209
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Purification and Characterization of Novel Antihypertensive and Antioxidative Peptides From Whey Protein Fermentate: In Vitro, In Silico, and Molecular Interactions Studies

, , , , , , , ORCID Icon, , , , & show all
Pages 598-617 | Received 22 Jun 2022, Accepted 04 Aug 2022, Published online: 23 Nov 2022

References

  • González-Martìnez C, Becerra M, Cháfer M, Albors A, Carot vJM, Chiralt A. Influence of substituting milk powder for whey powder on yoghurt quality. Trends Food Sci Technol. 2002;13(9-10):334–40. doi:10.1016/S0924-2244(02)00160-7.
  • Kapila S, Jabadolia LN, Dang AK, Kapila R, Arora S. Augmentation of biofunctional properties of whey protein on fermentation with Lactobacillus helveticus. Milchwissenschaft. 2009;64(3):245.
  • Mansinhbhai CH, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Das S, Hati S. Significance of whey protein hydrolysate on anti-oxidative, ACE-inhibitory and anti-inflammatory activities and release of peptides with biofunctionality: an in vitro and in silico approach. J Food Sci Technol. 2022;59(7):2629–42. doi:10.1007/s13197-021-05282-3.
  • Mauriello G, Moio L, Moschetti G, Piombino P, Addeo F, Coppola S. Characterization of lactic acid bacteria strains on the basis of neutral volatile compounds produced in whey. J Appl Microbiol. 2001;90(6):928–42. doi:10.1046/j.1365-2672.2001.01327.x.
  • Tavares TG, Contreras MM, Amorim M, Martín-Álvarez PJ, Pintado ME, Recio I, Malcata FX. Optimisation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hydrolysates obtained with cardoon extract. Int Dairy J. 2011;21(12):926–33. doi:10.1016/j.idairyj.2011.05.013.
  • Lopez-Fandino R, Otte J, Van Camp J. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int Dairy J. 2006;16(11):1277–93. doi:10.1016/j.idairyj.2006.06.004.
  • Pihlanto A, Korhonen H. Bioactive peptides and proteins. Adv Food Nutr Res. 2003;47(4):175–276.
  • Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol. 2007;18(2):163–9. doi:10.1016/j.copbio.2007.01.013.
  • Hong F, Ming L, Yi S, Zhanxia L, Yongquan W, Chi L. The antihypertensive effect of peptides: a novel alternative to drugs? Peptides. 2008;29(6):1062–71. doi:10.1016/j.peptides.2008.02.005.
  • Pihlanto A. Antioxidative peptides derived from milk proteins. Int Dairy J. 2006;16(11):1306–14. doi:10.1016/j.idairyj.2006.06.005.
  • Dineshbhai CK, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Patil GB, Mankad M, Liu Z, Hati S. Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. Food Biosci. 2022;48:101758. doi:10.1016/j.fbio.2022.101758.
  • Hati S, Sreeja V, Solanki J, Prajapati JB. Influence of proteolytic lactobacilli on ACE inhibitory activity and release of bioactive peptides. Ind J Dairy Sci. 2015;68(3):1–8.
  • Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol. 1971;20(7):1637–48. doi:10.1016/0006-2952(71)90292-9.
  • Hati S, Patel N, Mandal S. Comparative growth behaviour and biofunctionality of lactic acid bacteria during fermentation of soy milk and bovine milk. Probiotics Antimicro Prot. 2018;10(2):277–86. doi:10.1007/s12602-017-9279-5.
  • Panchal G, Hati S, Sakure A. Characterization and production of novel antioxidative peptides derived from fermented goat milk by L. fermentum. LWT. 2020;119:108887. doi:10.1016/j.lwt.2019.108887.
  • Li Y, Jiang B, Zhang T, Mu W, Liu J. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem. 2008;106(2):444–50. doi:10.1016/j.foodchem.2007.04.067.
  • Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics. 2010;11(1):36–43. doi:10.1186/1471-2164-11-36.
