • Assefa WW, Rachid O, Jacek B. Mathematical analysis of the impact of transmission-blocking drugs on the population dynamics of malaria. Appl Math Comput. 2021;400:Article ID 126005.
  • Howell P, Knols B. Male mating biology. Malar J. 2009;8(Suppl 2):S8. doi: 10.1186/1475-2875-8-S2-S8
  • Diabaté A, Sangaré B, Koutou O. Mathematical modeling of the dynamics of vector-borne diseases transmitted by mosquitoes: taking into account aquatic stages and gonotrophic cycle. Nonauton Dyn Syst. 2022;9:205–236. doi: 10.1515/msds-2022-0155
  • Diabaté A, Sangaré B, Koutou O. Optimal control analysis of a COVID-19 and tuberculosis (TB) co-infection model with an imperfect vaccine for covid-19. SeMA J. 2023;1–28. doi:10.1007/s40324-023-00330-8.
  • Savadogo A, Sangaré B, Ouédraogo H. A mathematical analysis of Hopf-bifurcation in a prey–predator model with nonlinear functional response. Adv Differ Equ. 2021;2021:275. doi: 10.1186/s13662-021-03437-2
  • Smith HL. Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. bull new series. Am Math Soc. 1996;33:203–209. doi: 10.1090/S0273-0979-96-00642-8
  • Zhang X, Liu X, Li Y, et al. Modelling the effects of Wolbachia-carrying male augmentation and mating competition on the control of dengue fever. J Dyn Differ Equ. 2023;81:1–41.
  • Koutou O, Diabaté A, Sangaré B. Mathematical analysis of the impact of the media coverage in mitigating the outbreak of covid-19. Math Comput Simul. 2022;205:600–618. doi: 10.1016/j.matcom.2022.10.017
  • Savadogo A, Sangaré B, Ouédraogo H. A mathematical analysis of prey–predator population dynamics in the presence of an SIS infectious disease. RMS Res Math Stat. 2022;9:1–22.
  • Iboi E, Gumel A, Taylor J. Mathematical modeling of the impact of periodic release of sterile male mosquitoes and seasonality on the population abundance of malaria mosquitoes. J Biol Syst. 2020;28:1–34. doi: 10.1142/S0218339020400033
  • Ivanka S, Gani S. Applied impulsive mathematical models. Cham: Springer; 2016.
  • Pang Y, Wang S. Dynamic analysis of the Wolbachia-infected male mosquitoes model by pulsed release. Adv Appl Math. 2021;10:3505–3517. doi: 10.12677/AAM.2021.1010370
  • Pang Y, Wang S, Liu S. Dynamics analysis of stage-structured wild and sterile mosquito interaction impulsive model. J Biol Dyn. 2022;16:464–479. doi: 10.1080/17513758.2022.2079739
  • Drumi DB, Pavel SS. Impulsive differential equations: periodic solutions and applications; 1993.
  • Bainov D, Simeonov PS, Lakshmikantham V. Theory of impulsive differential equations. Plovdiv: Word Scientific Publishing; 1989.
  • Korobeinikov A, Wake G. Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl Math Lett. 2002;15(8):955–960. doi: 10.1016/S0893-9659(02)00069-1
  • Manyombe MLM, Mbang J, Tsanou B, et al. Mathematical analysis of a spatiotemporal model for the population ecology of anopheles mosquito. Math Methods Appl Sci. 2020;43:3524–3555. doi: 10.1002/mma.v43.6
  • Hughes H, Britton N. Modeling the use of Wolbachia to control dengue fever transmission. Bull Math Biol. 2013;75:796–818. doi: 10.1007/s11538-013-9835-4
  • Dumont Y, Chiroleu F. Vector control for the Chikungunya disease. Math Biosci Eng. 2010;7:313–345. doi: 10.3934/mbe.2010.7.313