472
Views
1
CrossRef citations to date
0
Altmetric
Emerging Topics in Nutrition

Brazil Nut-Enriched Diet Modulates Enteric Glial Cells and Gut Microbiota in an Experimental Model of Chronic Kidney Disease

ORCID Icon, ORCID Icon, , , , , , , , , & ORCID Icon show all
Pages 201-212 | Received 13 Jan 2023, Accepted 08 Aug 2023, Published online: 23 Aug 2023

References

  • Almeida PP, de Moraes Thomasi BB, Menezes AC, Da Cruz BO, da Silva Costa N, Brito ML, D’Avila Pereira A, Castanon CR, Degani VAN, Magliano DC, et al. 5/6 Nephrectomy affects enteric glial cells and promotes impaired antioxidant defense in the colonic neuromuscular layer. Life Sci. 2022;298:120494. doi:10.1016/j.lfs.2022.120494.
  • Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019;34(6):975–91. doi:10.1007/s00467-018-4005-4.
  • Kim JE, Kim H-E, Park JI, Cho H, Kwak M-J, Kim B-Y, Yang SH, Lee JP, Kim DK, Joo KW, et al. The association between gut microbiota and uremia of chronic kidney disease. Microorganisms. 2020;8(6):907. doi:10.3390/microorganisms8060907.
  • Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol. 2021;18(8):571–87. doi:10.1038/s41575-021-00423-7.
  • Antonioli L, D’Antongiovanni V, Pellegrini C, Fornai M, Benvenuti L, di Carlo A, van den Wijngaard R, Caputi V, Cerantola S, Giron MC, et al. Colonic dysmotility associated with high-fat diet-induced obesity: role of enteric glia. FASEB J. 2020;34(4):5512–24. doi:10.1096/fj.201901844R.
  • Hosseinifard ES, Morshedi M, Bavafa-Valenlia K, Saghafi-Asl M. The novel insight into anti-inflammatory and anxiolytic effects of psychobiotics in diabetic rats: possible link between gut microbiota and brain regions. Eur J Nutr. 2019;58(8):3361–75. doi:10.1007/s00394-019-01924-7.
  • Luo P, Liu D, Li C, He WX, Zhang CL, Chang MJ. Enteric glial cell activation protects enteric neurons from damage due to diabetes in part via the promotion of neurotrophic factor release. Neurogastroenterol Motil. 2018;30(10):e13368. doi:10.1111/nmo.13368.
  • Stenkamp-Strahm C, Patterson S, Boren J, Gericke M, Balemba O. High-fat diet and age-dependent effects on enteric glial cell populations of mouse small intestine. Auton Neurosci. 2013;177(2):199–210. doi:10.1016/j.autneu.2013.04.014.
  • Bodnar M, Szczyglowska M, Konieczka P, Namiesnik J. Methods of selenium supplementation: bioavailability and determination of selenium compounds. Crit Rev Food Sci Nutr. 2016;56(1):36–55. doi:10.1080/10408398.2012.709550.
  • Cardoso BR, Duarte GBS, Reis BZ, Cozzolino SMF. Brazil nuts: nutritional composition, health benefits and safety aspects. Food Res Int. 2017;100(Pt 2):9–18. doi:10.1016/j.foodres.2017.08.036.
  • Kieliszek M. Selenium(-)fascinating microelement, properties and sources in food. Molecules. 2019;24(7):1298. doi:10.3390/molecules24071298.
  • Almeida PP, Thomasi BBM, Costa NDS, Valdetaro L, Pereira AD, Gomes ALT, Stockler-Pinto MB. Brazil Nut (Bertholletia excelsa H.B.K) retards gastric emptying and modulates enteric glial cells in a dose-dependent manner. J Am Nutr Assoc. 2022;41(2):157–65. doi:10.1080/07315724.2020.1852981.
  • Callejon-Leblic B, Selma-Royo M, Collado MC, Gomez-Ariza JL, Abril N, Garcia-Barrera T. Untargeted gut metabolomics to delve the interplay between selenium supplementation and gut microbiota. J Proteome Res. 2022;21(3):758–67. doi:10.1021/acs.jproteome.1c00411.