  • Solanki D, Hati S, Sakure A. In silico and in vitro analysis of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented camel milk (Camelus dromedarius). Int J Pept Res Ther. 2017;23(4):441–59. doi:10.1007/s10989-017-9577-5.
  • Leon-Lopez A, Perez-Marroquin XA, Campos-Lozada G, Campos-Montiel RG, Aguirre-Alvarez G. Characterization of whey-based fermented beverages supplemented with hydrolyzed collagen: antioxidant activity and bioavailability. Foods. 2020;9(8):1106. doi:10.3390/foods9081106.
  • Khare P, Maurya R, Bhatia R, Mangal P, Singh J, Podili K, Bishnoi M, Kondepudi KK. Polyphenol rich extracts of finger millet and kodo millet ameliorate high fat diet-induced metabolic alterations. Food Funct. 2020;11(11):9833–47. doi:10.1039/D0FO01643H.
  • Gibbs BF, Zougman A, Masse R, Mulligan C. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int. 2004;37(2):123–31. doi:10.1016/j.foodres.2003.09.010.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5. doi:10.1038/227680a0.
  • Carrasco-Castilla J, Hernandez-Alvarez AJ, Jimenez-Martínez C, Jacinto-Hernandez C, Alaiz M, Giron-Calle J, Vioque J, Davila-Ortiz G. Antioxidant and metal chelating activities of Phaseolus vulgaris L. var. Jamapa protein isolates, phaseolin and lectin hydrolysates. Food Chem. 2012;131(4):1157–64. doi:10.1016/j.foodchem.2011.09.084.
  • Yang Y, Zheng N, Yang J, Bu D, Wang J, Ma L, Sun P. Animal species milk identification by comparison of two-dimensional gel map profile and mass spectrometry approach. Int Dairy J. 2014;35(1):15–20. doi:10.1016/j.foodchem.2015.01.137.
  • Parmar H. Isolation and purification of ACE-inhibitory peptides derived from fermented surti goat milk [master’s thesis]. Anand (India): Anand Agricultural University; 2017.
  • Singh S, Singh H, Tuknait A, Chaudhary K, Singh B, Kumaran S, Raghava GP. PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biol Direct. 2015;10(1):1–9. doi:10.1186/s13062-015-0103-4.
  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91. doi:10.1002/jcc.21256.
  • Jendele L, Krivak R, Skoda P, Novotny M, Hoksza D. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res. 2019;47(W1):W345–349. doi:10.1093/nar/gkz424.
  • van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin AMJJ. The HADDOCK2. 2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol. 2016;428(4):720–5. doi:10.1016/j.jmb.2015.09.014.
  • Weng G, Wang E, Wang Z, Liu H, Zhu F, Li D, Hou T. HawkDock: a web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Res. 2019;47(W1):W322–30. doi:10.1093/nar/gkz397.
  • Steel RGD, Torrie JH. Principles and procedure of statistics—a biometrical approach. Tokyo (Japan): McGraw Hill Kogakusha Ltd; 1980. p. 137.
  • Ahn JE, Park SY, Atwal A, Gibbs BF, Lee BH. Angiotensin I‐converting enzyme (ACE) inhibitory peptides from whey fermented by lactobacillus species. J Food Biochem. 2009;33(4):587–602. doi:10.1111/j.1745-4514.2009.00239.x.
  • Luz C, Izzo L, Graziani G, Gaspari A, Ritieni A, Manes J, Meca G. Evaluation of biological and antimicrobial properties of freeze-dried whey fermented by different strains of Lactobacillus plantarum. Food Funct. 2018;9(7):3688–97. doi:10.1039/C8FO00535D.
  • Vermeirssen V, Van Camp J, Decroos K, Van Wijmelbeke L, Verstraete W. The impact of fermentation and in vitro digestion on the formation of angiotensin-I-converting enzyme inhibitory activity from pea and whey protein. J Dairy Sci. 2003;86(2):429–38. doi:10.3168/jds.S0022-0302(03)73621-2.
