263
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Oleoylethanolamide improves energy disposal in a cellular model of Alzheimer’s disease

ORCID Icon, ORCID Icon, &
Article: 2317246 | Received 10 Dec 2023, Accepted 06 Feb 2024, Published online: 25 Feb 2024

References

  • Atlante A, Amadoro G, Latina V, Valenti D. 2022. Therapeutic potential of targeting mitochondria for Alzheimer’s disease treatment. J Clin Med. 11(22):6742. doi: 10.3390/jcm11226742.
  • Bowen KJ, Kris-Etherton PM, Shearer GC, West SG, Reddivari L, Jones PJH. 2017. Oleic acid-derived oleoylethanolamide: a nutritional science perspective. Prog Lipid Res. 67:1–10. doi: 10.1016/j.plipres.2017.04.001.
  • Breijyeh Z, Karaman R. 2020. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules (Basel, Switzerland). 25(24):5789. doi: 10.3390/molecules25245789.
  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. 2010 Dec 1. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal. 13(11):1763–1811. doi: 10.1089/ars.2009.3074. Epub 2010 Aug 28. PMID: 20446769; PMCID: PMC2966482.
  • Calabrese V, Giordano J, Signorile A, Laura Ontario M, Castorina S, De Pasquale C, Eckert G, Calabrese EJ. 2016. Major pathogenic mechanisms in vascular dementia: roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res. 94(12):1588–1603. doi: 10.1002/jnr.23925.
  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Giuffrida Stella AM. 2007. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci. 8(10):766–775. doi: 10.1038/nrn2214.
  • Corbett GT, Gonzalez FJ, Pahan K. 2015. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proc Natl Acad Sci USA. 112(27):8445–8450. doi: 10.1073/pnas.1504890112.
  • Dieter F, Esselun C, Eckert GP. 2022. Redox Active α-Lipoic Acid Differentially Improves Mitochondrial Dysfunction in a Cellular Model of Alzheimer and Its Control Cells. Int J Mol. Sci. 23(16). doi: 10.3390/ijms23169186.
  • Esselun C, Dieter F, Sus N, Frank J, Eckert GP. 2022. Walnut oil reduces Aβ levels and increases neurite length in a cellular model of early Alzheimer disease. Nutrients. 14(9):1694. doi: 10.3390/nu14091694.
  • Friedland-Leuner K, Stockburger C, Denzer I, Eckert GP, Müller WE. 2014. Mitochondrial dysfunction: cause and consequence of Alzheimer’s disease. Prog Mol Biol Transl Sci. 127:183–210.
  • Gao L-B, Yu X-F, Chen Q, Zhou D. 2016. Alzheimer’s disease therapeutics: current and future therapies. Minerva Med. 107(2):108–113.
  • Giudetti AM, Vergara D, Longo S, Friuli M, Eramo B, Tacconi S, Fidaleo M, Dini L, Romano A, Gaetani S. 2021. Oleoylethanolamide reduces hepatic oxidative stress and endoplasmic reticulum stress in high-fat diet-fed rats. Antioxidants (Basel, Switzer-Land). 10(8):1289. doi: 10.3390/antiox10081289.
  • Gonzalez-Aparicio R, Blanco E, Serrano A, Pavon FJ, Parsons LH, Maldonado R, Robledo P, Fernandez-Espejo E, de Fonseca FR. 2014. The systemic administration of oleoylethanolamide exerts neuroprotection of the nigrostriatal system in experimental parkin-sonism. Int J Neuropsychopharmacol. 17(3):455–468. doi: 10.1017/S1461145713001259.
  • González-Aparicio R, Moratalla R. 2014. Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 re-ceptor in a mouse model of Parkinson´s disease. Neurobiol Dis. 62:416–425. doi: 10.1016/j.nbd.2013.10.008.
  • Grewal R, Reutzel M, Dilberger B, Hein H, Zotzel J, Marx S, Tretzel J, Sarafeddinov A, Fuchs C, Eckert GP. 2020. Purified oleocanthal and ligstroside protect against mitochondrial dysfunction in models of early Alzheimer’s disease and brain ageing. Experimental Neurology. 328:113248. doi: 10.1016/j.expneurol.2020.113248.
  • Grimm A, Eckert A. 2017. Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem. 143(4):418–431. doi: 10.1111/jnc.14037.
  • Guzmán M, Lo Verme J, Fu J, Oveisi F, Blázquez C, Piomelli D. 2004. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem. 279(27):27849–27854. doi: 10.1074/jbc.M404087200.
  • Hann SS, Zheng F, Zhao S. 2013. Targeting 3-phosphoinositide-dependent protein kinase 1 by N-acetyl-cysteine through activation of peroxisome proliferators activated receptor alpha in human lung cancer cells, the role of p53 and p65. J Exp Clin Cancer Res. 32(1):43. doi: 10.1186/1756-9966-32-43.
