7
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A large dataset for VEP based brain-computer interfaces employing narrow-band code modulation and frequency-phase modulation

, , , , &
Article: 2383860 | Received 10 Jan 2024, Accepted 18 Jul 2024, Published online: 31 Jul 2024

References

  • Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767–791. doi: 10.1016/s1388-2457(02)00057-3.
  • Vidal JJ. Toward direct brain-computer communication. Annu Rev Biophys Bioeng. 1973;2(1):157–180. doi: 10.1146/annurev.bb.02.060173.001105.
  • Gao X, Wang Y, Chen X, et al. Interface, interaction, and intelligence in generalized brain-computer interfaces. Trends Cogn Sci. 2021;25(8):671–684. doi: 10.1016/j.tics.2021.04.003.
  • McFarland DJ, Wolpaw JR. EEG-based brain–computer interfaces. Curr Opin Biomed Eng. 2017;4:194–200. doi: 10.1016/j.cobme.2017.11.004.
  • Ramadan RA, Vasilakos AV. Brain computer interface: control signals review. Neurocomputing. 2017;223:26–44. doi: 10.1016/j.neucom.2016.10.024.
  • Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng. 2018;65(1):104–112. doi: 10.1109/TBME.2017.2694818.
  • Bin G, Gao X, Wang Y, et al. VEP-based brain-computer interfaces: time, frequency, and code modulations [Research Frontier]. IEEE Comput Intell Mag. 2009;4(4):22–26. doi: 10.1109/MCI.2009.934562.
  • Gao S, Wang Y, Gao X, et al. Visual and auditory brain-computer interfaces. IEEE Trans Biomed Eng. 2014;61(5):1436–1447. doi: 10.1109/TBME.2014.2300164.
  • Chen X, Wang Y, Nakanishi M, et al. Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3993–3996. doi: 10.1109/EMBC.2014.6944499.
  • Zhang Y, Xu P, Cheng K, et al. Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface. J Neurosci Methods. 2014;221:32–40. doi: 10.1016/j.jneumeth.2013.07.018.
  • Lin Z, Zhang C, Wu W, et al. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng. 2006;53(12 Pt 2):2610–2614. doi: 10.1109/tbme.2006.886577.
  • Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng. 2015;12(4):046008. doi: 10.1088/1741-2560/12/4/046008.
  • Chen X, Liu B, Wang Y, et al. A spectrally-dense encoding method for designing a high-speed SSVEP-BCI with 120 stimuli. IEEE Trans Neural Syst Rehabil Eng. 2022;30:2764–2772. doi: 10.1109/TNSRE.2022.3208717.
  • Liu B, Chen X, Shi N, et al. Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1998–2007. doi: 10.1109/TNSRE.2021.3114340.
  • Zhang Y, Xu P, Liu T, et al. Multiple frequencies sequential coding for SSVEP-based brain-computer interface. PLoS One. 2012;7(3):e29519. doi: 10.1371/journal.pone.0029519.
  • Chen Y, Yang C, Ye X, et al. Implementing a calibration-free SSVEP-based BCI system with 160 targets. J Neural Eng. 2021;18(4):046094. doi: 10.1088/1741-2552/ac0bfa.
  • Bin G, Gao X, Wang Y, et al. A high-speed BCI based on code modulation VEP. J Neural Eng. 2011;8(2):025015. doi: 10.1088/1741-2560/8/2/025015.
  • Martínez-Cagigal V, Thielen J, Santamaría-Vázquez E, et al. Brain-computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature review. J Neural Eng. 2021;18(6):061002. doi: 10.1088/1741-2552/ac38cf.
  • Liu Y, Wei Q, Lu Z. A multi-target brain-computer interface based on code modulated visual evoked potentials. PLoS One. 2018;13(8):e0202478. doi: 10.1371/journal.pone.0202478.
  • Wei Q, Liu Y, Gao X, et al. A novel c-VEP BCI paradigm for increasing the number of stimulus targets based on grouping modulation with different codes. IEEE Trans Neural Syst Rehabil Eng. 2018;26(6):1178–1187. doi: 10.1109/TNSRE.2018.2837501.
  • Sun Q, Zheng L, Pei W, et al. A 120-target brain-computer interface based on code-modulated visual evoked potentials. J Neurosci Methods. 2022;375:109597. doi: 10.1016/j.jneumeth.2022.109597.