  • Singh D, Vij S, Singh BP. Antioxidative and antimicrobial activity of whey based fermented soy beverage with curcumin supplementation. Ind J Dairy Sci. 2016;69(2):171–7. doi:http://doi.org/10.5146/IJDS.V69I2.45842.G23856.
  • Zhang X, Li X, Liu L, Wang L, Bora AF, Du L. Covalent conjugation of whey protein isolate hydrolysates and galactose through Maillard reaction to improve the functional properties and antioxidant activity. Int Dairy J. 2020a;102(3):104584. doi:10.1016/j.idairyj.2019.104584.
  • Oh NS, Kwon HS, Lee HA, Joung JY, Lee JY, Lee KB, Shin YK, Baick SC, Park MR, Kim Y, et al. Preventive effect of fermented Maillard reaction products from milk proteins in cardiovascular health. J Dairy Sci. 2014;97(6):3300–13. doi:10.3168/jds.2013-7728.
  • Chen LS, Ma YI, Maubois JL, Chen LJ, Liu QH, Guo JP. Identifcation of yeasts from raw milk and selection for some specific antioxidant properties. Int J Dairy Technol. 2010;63(1):47–54. doi:10.1111/j.1471-0307.2009.00548.x.
  • Embiriekah S, Bulatovic M, Boric M, Zaric D, Arsic S, Rakin M. Selection of Lactobacillus strains for improvement of antioxidant activity of different soy, whey and milk protein substrates. J Hyg Eng Des. 2016;16(2):64–9. doi:http://repository.iep.bg.ac.rs/id/eprint/219.
  • Donkor ON, Henriksson A, Vasiljevic T, Shah NP. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Lait. 2007;87(1):21–38. doi:10.1051/lait:2006023.
  • Pescuma M, Hebert EM, Bru E, de Valdez GF, Mozzi F. Diversity in growth and protein degradation by dairy relevant lactic acid bacteria species in reconstituted whey. J Dairy Res. 2012;79(2):201–8. doi:10.1017/S0022029912000040.
  • Yao M, Luo Y, Shi J, Zhou Y, Xu Q, Li Z. Effects of fermentation by Lactobacillus rhamnosus GG on the antigenicity and allergenicity of four cows’ milk proteins. Food Agric Immunol. 2014;25(4):545–55. doi:10.1080/09540105.2013.852163.
  • Bu G, Luo Y, Zhang Y, Chen F. Effects of fermentation by lactic acid bacteria on the antigenicity of bovine whey proteins. J Sci Food Agric. 2010;90(12):2015–20. doi:10.1002/jsfa.4046.
  • Santana AM, Thomas FC, Silva DG, McCulloch E, Vidal AM, Burchmore RJ, Fagliari JJ, Eckersall PD. Reference 1D and 2D electrophoresis maps for potential disease related proteins in milk whey from lactating buffaloes and blood serum from buffalo calves (Water buffalo, Bubalus bubalis). Res Vet Sci. 2018;118:449–65. doi:10.1016/j.rvsc.2018.04.010.
  • Xia Y, Yu J, Xu W, Shuang Q. Purification and characterization of angiotensin-I-converting enzyme inhibitory peptides isolated from whey proteins of milk fermented with Lactobacillus plantarum QS670. J Dairy Sci. 2020;103(6):4919–28. doi:10.3168/jds.2019-17594.
  • Li J, Zhao J, Wang X, Qayum A, Hussain MA, Liang G, Hou J, Jiang Z, Li A. Novel angiotensin-converting enzyme-inhibitory peptides from fermented bovine milk started by Lactobacillus helveticus KLDS. 31 and Lactobacillus casei KLDS. 105: purification, identification, and interaction mechanisms. Front Microbiol. 2019;10(3):2643. doi:10.3389/fmicb.2019.02643.
