1,700
Views
703
CrossRef citations to date
0
Altmetric
Research Article

Dipeptidyl-Peptidase IV from Bench to Bedside: An Update on Structural Properties, Functions, and Clinical Aspects of the Enzyme DPP IV

, , &
Pages 209-294 | Published online: 29 Sep 2008

REFERENCES

  • Hopsu-Havu VK, Glenner GG. A new dipeptide naphthylamidase hydrolysing glycyl-prolyl-?-naphthylamide. Histochemie 1966; 7: 197–201.
  • Rawlings ND, Barrett AJ. Evolutionary families of peptidases. Biochem J 1993; 290: 205–18.
  • Barrett AJ, Rawlings ND. Families and clans of serine peptidases. Arch Biochem Biophys 1995; 318: 247–50.
  • Rawlings ND, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res 2000; 28: 323–25.
  • Barrett AJ, Rawlings ND, Woessner JF. Handbook of Proteolytic Enzymes. San Diego: Academic Press, 1998.
  • Rawlings ND, Polgar L, Barrett AJ. A new family of serine-type peptidases related to prolyl oligopeptidase. Biochem J 1991; 279: 907–8.
  • Barrett AJ. Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). Enzyme nomenclature. Recommendations 1992. Supplement 3: corrections and additions (1995). Eur J Biochem 1996; 237: 1–5.
  • Ogata S, Misumi Y, Ikehara Y. Primary structure of rat liver dipeptidyl peptidase IV deduced from its cDNA and identification of the NH2-terminal signal sequence as the membrane-anchoring domain. J Biol Chem 1989; 264: 3596–601.
  • Ulmer AJ, Mattern T, Feller AC, et al. CD26 antigen is a surface dipeptidyl peptidase IV (DPP IV) as characterized by monoclonal antibodies clone TII-19-4-7 and 4EL1C7. Scand J Immunol 1990; 31: 429–35.
  • McCaughan GW, Wickson JE, Creswick PF, et al. Identification of the bile canalicular cell surface molecule GP110 as the ectopeptidase dipeptidyl peptidase IV: an analysis by tissue distribution, purification and N-terminal amino acid sequence. Hepatology 1990; 11: 534–44.
  • Vivier I., Marguet D, Naquet P, et al. Evidence that thymocyte-activating molecule is mouse CD26 (dipeptidyl peptidase IV). J Immunol 1991; 147: 447–54.
  • Marguet D, Bernard AM, Vivier I. et al. cDNA cloning for mouse thymocyte-activating molecule. A multifunctional ecto-dipeptidyl peptidase IV (CD26) included in a subgroup of serine proteases. J Biol Chem 1992; 267: 2200–8.
  • Darmoul D, Lacasa M, Baricault L, et al. Dipeptidyl peptidase IV (CD 26) gene expression in enterocyte-like colon cancer cell lines HT-29 and Caco-2. Cloning of the complete human coding sequence and changes of dipeptidyl peptidase IV mRNA levels during cell differentiation. J Biol Chem 1992; 267: 4824–33.
  • Misumi Y, Hayashi Y, Arakawa F. et al. Molecular cloning and sequence analysis of human dipeptidyl peptidase IV, a serine proteinase on the cell surface. Biochim Biophys Acta 1992; 1131: 333–36.
  • Tanaka T, Camerini D, Seed B. et al. Cloning and functional expression of the T cell activation antigen CD26. J Immunol 1992; 149: 481–86.
  • Abbott CA, Baker E, Sutherland GR, et al. Genomic organization, exact localization, and tissue expression of the human CD26 (dipeptidyl peptidase IV) gene. Immunogenetics 1994; 40: 331–38.
  • Bernard AM, Mattei MG, Pierres M, et al. Structure of the mouse dipeptidyl peptidase IV (CD26) gene. Biochemistry 1994; 33: 15204–14.
  • Durinx C, Lambeir AM, Bosmans E, et al. Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur J Biochem 2000; 267: 5608–13.
  • Torimoto Y, Dang NH, Vivier E, et al. Coassociation of CD26 (dipeptidyl peptidase IV) with CD45 on the surface of human T lymphocytes. J Immunol 1991; 147: 2514–17.
  • Herrera C, Morimoto C, Blanco J, et al. Comodulation of CXCR4 and CD26 in human lymphocytes. J Biol Chem 2001; 276: 19532–39.
  • Girardi ACC, Degray BC, Nagy T, et al. Association of Na+-H+ exchanger isoform NHE3 and dipeptidyl-peptidase IV in the renal proximal tubule. J Biol Chem 2001; 276: 46671–7.
  • Fülöp V, Bocskei Z, Polgar L. Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell 1998; 94: 161–70.
  • Gorrell MD, Gysbers V, McCaughan GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol 2001; 54: 249–64.
  • Demuth HU, Heins J. Catalytic mechanism of dipeptidyl peptidase IV. In: Fleischer B, eds. Dipeptidyl Peptidase IV (CD26) in Metabolism and the Immune Response. Pp 1-35. Heidelberg: Springer-Verlag, 1995.
  • Lambeir AM, Diaz Pereira JF, Chacon P, et al. A prediction of DPP IV/CD26 domain structure from a physico-chemical investigation of dipeptidyl peptidase IV (CD26) from human seminal plasma. Biochim Biophys Acta 1997; 1340: 215–26.