  • Nagel S, Spüler M. World’s fastest brain-computer interface: combining EEG2Code with deep learning. PLoS One. 2019;14(9):e0221909. doi: 10.1371/journal.pone.0221909.
  • Thielen J, van den Broek P, Farquhar J, et al. Broad-band visually evoked potentials: re(con)volution in brain-computer interfacing. PLoS One. 2015;10(7):e0133797. doi: 10.1371/journal.pone.0133797.
  • Spüler Rosenstiel Bogdan MWM. Unsupervised online calibration of a c-VEP brain-computer interface (BCI). Artificial Neural Networks and Machine Learning – ICANN 2013. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013.
  • Turi F, Gayraud NTH, Clerc M. 2020. Auto-calibration of c-VEP BCI by word prediction.
  • Thielen J, Marsman P, Farquhar J, et al. From full calibration to zero training for a code-modulated visual evoked potentials for brain-computer interface. J Neural Eng. 2021;18(5):056007. doi: 10.1088/1741-2552/abecef.
  • Liu B, Huang X, Wang Y, et al. BETA: a large benchmark database toward SSVEP-BCI application. Front Neurosci. 2020;14:627. doi: 10.3389/fnins.2020.00627.
  • Liu B, Wang Y, Gao X, et al. eldBETA: A large eldercare-oriented benchmark database of SSVEP-BCI for the aging population. Sci Data. 2022;9(1):252. doi: 10.1038/s41597-022-01372-9.
  • Ming G, Zhong H, Pei W, et al. A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs. J Neural Eng. 2023;20(2):026010. doi: 10.1088/1741-2552/acbee0.
  • Manyakov NV, Chumerin N, Robben A, et al. Sampled sinusoidal stimulation profile and multichannel fuzzy logic classification for monitor-based phase-coded SSVEP brain-computer interfacing. J Neural Eng. 2013;10(3):036011. doi: 10.1088/1741-2560/10/3/036011.
  • Chen X, Chen Z, Gao S, et al. A high-ITR SSVEP-based BCI speller. Brain-Computer Interfaces. 2014;1(3-4):181–191. doi: 10.1080/2326263X.2014.944469.
  • Wong CM, Wan F, Wang B, et al. Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs. J Neural Eng. 2020;17(1):016026. doi: 10.1088/1741-2552/ab2373.
  • Huang G, Xiao P, Hung YS, et al. A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. Neuroimage. 2013;81:283–293. doi: 10.1016/j.neuroimage.2013.05.017.
  • Tu Y, Hung YS, Hu L, et al. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface. Clin Neurophysiol. 2014;125(12):2372–2383. doi: 10.1016/j.clinph.2014.03.028.
  • Behboodi M, Mahnam A, Marateb H, et al. Optimization of visual stimulus sequence in a brain-computer interface based on code modulated visual evoked potentials. IEEE Trans Neural Syst Rehabil Eng. 2020;28(12):2762–2772. doi: 10.1109/TNSRE.2020.3044947.
  • Tanaka H. Group task-related component analysis (gTRCA): a multivariate method for inter-trial reproducibility and inter-subject similarity maximization for EEG data analysis. Sci Rep. 2020;10(1):84. doi: 10.1038/s41598-019-56962-2.
  • Regan D. Some early uses of evoked brain responses in investigations of human visual function. Vision Res. 2009;49(9):882–897. doi: 10.1016/j.visres.2008.01.017.
  • Wang Y, Wang R, Gao X, et al. A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng. 2006;14(2):234–239.
  • Nagel S, Spüler M. Asynchronous non-invasive high-speed BCI speller with robust non-control state detection. Sci Rep. 2019;9(1):8269. doi: 10.1038/s41598-019-44645-x.
  • Zheng L, Pei W, Gao X, et al. A high-performance brain switch based on code-modulated visual evoked potentials. J Neural Eng. 2022;19(1):016002. doi: 10.1088/1741-2552/ac494f.
  • Yang C, Yan X, Wang Y, et al. Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI. J Neural Eng. 2021;18(4):0460b7. doi: 10.1088/1741-2552/ac127f.
  • Zheng L, Tian S, Dong Y, et al. A large dataset for VEP based brain-computer interfaces employing narrow-band code modulation and frequency-phase modulation. Figshare. Dataset; 2024. doi: 10.6084/m9.figshare.24864243.