  • Rui X, Boye JI, Simpson BK, Prasher SO. Purification and characterization of angiotensin I-converting enzyme inhibitory peptides of small red bean (Phaseolus vulgaris) hydrolysates. J Funct Foods. 2013;5(3):1116–24. doi:10.1016/j.jff.2013.03.008.
  • Mirzaei M, Mirdamadi S, Ehsani MR, Aminlari M, Hosseini E. Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. J Funct Foods. 2015;19(3):259–68. doi:10.1016/j.jff.2015.09.031.
  • Wang ZL, Zhang SS, Wei WA, Feng FQ, Shan WG. A novel angiotensin I converting enzyme inhibitory peptide from the milk casein: virtual screening and docking studies. Agric Sci China. 2011;10(3):463–7. doi:10.1016/S1671-2927(11)60026-6.
  • Quiros A, Ramos M, Muguerza B, Delgado MA, Miguel M, Aleixandre A, Recio I. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int Dairy J. 2007;17(1):33–41. doi:10.1016/j.idairyj.2005.12.011.
  • Wang JH, Liu YL, Ning JH, Yu J, Li XH, Wang FX. Is the structural diversity of tripeptides sufficient for developing functional food additives with satisfactory multiple bioactivities? J Mol Struct. 2013;1040(5):164–70. doi:10.1016/j.molstruc.2013.03.004.
  • Tavares TG, Malcata FX. Whey proteins as source of bioactive peptides against hypertension. In: Hernandez-Ledesma B, Hsieh C-C, editors. Bioactive food peptides in health and disease. Rijeka (Croatia): InTech Design Team; 2013; p. 75–113. doi:10.5772/52680.
  • Van Der Ven C. Biochemical and functional characterisation of casein and whey protein hydrolysates: a study on the correlations between biochemical and functional properties using multivariate data analysis. PhD Thesis. Wageningen University and Research; 2002. https://www.proquest.com/openview/4a7c45c3c91e896df0c3afb9eac0635c/1.
  • Rohit AC, Sathisha K, Aparna HS. A variant peptide of buffalo colostrum β-lactoglobulin inhibits angiotensin I-converting enzyme activity. Eur J Med Chem. 2012;53(2):211–9. doi:10.1016/j.ejmech.2012.03.057.
  • Yamamoto N, Akino A, Takano T. Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J Dairy Sci. 1994;77(4):917–22. doi:10.3168/jds.S0022-0302(94)77026-0.
  • Contreras M, Carron R, Montero MJ, Ramos M, Recio I. Novel casein-derived peptides with antihypertensive activity. Int Dairy J. 2009;19(10):566–73. doi:10.1016/j.idairyj.2009.05.004.
  • Dziuba M, Dziuba B, Iwaniak A. Milk proteins as precursors of bioactive peptides. Acta Sci Pol Technol Aliment. 2009;8(1):71–90.
  • Wu J, Aluko RE, Nakai S. Structural requirements of angiotensin I‐converting enzyme inhibitory peptides: quantitative structure‐activity relationship modeling of peptides containing 4‐10 amino acid residues. QSAR Comb Sci. 2006;25(10):873–80. doi:10.1002/qsar.200630005.
  • Oshima G, Shimabukuro H, Nagasawa K. Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase. Biochim Biophys Acta (BBA)-Enzymol. 1979;566(1):128–37. doi:10.1016/0005-2744(79)90255-9.
  • Ketnawa S, Rawdkuen S. Angiotensin converting enzyme inhibitory peptides from aquatic and their processing by-products: a review. Int J Sci Innov Discoveries. 2013;2:185–99.
  • Puchalska P, Marina Alegre ML, Garcia Lopez MC. Isolation and characterization of peptides with antihypertensive activity in foodstuffs. Crit Rev Food Sci Nutr. 2015;55(4):521–51. doi:10.1080/10408398.2012.664829.
  • Hernandez-Ledesma B, Recio I, Ramos M, Amigo L. Preparation of ovine and caprine β-lactoglobulin hydrolysates with ACE-inhibitory activity. Identification of active peptides from caprine β-lactoglobulin hydrolysed with thermolysin. Int Dairy J. 2002;12(10):805–12. doi:10.1016/S0958-6946(02)00080-8.