  • Gangadoo S, Dinev I, Chapman J, Hughes RJ, Van TTH, Moore RJ, Stanley D. Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Appl Microbiol Biotechnol. 2018;102(3):1455–66. doi:10.1007/s00253-017-8688-4.
  • John JA, Shahidi F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J Funct Foods. 2010;2(3):196–209. doi:10.1016/j.jff.2010.04.008.
  • Pacheco-Ordaz R, Wall-Medrano A, Goni MG, Ramos-Clamont-Montfort G, Ayala-Zavala JF, Gonzalez-Aguilar GA. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Lett Appl Microbiol. 2018;66(1):25–31. doi:10.1111/lam.12814.
  • Stockler-Pinto MB, Mafra D, Moraes C, Lobo J, Boaventura GT, Farage NE, Silva WS, Cozzolino SF, Malm O. Brazil nut (Bertholletia excelsa, H.B.K.) improves oxidative stress and inflammation biomarkers in hemodialysis patients. Biol Trace Elem Res. 2014;158(1):105–12. doi:10.1007/s12011-014-9904-z.
  • Stockler-Pinto MB, Malm O, Moraes C, Farage NE, Silva WS, Cozzolino SM, Mafra D. A follow-up study of the chronic kidney disease patients treated with Brazil nut: focus on inflammation and oxidative stress. Biol Trace Elem Res. 2015;163(1–2):67–72. doi:10.1007/s12011-014-0167-5.
  • Carrero JJ, Hecking M, Chesnaye NC, Jager KJ. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat Rev Nephrol. 2018;14(3):151–64. doi:10.1038/nrneph.2017.181.
  • Diwan V, Small D, Kauter K, Gobe GC, Brown L. Gender differences in adenine-induced chronic kidney disease and cardiovascular complications in rats. Am J Physiol Renal Physiol. 2014;307(11):F1169–78. doi:10.1152/ajprenal.00676.2013.
  • Swartling O, Rydell H, Stendahl M, Segelmark M, Trolle Lagerros Y, Evans M. CKD progression and mortality among men and women: a nationwide study in Sweden. Am J Kidney Dis. 2021;78(2):190–1. doi:10.1053/j.ajkd.2020.11.026.
  • Cruz-Orive LM, Weibel ER. Recent stereological methods for cell biology: a brief survey. Am J Physiol. 1990;258(4 Pt 1):L148–56. doi:10.1152/ajplung.1990.258.4.L148.
  • Reeves PG, Nielsen FH, Fahey GC. Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123(11):1939–51. doi:10.1093/jn/123.11.1939.
  • Stockler-Pinto MB, Mafra D, Farage NE, Boaventura GT, Cozzolino SM. Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition. 2010;26(11–12):1065–9. doi:10.1016/j.nut.2009.08.006.
  • Zhu HC, Zhao J, Luo CY, Li QQ. Gastrointestinal dysfunction in a Parkinson’s disease rat model and the changes of dopaminergic, nitric oxidergic, and cholinergic neurotransmitters in myenteric plexus. J Mol Neurosci. 2012;47(1):15–25. doi:10.1007/s12031-011-9560-0.
  • Swaminathan M, Fung C, Finkelstein DI, Bornstein JC, Foong JPP. Alpha-synuclein regulates development and function of cholinergic enteric neurons in the mouse colon. Neurosci. 2019;423:76–85. doi:10.1016/j.neuroscience.2019.10.029.
  • Hermann-Bank ML, Skovgaard K, Stockmarr A, Larsen N, Molbak L. The gut microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity. BMC Genomics. 2013;14:788. doi:10.1186/1471-2164-14-788.
  • Bacchetti De Gregoris T, Aldred N, Clare AS, Burgess JG. Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. J Microbiol Methods. 2011;86(3):351–6. doi:10.1016/j.mimet.2011.06.010.
  • Ferreira RB, Gill N, Willing BP, Antunes LC, Russell SL, Croxen MA, Finlay BB. The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLOS One. 2011;6(5):e20338. doi:10.1371/journal.pone.0020338.
  • Anselmo NA, Paskakulis LC, Garcias RC, Botelho FFR, Toledo GQ, Cury MFR, Carvalho NZ, Mendes GEF, Iembo T, Bizotto TSG, et al. Prior intake of Brazil nuts attenuates renal injury induced by ischemia and reperfusion. J Bras Nefrol. 2018;40(1):10–7. doi:10.1590/1678-46a85-jbn-3819.
