2,187
Views
3
CrossRef citations to date
0
Altmetric
Report

TFEBexplorer: An integrated tool to study genes regulated by the stress-responsive Transcription Factor EB

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all

References

  • Hemesath TJ. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994;8(22):2770–80.
  • Steingrimsson E. Mitf, Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Proc Natl Acad Sci U S A. 2002;99(7):4477–82.
  • Pogenberg V. Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF. Genes Dev, 2012. 26;(23):2647–58.
  • Sardiello M. A gene network regulating lysosomal biogenesis and function. Science. 2009;325(5939):473–7.
  • Settembre C. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332(6036):1429–33.
  • Martina JA. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal. 2014;7(309):ra9.
  • Hodgkinson CA. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipperprotein. Cell. 1993;74(2):395–404.
  • Puertollano R. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. 2018;37(11).
  • Martina JA. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8(6):903–14.
  • Settembre C. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. The EMBO journal. 2012;31(5):1095–108.
  • Roczniak-Ferguson A. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012:5(228):ra42.
  • Sardiello M. Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Human molecular genetics. 2005;14(21):3203–17.
  • Gambardella G. GADD34 is a modulator of autophagy during starvation. Sci Adv. 2020;6(39).
  • Palmieri M. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Human molecular genetics. 2011;20(19):3852–66.
  • Ploper D, De Robertis M. The MITF family of transcription factors: Role in endolysosomal biogenesis, Wnt signaling, and oncogenesis. Pharmacol Res. 2015;99:36–43.
  • Martina JA. Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell Mol Life Sci. 2014;71(13):2483–97.
  • Di Malta C. Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth. Science. 2017;356(6343):1188–1192.
  • Martina JA. TFEB and TFE3 are novel components of the integrated stress response. EMBO J. 2016;35(5):479–95.
  • Baird TD, Wek RC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr. 2012;3(3):307–21.
  • Chen L. Fasting-induced hormonal regulation of lysosomal function. Cell Res. 2017.
  • Settembre C. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol. 2013;15(6):647–58.
  • Ferron M. A RANKL-PKCbeta-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. Genes Dev. 2013;27(8):955–69.
  • Mansueto G. Transcription Factor EB Controls Metabolic Flexibility during Exercise. Cell Metab. 2017;25(1):182–196.
  • Visvikis O. Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. Immunity. 2014;40(6):896–909.
  • Brady OA, Martina JA, Puertollano R. Emerging roles for TFEB in the immune response and inflammation. Autophagy. 2018;14(2):181–189.
  • Napolitano G. BallabioA. TFEB at a glance. J Cell Sci. 2016;129(13):2475–81.
  • Koscielny G. Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 2017;45(D1):D985–D994.
  • Carvalho-Silva D. Open Targets Platform: new developments and updates two years on. Nucleic Acids Res. 2019;47(D1):D1056–D1065.
  • Napolitano G. A substrate-specific mTORC1 pathway underlies Birt-Hogg-Dubesyndrome. Nature. 2020;585(7826):597–602.
  • Cancer Genome Atlas Research N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.
  • Perera RM. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 2015;524(7565):361–5.
  • Garraway LA. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436(7047):117–22.
  • Xu J, Zhang XQ, Zhang Z. Transcription factor EB agonists from natural products for treating human diseases with impaired autophagy-lysosome pathway. Chin Med. 2020;15(1):123.
  • Zhang J. Curcumin targets the TFEB-lysosome pathway for induction of autophagy. Oncotarget. 2016;7(46):75659–75671.
  • Zhou X. Resveratrol attenuates endothelial oxidative injury by inducing autophagy via the activation of transcription factor EB. Nutr Metab (Lond). 2019;16:42.
  • Rusmini P. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy. 2019;15(4):631–651.
  • Evans TD. TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy. 2018;14(4):724–726.
  • Nnah IC. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 2019;15(1):151–164.
  • Bothe GW. Selective expression of Cre recombinase in skeletal muscle fibers. Genesis. 2000;26(2):165–6.
  • Calcagni A. Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling. Elife. 2016;5.
  • Kalaitzis AA, Lawrence ND. A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression. BMC Bioinformatics. 2011;12:180.
  • Kanehisa M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic acids research . 2012;40(Database issue):D109–14.
  • Safran M. GeneCards 2002: towards a complete, object-oriented, human gene compendium. Bioinformatics. 2002;18(11):1542–3.
  • Edgar R, Domrachev M, LashAE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.
  • Liu, GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203.
  • Cinque L. MiT/TFE factors control ER-phagy via transcriptional regulation of FAM134B. EMBO J. 2020;39(17):e105696.
  • Lee CM. UCSC Genome Browser enters 20th year. Nucleic Acids Res. 2020;48(D1):D756–D761.
  • Kent WJ. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.
  • Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet. 2004;5(4):276–87.
  • Ambrosini G. Insights gained from a comprehensive all-against-all transcription factor binding motif benchmarking study. Genome Biol. 2020;21(1):114.
  • Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92.
  • Robinson JT. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.
  • De Cegli R. A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes. Genome biology. 2010;11(6):R64.
  • Gentleman RC. Bioconductor: open software development for computational biology and bioinformatics. Genome biology. 2004;5(10):R80.
  • Piccolboni D. The role of echo-laparoscopy in abdominal surgery: five years’ experience in a dedicated center. Surgical endoscopy. 2008;22(1):112–7.
  • Klipper-Aurbach Y. Mathematical formulae for the prediction of the residual beta cell function during the first two years of disease in children and adolescents with insulin-dependent diabetes mellitus. Med Hypotheses. 1995;45(5):486–90.