  • Gutiez L, Gomez-Sala B, Recio I, del Campo R, Cintas LM, Herranz C, Hernández PE. Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk. Int J Food Microbiol. 2013;166(1):93–101. doi:10.1016/j.ijfoodmicro.2013.06.019.
  • Sagardia I, Iloro I, Elortza F, Bald C. Quantitative structure–activity relationship based screening of bioactive peptides identified in ripened cheese. Int Dairy J. 2013;33(2):184–90. doi:10.1016/j.idairyj.2012.12.006.
  • Zheng Y, Li Y, Zhang Y, Ruan X, Zhang R. Purification, characterization, synthesis, in vitro ACE inhibition and in vivo ­antihypertensive activity of bioactive peptides derived from oil palm kernel glutelin-2 hydrolysates. J Funct Foods. 2017;28(1):48–58. doi:10.1016/j.jff.2016.11.021.
  • Zhang J, Du H, Zhang G, Kong F, Hu Y, Xiong S, Zhao S. Identification and characterization of novel antioxidant peptides from crucian carp (Carassius auratus) cooking juice released in simulated gastrointestinal digestion by UPLC-MS/MS and in silico analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2020b;1136(6):121893. doi:10.1016/j.jchromb.2019.121893.
  • Silva SV, Pihlanto A, Malcata FX. Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from Cynara cardunculus. J Dairy Sci. 2006;89(9):3336–44. doi:10.3168/jds.S0022-0302(06)72370-0.
  • Shen S, Chahal B, Majumder K, You SJ, Wu J. Identification of novel antioxidative peptides derived from a thermolytic hydrolysate of ovotransferrin by LC-MS/MS. J Agric Food Chem. 2010;58(13):7664–72. doi:10.1021/jf101323y.
  • Tsopmo A, Romanowski A, Banda L, Lavoie JC, Jenssen H, Friel JK. Novel anti-oxidative peptides from enzymatic digestion of human milk. Food Chem. 2011;126(3):1138–43. doi:10.1016/j.foodchem.2010.11.146.
  • Siow HL, Gan CY. Extraction, identification, and structure–activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). J Funct Foods. 2016;22(5):1–2. doi:10.1016/j.jff.2016.01.011.
  • Esteve C, Marina ML, Garcia MC. Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chem. 2015;167(3):272–80. doi:10.1016/j.foodchem.2014.06.090.
  • Liu R, Zheng W, Li J, Wang L, Wu H, Wang X, Shi L. Rapid identification of bioactive peptides with antioxidant activity from the enzymatic hydrolysate of Mactra veneriformis by UHPLC–Q-TOF mass spectrometry. Food Chem. 2015;167:484–9. doi:10.1016/j.foodchem.2014.06.113.
  • Girgih AT, He R, Malomo S, Offengenden M, Wu J, Aluko RE. Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. J Funct Foods. 2014;6(2):384–94. doi:10.1016/j.jff.2013.11.005.
  • Lopez-Exposito I, Quiros A, Amigo L, Recio I. Casein hydrolysates as a source of antimicrobial, antioxidant and antihypertensive peptides. Lait. 2007;87(4-5):241–9. doi:10.1051/lait:2007019.
  • HernandezLedesma B, Miralles B, Amigo L, Ramos M, Recio I. Identification of antioxidant and ACE‐inhibitory peptides in fermented milk. J Sci Food Agric. 2005;85(6):1041–8. doi:10.1002/jsfa.2063.
  • De Gobba C, Tompa G, Otte J. Bioactive peptides from caseins released by cold active proteolytic enzymes from Arsukibacterium ikkense. Food Chem. 2014;165:205–15. doi:10.1016/j.foodchem.2014.05.082.