  • Cury MFR, Olivares EQ, Garcias RC, Toledo GQ, Anselmo NA, Paskakulis LC, Botelho FFR, Carvalho NZ, Silva AAD, Agren C, et al. Inflammation and kidney injury attenuated by prior intake of Brazil nuts in the process of ischemia and reperfusion. J Bras Nefrol. 2018;40(4):312–8. doi:10.1590/2175-8239-JBN-2018-0016.
  • Rahimlu M, Shab-Bidar S, Djafarian K. Body mass index and all-cause mortality in chronic kidney disease: a dose-response meta-analysis of observational studies. J Ren Nutr. 2017;27(4):225–32. doi:10.1053/j.jrn.2017.01.016.
  • Carrero JJ, Stenvinkel P, Cuppari L, Ikizler TA, Kalantar-Zadeh K, Kaysen G, Mitch WE, Price SR, Wanner C, Wang AY, et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr. 2013;23(2):77–90. doi:10.1053/j.jrn.2013.01.001.
  • Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, Franch H, Guarnieri G, Ikizler TA, Kaysen G, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73(4):391–8. doi:10.1038/sj.ki.5002585.
  • Carrero JJ, Thomas F, Nagy K, Arogundade F, Avesani CM, Chan M, Chmielewski M, Cordeiro AC, Espinosa-Cuevas A, Fiaccadori E, et al. Global prevalence of protein-energy wasting in kidney disease: a meta-analysis of contemporary observational studies from the international society of renal nutrition and metabolism. J Ren Nutr. 2018;28(6):380–92. doi:10.1053/j.jrn.2018.08.006.
  • Koppe L, Fouque D, Kalantar-Zadeh K. Kidney cachexia or protein-energy wasting in chronic kidney disease: facts and numbers. J Cachexia Sarcopenia Muscle. 2019;10(3):479–84. doi:10.1002/jcsm.12421.
  • Hanna RM, Ghobry L, Wassef O, Rhee CM, Kalantar-Zadeh K. A practical approach to nutrition, protein-energy wasting, sarcopenia, and cachexia in patients with chronic kidney disease. Blood Purif. 2020;49(1–2):202–11. doi:10.1159/000504240.
  • da Silva Costa N, Almeida PP, Da Cruz BO, Brito ML, Maldonado-Campos J, Menezes AC, Figueiredo MS, Magliano AC, Pereira AD, Stockler-Pinto MB. Supplementation of diet with Brazil nut modulates body composition, bone parameters, and lipid peroxidation in Wistar rats. J Food Biochem. 2022;46(10):e14294.doi:10.1111/jfbc.14294.
  • Wang K, Qian D, Hu Y, Cheng Y, Ge S, Yao Y. Nut consumption and effects on chronic kidney disease and mortality in the United States. Am J Nephrol. 2022;53(6):503–12. doi:10.1159/000524382.
  • Grubisic V, Verkhratsky A, Zorec R, Parpura V. Enteric glia regulate gut motility in health and disease. Brain Res Bull. 2018;136:109–17. doi:10.1016/j.brainresbull.2017.03.011.
  • de Oliveira MR. The effects of ellagic acid upon brain cells: a mechanistic view and future directions. Neurochem Res. 2016;41(6):1219–28. doi:10.1007/s11064-016-1853-9.
  • Wang GQ, He XM, Zhu GF, Li DD, Shi JS, Zhang F. Ellagic acid supports neuron by regulating astroglia Nrf2. Biotechnol Appl Biochem. 2019;66(5):738–43. doi:10.1002/bab.1791.
  • Yu JZ, Wang J, Sheridan SD, Perlis RH, Rasenick MM. N-3 polyunsaturated fatty acids promote astrocyte differentiation and neurotrophin production independent of cAMP in patient-derived neural stem cells. Mol Psychiatry. 2021;26(9):4605–15. doi:10.1038/s41380-020-0786-5.
  • Zgorzynska E, Dziedzic B, Markiewicz M, Walczewska A. Omega-3 PUFAs suppress IL-1beta-induced hyperactivity of immunoproteasomes in astrocytes. IJMS. 2021;22(11):5410. doi:10.3390/ijms22115410.