  • Kelley DE, He J, Menshikova EV, Ritov VB. 2002. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 51(10):2944–2950. doi: 10.2337/diabetes.51.10.2944.
  • Laleh P, Yaser K, Abolfazl B, Shahriar A, Mohammad AJ, Nazila F, Alireza O. 2018. Oleoylethanolamide increases the expression of PPAR-Α and reduces appetite and body weight in obese people: a clinical trial. Appetite. 128:44–49. doi: 10.1016/j.appet.2018.05.129.
  • Laleh P, Yaser K, Alireza O. 2019. Oleoylethanolamide: a novel pharmaceutical agent in the management of obesity-an updated review. J Cell Physiol. 234(6):7893–7902. doi: 10.1002/jcp.27913.
  • Lamichane S, Dahal Lamichane B, Kwon S-M. 2018. Pivotal roles of peroxisome proliferator-activated receptors (PPARs) and their signal cascade for cellular and whole-body energy homeostasis. Int J Mol Sci. 19(4):949. doi: 10.3390/ijms19040949.
  • Lin L, Mabou Tagne A, Squire EN, Lee H-L, Fotio Y, Ramirez J, Zheng M, Torrens A, Ahmed F, Ramos R, et al. 2022. Diet-induced obesity disrupts hista-mine-dependent oleoylethanolamide signaling in the mouse liver. Pharmacology. 107(7–8):423–432. doi: 10.1159/000524753.
  • Li G, Wang J, Ye J, Zhang Y, Zhang Y. 2015. PPARα protein expression was increased by four weeks of intermit-tent hypoxic training via AMPKα2-dependent manner in mouse skeletal muscle. PLoS One. 10(4):e0122593. doi: 10.1371/journal.pone.0122593.
  • Ma L, Guo X, Chen W. 2015. Inhibitory effects of oleoylethanolamide (OEA) on H₂O₂-induced human umbilical vein endothelial cell (HUVEC) injury and apolipoprotein E knockout (ApoE-/-) atherosclerotic mice. Int J Clin Exp Pathol. 8(6):6301–6311.
  • Onyango IG, Dennis J, Khan SM. 2016. Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis. 7(2):201–214. doi: 10.14336/AD.2015.1007.
  • Orio L, Alen F, Pavón FJ, Serrano A, Oleoylethanolamide G-B-B. 2018. Neuroinflammation, and alcohol abuse. Front Mol Neurosci. 11:490. doi: 10.3389/fnmol.2018.00490.
  • Payahoo L, Khajebishak Y, Asghari Jafarabadi M, Ostadrahimi A. 2018. Oleoylethanolamide supplementation Re-duces inflammation and oxidative stress in obese people: a clinical trial. Adv Pharm Bull. 8(3):479–487. doi: 10.15171/apb.2018.056.
  • Poornima MS, Sindhu G, Billu A, Sruthi CR, Nisha P, Gogoi P, Baishya, G., G Raghu, K. 2022. Pretreatment of hydroethanolic extract of dillenia indica L. attenuates oleic acid induced NAFLD in HepG2 cells via modulating SIRT-1/p-LKB-1/AMPK, HMGCR & PPAR-α signaling pathways. J Ethnopharmacol. 292:115237. doi: 10.1016/j.jep.2022.115237.
  • Pugazhenthi S, Qin L, Reddy PH. 2017. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta Mol Bas Dis. 1863(5):1037–1045. doi: 10.1016/j.bbadis.2016.04.017.
  • Reutzel M, Grewal R, Joppe A, Eckert GP. 2022. Age-dependent alterations of cognition, mitochondrial function, and beta-amyloid deposition in a murine model of Alzheimer’s disease-A longitudinal study. Front Aging Neurosci. 14:875989. doi: 10.3389/fnagi.2022.875989.
  • Sabahi M, Ahmadi SA, Kazemi A, Mehrpooya M, Khazaei M, Ranjbar A, Mowla A. 2022. The effect of oleoylethanolamide (OEA) add-on treatment on inflammatory, oxidative stress, lipid, and biochemical parameters in the acute ischemic stroke patients: randomized double-blind placebo-controlled study. Oxid Med Cell Longev. 2022:1–11. doi: 10.1155/2022/5721167.
  • Silva MVF, Loures Cd MG, Alves LCV, de SL, Borges KBG, Carvalho Md G. 2019. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci. 26(1):33. doi: 10.1186/s12929-019-0524-y.
  • Stockburger C, Gold VAM, Pallas T, Kolesova N, Miano D, Leuner K, et al. 2014. A cell model for the initial phase of sporadic Alzheimer’s disease. J Alzheimer’s Disease JAD. 42(2):395–411. doi: 10.3233/JAD-140381.
  • Xu W, Tan L, Wang H-F, Jiang T, Tan M-S, Tan L, Zhao Q-F, Li J-Q, Wang J, Yu J-T, et al. 2015. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 86(12):1299–1306. doi: 10.1136/jnnp-2015-310548.
  • Yen F-S, Wei J-C, Yip H-T, Hwu C-M, Diabetes H-C-C. 2022. Hypertension, and the risk of dementia. J Alzheimer’s Disease JAD. 89(1):323–333. doi: 10.3233/JAD-220207.