  • Tonolo F, Fiorese F, Moretto L, Folda A, Scalcon V, Grinzato A, Ferro S, Arrigoni G, Bindoli A, Feller E, et al. Identification of new peptides from fermented milk showing antioxidant properties: mechanism of action. Antioxidants. 2020;9(2):117. doi:10.3390/antiox9020117.
  • Wali A, Mijiti Y, Yanhua G, Yili A, Aisa HA, Kawuli A. Isolation and identification of a novel antioxidant peptide from chickpea (Cicer arietinum L.) sprout protein hydrolysates. Int J Pept Res Ther. 2021;27(1):219–27. doi:10.1007/s10989-020-10070-2.
  • Aleman A, Gimenez B, Perez-Santin E, Gomez-Guillen MC, Montero P. Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate. Food Chem. 2011;125(2):334–41. doi:10.1016/j.foodchem.2010.08.058.
  • Zou TB, He TP, Li HB, Tang HW, Xia EQ. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules. 2016;21(1):72. doi:10.3390/molecules21010072.
  • Sheng J, Yang X, Chen J, Peng T, Yin X, Liu W, Liang M, Wan J, Yang X. Antioxidative effects and mechanism study of bioactive peptides from defatted walnut (Juglans regia L.) meal ­hydrolysate. J Agric Food Chem. 2019;67(12):3305–12. doi:10.1021/acs.jafc.8b05722.
  • Chang SK, Ismail A, Yanagita T, Esa NM, Baharuldin MT. Antioxidant peptides purified and identified from the oil palm (Elaeis guineensis Jacq.) kernel protein hydrolysate. J Funct Foods. 2015;14:63–75. doi:10.1016/j.jff.2015.01.011.
  • Delgado MC, Nardo A, Pavlovic M, Rogniaux H, Anon MC, Tironi VA. Identification and characterization of antioxidant peptides obtained by gastrointestinal digestion of amaranth proteins. Food Chem. 2016;197:1160–7. doi:10.1016/j.foodchem.2015.11.092.
  • Xia Y, Bamdad F, Gänzle M, Chen L. Fractionation and characterization of antioxidant peptides derived from barley glutelin by enzymatic hydrolysis. Food Chem. 2012;134(3):1509–18. doi:10.1016/j.foodchem.2012.03.063.
  • Yan QJ, Huang LH, Sun Q, Jiang ZQ, Wu X. Isolation, identification and synthesis of four novel antioxidant peptides from rice residue protein hydrolyzed by multiple proteases. Food Chem. 2015;179:290–5. doi:10.1016/j.foodchem.2015.01.137.
  • Chourasia R, Padhi S, Chiring Phukon L, Abedin MM, Singh SP, Rai AK. A potential peptide from soy cheese produced using Lactobacillus delbrueckii WS4 for effective inhibition of SARS-CoV-2 main protease and S1 glycoprotein. Front Mol Biosci. 2020;7:601753. doi:10.3389/fmolb.2020.601753.
  • Talukdar R, Padhi S, Rai AK, Masi M, Evidente A, Jha DK, Cimmino A, Tayung K. Isolation and characterization of an endophytic fungus Colletotrichum coccodes producing tyrosol from Houttuynia cordata Thunb. using ITS2 RNA secondary structure and molecular docking study. Front Bioeng Biotechnol. 2021;9:650247. doi:10.3389/fbioe.2021.650247.
  • Rahman A, Hoque MM, Khan MA, Sarwar MG, Halim MA. Non-covalent interactions involving halogenated derivatives of capecitabine and thymidylate synthase: a computational approach. Springerplus. 2016;5(1):1–18. doi:10.1186/s40064-016-1844-y.
  • Padhi S, Sanjukta S, Chourasia R, Labala RK, Singh SP, Rai AK. A multifunctional peptide from Bacillus fermented soybean for effective inhibition of SARS-CoV-2 S1 receptor binding domain and modulation of Toll like receptor 4: a molecular docking study. Front Mol Biosci. 2021;8:636647.
