2,739
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

The ATG5 interactome links clathrin-mediated vesicular trafficking with the autophagosome assembly machinery

, , & ORCID Icon

References

  • Dikic, I. and Z. Elazar, Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol, 2018. 19(6): p. 349–364.
  • Nakatogawa, H., Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem, 2013. 55: p. 39–50.
  • Lamb, C.A., T. Yoshimori, and S.A. Tooze, The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol, 2013. 14(12): p. 759–74.
  • Valverde, D.P., et al., ATG2 transports lipids to promote autophagosome biogenesis. J Cell Biol, 2019.
  • Axe, E.L., et al., Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 2008. 182(4): p. 685–701.
  • Ge, L., et al., Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis. EMBO Rep, 2017. 18(9): p. 1586–1603.
  • Ravikumar, B., et al., Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol, 2010. 12(8): p. 747–57.
  • Hailey, D.W., et al., Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010. 141(4): p. 656–67.
  • Shima, T., H. Kirisako, and H. Nakatogawa, COPII vesicles contribute to autophagosomal membranes. J Cell Biol, 2019.
  • Puri, C., et al., The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Dev Cell, 2018. 45(1): p. 114–131 e8.
  • Behrends, C., et al., Network organization of the human autophagy system. Nature, 2010. 466(7302): p. 68–76.
  • Kern, A., I. Dikic, and C. Behl, The integration of autophagy and cellular trafficking pathways via RAB GAPs. Autophagy, 2015. 11(12): p. 2393–7.
  • Carroll, B., et al., The TBC/RabGAP Armus coordinates Rac1 and Rab7 functions during autophagy. Dev Cell, 2013. 25(1): p. 15–28.
  • Longatti, A., et al., TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol, 2012. 197(5): p. 659–75.
  • Lamb, C.A., et al., TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. EMBO J, 2016. 35(3): p. 281–301.
  • Itoh, T., et al., OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol, 2011. 192(5): p. 839–53.
  • Popovic, D. and I. Dikic, TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep, 2014. 15(4): p. 392–401.
  • Puri, C., et al., Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell, 2013. 154(6): p. 1285–99.
  • Anton, Z., et al., A heterodimeric SNX4–SNX7 SNX-BAR autophagy complex coordinates ATG9A trafficking for efficient autophagosome assembly. J Cell Sci, 2020. 133(14).
  • Knaevelsrud, H., et al., Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. J Cell Biol, 2013. 202(2): p. 331–49.
  • Soreng, K., et al., SNX18 regulates ATG9A trafficking from recycling endosomes by recruiting Dynamin-2. EMBO Rep, 2018. 19(4).
  • Judith, D., et al., ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIbeta. J Cell Biol, 2019. 218(5): p. 1634–1652.
  • Noda, T., Autophagy in the context of the cellular membrane-trafficking system: the enigma of Atg9 vesicles. Biochem Soc Trans, 2017. 45(6): p. 1323–1331.
  • Tooze, S.A., A. Abada, and Z. Elazar, Endocytosis and autophagy: exploitation or cooperation? Cold Spring Harb Perspect Biol, 2014. 6(5): p. a018358.
  • Cadwell, K. and J. Debnath, Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins. J Cell Biol, 2018. 217(3): p. 813–822.
  • Malhotra, V., Unconventional protein secretion: an evolving mechanism. EMBO J, 2013. 32(12): p. 1660–4.
  • Rabouille, C., V. Malhotra, and W. Nickel, Diversity in unconventional protein secretion. J Cell Sci, 2012. 125(Pt 22): p. 5251–5.
  • Dupont, N., et al., Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J, 2011. 30(23): p. 4701–11.
  • Gee, H.Y., et al., Rescue of DeltaF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell, 2011. 146(5): p. 746–60.
  • Gump, J.M., et al., Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol, 2014. 16(1): p. 47–54.
  • Roy, S., et al., Autophagy-Dependent Shuttling of TBC1D5 Controls Plasma Membrane Translocation of GLUT1 and Glucose Uptake. Mol Cell, 2017. 67(1): p. 84–95 e5.
  • Fraser, J., et al., Targeting of early endosomes by autophagy facilitates EGFR recycling and signalling. EMBO Rep, 2019. 20(10): p. e47734.
  • Lee, H.K., et al., In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity, 2010. 32(2): p. 227–39.
  • Schmid, D. and C. Munz, Innate and adaptive immunity through autophagy. Immunity, 2007. 27(1): p. 11–21.
  • Loi, M., et al., Macroautophagy Proteins Control MHC Class I Levels on Dendritic Cells and Shape Anti-viral CD8(+) T Cell Responses. Cell Rep, 2016. 15(5): p. 1076–1087.
  • Kimura, T., et al., Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy. EMBO J, 2017. 36(1): p. 42–60.
  • Heckmann, B.L., et al., LC3-Associated Endocytosis Facilitates beta-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer’s Disease. Cell, 2019.
  • Mizushima, N., et al., Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol, 2001. 152(4): p. 657–68.
  • Tsuboyama, K., et al., The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science, 2016. 354(6315): p. 1036–1041.
  • Hayashi-Nishino, M., et al., A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 2009. 11(12): p. 1433–7.