  • Abdelfattah MS, Badr SEA, Lotfy SA, Attia GH, Aref AM, Abdel Moneim AE, Kassab RB. Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotox Res. 2020;37(1):77–92. doi:10.1007/s12640-019-00086-y.
  • Rahn J, Lennicke C, Kipp AP, Muller AS, Wessjohann LA, Lichtenfels R, Seliger B. Altered protein expression pattern in colon tissue of mice upon supplementation with distinct selenium compounds. Proteomics. 2017;17(11):1600486. doi:10.1002/pmic.201600486.
  • Turovsky EA, Mal’tseva VN, Sarimov RM, Simakin AV, Gudkov SV, Plotnikov EY. Features of the cytoprotective effect of selenium nanoparticles on primary cortical neurons and astrocytes during oxygen-glucose deprivation and reoxygenation. Sci Rep. 2022;12(1):1710. doi:10.1038/s41598-022-05674-1.
  • Shi C, Yue F, Shi F, Qin Q, Wang L, Wang G, Mu L, Liu D, Li Y, Yu T, et al. Selenium-containing amino acids protect dextran sulfate sodium-induced colitis via ameliorating oxidative stress and intestinal inflammation. J Inflamm Res. 2021;14:85–95. doi:10.2147/JIR.S288412.
  • Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915–28. doi:10.1083/jcb.201708007.
  • Cheng Y, Takeuchi H, Sonobe Y, Jin S, Wang Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T, Suzumura A. Sirtuin 1 attenuates oxidative stress via upregulation of superoxide dismutase 2 and catalase in astrocytes. J Neuroimmunol. 2014;269(1–2):38–43. doi:10.1016/j.jneuroim.2014.02.001.
  • Linan-Rico A, Turco F, Ochoa-Cortes F, Harzman A, Needleman BJ, Arsenescu R, Abdel-Rasoul M, Fadda P, Grants I, Whitaker E, et al. Molecular signaling and dysfunction of the human reactive enteric glial cell phenotype: implications for GI infection, IBD, POI, neurological, motility, and GI disorders. Inflamm Bowel Dis. 2016;22(8):1812–34. doi:10.1097/MIB.0000000000000854.
  • Xiang J, Zhang J, Cai X, Yang F, Zhu W, Zhang W, Cai M, Yu Z, Li X, Wu T, et al. Bilobalide protects astrocytes from oxygen and glucose deprivation-induced oxidative injury by upregulating manganese superoxide dismutase. Phytother Res. 2019;33(9):2329–36. doi:10.1002/ptr.6414.
  • DeKosky ST, Taffe KM, Abrahamson EE, Dixon CE, Kochanek PM, Ikonomovic MD. Time course analysis of hippocampal nerve growth factor and antioxidant enzyme activity following lateral controlled cortical impact brain injury in the rat. J Neurotrauma. 2004;21(5):491–500. doi:10.1089/089771504774129838.
  • Saidi SA, Abdelkafi S, Jbahi S, van Pelt J, El-Feki A. Temporal changes in hepatic antioxidant enzyme activities after ischemia and reperfusion in a rat liver ischemia model: effect of dietary fish oil. Hum Exp Toxicol. 2015;34(3):249–59. doi:10.1177/0960327114531991.
  • Yi SS, Hwang IK, Kim DW, Shin JH, Nam SM, Choi JH, Lee CH, Won MH, Seong JK, Yoon YS. The chronological characteristics of SOD1 activity and inflammatory response in the hippocampi of STZ-induced type 1 diabetic rats. Neurochem Res. 2011;36(1):117–28. doi:10.1007/s11064-010-0280-6.
  • Fu X, Liu Z, Zhu C, Mou H, Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr. 2019;59(sup1):S130–S52. doi:10.1080/10408398.2018.1542587.
  • Seguella L, Palenca I, Franzin SB, Zilli A, Esposito G. Mini-review: interaction between intestinal microbes and enteric glia in health and disease. Neurosci Lett. 2023;806:137221. doi:10.1016/j.neulet.2023.137221.