  • Kaldas MI, Walle UK, Van Der Woude H, McMillan JM, Walle T. Covalent binding of the flavonoid quercetin to human serum albumin. J Agric Food Chem. 2005;53(10):4194–7. doi:10.1021/jf050061m.
  • Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (Shanghai). 2007;39(8):549–59. doi:10.1111/j.1745-7270.2007.00320.x.
  • Ferraro V, Madureira AR, Sarmento B, Gomes A, Pintado ME. Study of the interactions between rosmarinic acid and bovine milk whey protein α-lactalbumin, β-lactoglobulin and lactoferrin. Food Res Int. 2015;77:450–9. doi:10.1016/j.foodres.2015.08.024.
  • Andrade J, Pereira CG, de Almeida Junior JC, Viana CC, de Oliveira Neves LN, da Silva PH, Bell MJ, dos Anjos VD. FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT-Food Sci Technol. 2019;99:166–72. doi:10.1016/j.lwt.2018.09.079.
  • Leon-Lopez A, Fuentes-Jimenez L, Hernandez-Fuentes AD, Campos-Montiel RG, Aguirre-Alvarez G. Hydrolysed collagen from sheepskins as a source of functional peptides with antioxidant activity. Int J Mol Sci. 2019;20(16):3931. doi:10.3390/ijms20163931.
  • Andrade J, Pereira CG, Ranquine T, Azarias CA, Bell MJ, de Carvalho dos Anjos V. Long-term ripening evaluation of ewes’ cheeses by Fourier-transformed infrared spectroscopy under real industrial conditions. J Spectro. 2018;2018:1–9. doi:10.1155/2018/1381864.
  • Martin-del-Campo ST, Picque D, Cosio-Ramirez R, Corrieu G. Middle infrared spectroscopy characterization of ripening stages of Camembert-type cheeses. Int Dairy J. 2007;17(7):835–45. doi:10.1016/j.idairyj.2006.10.003.
  • Subramanian A, Rodriguez-Saona L. Fourier transform infrared (FTIR) spectroscopy. In: Sun DW, editor. Infrared spectroscopy for food quality analysis and control. USA: Elsevier Inc., Academic Press; 2009. p. 145–78. doi:10.1016/B978-0-12-374136-3.00007-9.
  • Zhou Q, Sun SQ, Yu L, Xu CH, Noda I, Zhang XR. Sequential changes of main components in different kinds of milk powders using two-dimensional infrared correlation analysis. J Mol Struct. 2006;799(1-3):77–84. doi:10.1016/j.molstruc.2006.03.025.
  • Mandrika I, Muceniece R, Wikberg JE. Effects of melanocortin peptides on lipopolysaccharide/interferon-gamma-induced NF-kappaB DNA binding and nitric oxide production in macrophage-like RAW 264.7 cells: evidence for dual mechanisms of action. Biochem Pharmacol. 2001;61(5):613–21. doi:10.1016/S0006-2952(00)00583-9.
  • Tellez A, Corredig M, Brovko LY, Griffiths MW. Characterization of immune-active peptides obtained from milk fermented by Lactobacillus helveticus. J Dairy Res. 2010;77(2):129–36. doi:10.1017/S002202990999046X.
  • Kariyawasam KM, Lee NK, Paik HD. Synbiotic yoghurt supplemented with novel probiotic Lactobacillus brevis KU200019 and fructooligosaccharides. Food Biosci. 2021;39:100835. doi:10.1016/j.fbio.2020.100835.
  • Kang CH, Kim JS, Kim H, Park HM, Paek NS. Heat-killed lactic acid bacteria inhibit nitric oxide production via inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. Probiotics Antimicrob Proteins. 2021;13(6):1530–8. doi:10.1007/s12602-021-09781-9.
  • Hwang SM, Chen CY, Chen SS, Chen JC. Chitinous materials inhibit nitric oxide production by activated RAW 264.7 macrophages. Biochem Biophys Res Commun. 2000;271(1):229–33. doi:10.1006/bbrc.2000.2602.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.