  • Ktistakis, N.T., E. Karanasios, and M. Manifava, Dynamics of autophagosome formation: a pulse and a sequence of waves. Biochem Soc Trans, 2014. 42(5): p. 1389–95.
  • Ktistakis, N.T. and S.A. Tooze, Digesting the Expanding Mechanisms of Autophagy. Trends Cell Biol, 2016. 26(8): p. 624–35.
  • Chen, D., et al., A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol Cell, 2012. 45(5): p. 629–41.
  • Otomo, C., et al., Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol, 2013. 20(1): p. 59–66.
  • Romanov, J., et al., Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J, 2012. 31(22): p. 4304–17.
  • Hooper, K.M., et al., V-ATPase is a universal regulator of LC3 associated phagocytosis and non-canonical autophagy. bioRxiv, 2021. https://www.biorxiv.org/content/10.1101/2021.05.20.444917v1.
  • Xu, Y., et al., A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy. Cell, 2019. 178(3): p. 552–566 e20.
  • Ishibashi, K., et al., Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12-5-16L2 complex. Autophagy, 2011. 7(12): p. 1500–13.
  • Kaksonen, M. and A. Roux, Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 2018. 19(5): p. 313–326.
  • Paczkowski, J.E., B.C. Richardson, and J.C. Fromme, Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends Cell Biol, 2015. 25(7): p. 408–16.
  • Sou, Y.S., et al., The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell, 2008. 19(11): p. 4762–75.
  • Devereaux, K., et al., Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLoS One, 2013. 8(10): p. e76405.
  • Falasca, M. and T. Maffucci, Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J, 2012. 443(3): p. 587–601.
  • Jean, S. and A.A. Kiger, Coordination between RAB GTPase and phosphoinositide regulation and functions. Nat Rev Mol Cell Biol, 2012. 13(7): p. 463–70.
  • Backer, J.M., The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J, 2008. 410(1): p. 1–17.
  • Posor, Y., et al., Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature, 2013. 499(7457): p. 233–7.
  • McMahon, H.T. and E. Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 2011. 12(8): p. 517–33.
  • Yoshioka, K., et al., Endothelial PI3K-C2alpha, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med, 2012. 18(10): p. 1560–9.
  • Tiosano, D., et al., Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLoS Genet, 2019. 15(4): p. e1008088.
  • Franco, I., et al., Phosphoinositide 3-Kinase-C2alpha Regulates Polycystin-2 Ciliary Entry and Protects against Kidney Cyst Formation. J Am Soc Nephrol, 2016. 27(4): p. 1135–44.
  • Engqvist-Goldstein, A.E., et al., An actin-binding protein of the Sla2/Huntingtin interacting protein 1 family is a novel component of clathrin-coated pits and vesicles. J Cell Biol, 1999. 147(7): p. 1503–18.
  • Engqvist-Goldstein, A.E., et al., The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J Cell Biol, 2001. 154(6): p. 1209–23.
  • Poupon, V., et al., Clathrin light chains function in mannose phosphate receptor trafficking via regulation of actin assembly. Proc Natl Acad Sci U S A, 2008. 105(1): p. 168–73.
  • Chen, C.Y. and F.M. Brodsky, Huntingtin-interacting protein 1 (Hip1) and Hip1-related protein (Hip1R) bind the conserved sequence of clathrin light chains and thereby influence clathrin assembly in vitro and actin distribution in vivo. J Biol Chem, 2005. 280(7): p. 6109–17.
  • Legendre-Guillemin, V., et al., HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain. J Biol Chem, 2002. 277(22): p. 19897–904.
  • Legendre-Guillemin, V., et al., Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly through direct binding to the regulatory region of the clathrin light chain. J Biol Chem, 2005. 280(7): p. 6101–8.
  • Hyun, T.S., et al., HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains. J Biol Chem, 2004. 279(14): p. 14294–306.
  • Legendre-Guillemin, V., et al., ENTH/ANTH proteins and clathrin-mediated membrane budding. J Cell Sci, 2004. 117(Pt 1): p. 9–18.
  • Carreno, S., et al., Actin dynamics coupled to clathrin-coated vesicle formation at the trans-Golgi network. J Cell Biol, 2004. 165(6): p. 781–8.
  • Coutts, A.S. and N.B. La Thangue, Actin nucleation by WH2 domains at the autophagosome. Nat Commun, 2015. 6: p. 7888.
  • Gimeno, R.E., Fatty acid transport proteins. Curr Opin Lipidol, 2007. 18(3): p. 271–6.
  • Wu, S., et al., SLC27A4 regulate ATG4B activity and control reactions to chemotherapeutics-induced autophagy in human lung cancer cells. Tumour Biol, 2016. 37(5): p. 6943–52.
  • Martins, I., et al., Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ, 2014. 21(1): p. 79–91.
  • Vanoaica, L., et al., Real-time functional characterization of cationic amino acid transporters using a new FRET sensor. Pflugers Arch, 2016. 468(4): p. 563–72.
  • Wyant, G.A., et al., mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient. Cell, 2017. 171(3): p. 642–654 e12.
  • Hyun, T.S., et al., Hip1-related mutant mice grow and develop normally but have accelerated spinal abnormalities and dwarfism in the absence of HIP1. Mol Cell Biol, 2004. 24(10): p. 4329–40.