  • Seguella L, Pesce M, Capuano R, Casano F, Pesce M, Corpetti C, Vincenzi M, Maftei D, Lattanzi R, Del Re A, et al. High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut–brain axis that are required for anxiogenic and depressive-like behaviors. J Neuroinflammation. 2021;18(1):115. doi:10.1186/s12974-021-02164-5.
  • Vicentini FA, Keenan CM, Wallace LE, Woods C, Cavin JB, Flockton AR, Macklin WB, Belkind-Gerson J, Hirota SA, Sharkey KA. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome. 2021;9(1):210. doi:10.1186/s40168-021-01165-z.
  • Martin-Del-Campo F, Avesani CM, Stenvinkel P, Lindholm B, Cueto-Manzano AM, Cortes-Sanabria L. Gut microbiota disturbances and protein-energy wasting in chronic kidney disease: a narrative review. J Nephrol. 2023;36(3):873–83. doi:10.1007/s40620-022-01560-1.
  • Hu J, Zhong X, Liu Y, Yan J, Zhou D, Qin D, Xiao X, Zheng Y, Wen L, Tan R, et al. Correlation between intestinal flora disruption and protein-energy wasting in patients with end-stage renal disease. BMC Nephrol. 2022;23(1):130. doi:10.1186/s12882-022-02762-2.
  • Ding X, Jian T, Li J, Lv H, Tong B, Li J, Meng X, Ren B, Chen J. Chicoric acid ameliorates nonalcoholic fatty liver disease via the AMPK/Nrf2/NFkappaB signaling pathway and restores gut microbiota in high-fat-diet-fed mice. Oxid Med Cell Longev. 2020;2020:9734560. doi:10.1155/2020/9734560.
  • Gao Y, Liu Y, Ma F, Sun M, Song Y, Xu D, Mu G, Tuo Y. Lactobacillus plantarum Y44 alleviates oxidative stress by regulating gut microbiota and colonic barrier function in Balb/C mice with subcutaneous d-galactose injection. Food Funct. 2021;12(1):373–86. doi:10.1039/d0fo02794d.
  • Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxidants. 2018;7(5):66. doi:10.3390/antiox7050066.
  • Kume WT, de Jesus Porto EP, de Lara Spada EC, Lisboa DR, Stachack FFF, Terezo AJ, Hernandes T, Takeuchi KP, Dos Santos Elias MP, Gai BM, et al. Acute supplementation of growing rats with Brazil nut flour increases hepatic lipid content but prevents oxidative damage in the liver. J Food Biochem. 2021;45(8):e13834. doi:10.1111/jfbc.13834.
  • Barnes KM, Evenson JK, Raines AM, Sunde RA. Transcript analysis of the selenoproteome indicates that dietary selenium requirements of rats based on selenium-regulated selenoprotein mRNA levels are uniformly less than those based on glutathione peroxidase activity. J Nutr. 2009;139(2):199–206. doi:10.3945/jn.108.098624.
  • Cardoso BR, Lago L, Dordevic AL, Kapp EA, Raines AM, Sunde RA, Roberts BR. Differential protein expression due to Se deficiency and Se toxicity in rat liver. J Nutr Biochem. 2021;98:108831. doi:10.1016/j.jnutbio.2021.108831.
  • Chung S, Barnes JL, Astroth KS. Gastrointestinal microbiota in patients with chronic kidney disease: a systematic review. Adv Nutr. 2019;10(5):888–901. doi:10.1093/advances/nmz028.
  • Stockler-Pinto MB, Lobo J, Moraes C, Leal VO, Farage NE, Rocha AV, Boaventura GT, Cozzolino SM, Malm O, Mafra D. Effect of Brazil nut supplementation on plasma levels of selenium in hemodialysis patients: 12 months of follow-up. J Ren Nutr. 2012;22(4):434–9. doi:10.1053/j.jrn.2011.08.011.
  • Abot A, Fried S, Cani PD, Knauf C. Reactive oxygen species/reactive nitrogen species as messengers in the gut: impact on physiology and metabolic disorders. Antioxid Redox Signal. 2022;37(4–6):394–415. doi:10.1089/ars.2021.0100.
  • Lau WL, Kalantar-Zadeh K, Vaziri ND. The gut as a source of inflammation in chronic kidney disease. Nephron. 2015;130(2):92–8. doi:10.1159/000381990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.