  • Brandt W. Development of a tertiary-structure model of the C-terminal domain of DPP IV. Adv Exp Med Biol 2000; 477: 97–101.
  • Reva B, Finkelstein A, Topiol S. Threading with chemostructural restrictions method for predicting fold and functionally significant residues: application to dipeptidylpeptidase IV (DPP-IV). Proteins 2002; 47: 180–93.
  • Abbott CA, McCaughan GW, Levy MT, et al. Binding to human dipeptidyl peptidase IV by adenosine deaminase and antibodies that inhibit ligand binding involves overlapping, discontinuous sites on a predicted beta propeller domain. Eur J Biochem 1999; 266: 798–810.
  • McCaughan GW, Gorrell MD, Bishop GA, et al. Molecular pathogenesis of liver disease: an approach to hepatic inflammation, cirrhosis and liver transplant tolerance. Immunol Rev 2000; 174: 172–91.
  • Scanlan MJ, Raj BK, Calvo B, et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA 1994; 91: 5657–61.
  • Rettig WJ, Su SL, Fortunato SR, et al. Fibroblast activation protein: purification, epitope mapping and induction by growth factors. Int J Cancer 1994; 58: 385–92.
  • Goldstein LA, Ghersi G, Pineiro-Sanchez ML, et al. Molecular cloning of seprase: a serine integral membrane protease from human melanoma. Biochim Biophys Acta 1997; 1361: 11–19.
  • Park JE, Lenter MC, Zimmermann RN, et al. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 1999; 274: 36505–12.
  • Wesley UV, Albino AP, Tiwari S, et al. A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. J Exp Med 1999; 190: 311–22.
  • Ghersi G, Dong H, Goldstein LA, et al. Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Biol Chem 2002; 277: 29231–41.
  • Mathew S, Scanlan MJ, Mohan Raj BK, et al. The gene for fibroblast activation protein alpha (FAP), a putative cell surface-bound serine protease expressed in cancer stroma and wound healing, maps to chromosome band 2q23. Genomics 1995; 25: 335–37.
  • Niedermeyer J, Enenkel B, Park JE, et al. Mouse fibroblast activation protein-conserved Fap gene organization and biochemical function as a serine protease. Eur J Biochem 1998; 254: 650–4.
  • Goossens F, De Meester I, Vanhoof G, et al. The purification, characterization and analysis of primary and secondary-structure of prolyl oligopeptidase from human lymphocytes. Evidence that the enzyme belongs to the ?/? hydrolase-fold family. Eur J Biochem 1995; 233: 432–41.
  • Ogata S, Misumi Y, Tsuji E, et al. Identification of the active site residues in dipeptidyl peptidase IV by affinity labeling and site-directed mutagenesis. Biochemistry 1992; 31: 2582–7.
  • Abbott CA, McCaughan GW, Gorrell MD. Two highly conserved glutamic acid residues in the predicted beta propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett 1999; 458: 278–84.
  • Brandt W, Ludwig O, Thondorf I, et al. A new mechanism in serine proteases catalysis exhibited by dipeptidyl peptidase IV (DP IV)—results of PM3 semiempirical thermody-namic studies supported by experimental results. Eur J Biochem 1996; 236: 109–14.
  • Fülöp V, Szeltner Z, Renner V, et al. Structures of prolyl oligopeptidase substrate/inhibitor complexes. Use of inhibitor binding for titration of the catalytic histidine residue. J Biol Chem 2001; 276: 1262–6.
  • Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 1967; 27: 157–62.
  • Bella AM, Jr., Erickson RH, Kim YS. Rat intestinal brush border membrane dipeptidyl-aminopeptidase IV: kinetic properties and substrate specificities of the purified enzyme. Arch Biochem Biophys 1982; 218: 156–62.
  • Heins J, Welker P, Schonlein C, et al. Mechanism of proline-specific proteinases: (I) substrate specificity of dipeptidyl peptidase IV from pig kidney and proline-specific endopeptidase from Flavobacterium meningosepticum. Biochim Biophys Acta 1988; 954: 161–9.
  • Bongers J, Lambros T, Ahmad M, et al. Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. Biochim Biophys Acta 1992; 1122: 147–53.
  • Martin RA, Cleary DL, Guido DM, et al. Dipeptidyl peptidase IV (DPP-IV) from pig kidney cleaves analogs of bovine growth hormone-releasing factor (bGRF) modified at position 2 with Ser, Thr or Val. Extended DPP-IV substrate specificity? Biochim Biophys Acta 1993; 1164: 252–60.
  • Brandt W, Lehmann T, Thondorf I, et al. A model of the active site of dipeptidyl peptidase IV predicted by comparative molecular field analysis and molecular modelling simulations. Int J Pept Protein Res 1995; 46: 494–507.
  • Pospisilik JA, Hinke SA, Pederson RA, et al. Metabolism of glucagon by dipeptidyl peptidase IV (CD26). Regul Pept 2001; 96: 133–41.
  • Lambeir AM, Proost P, Durinx C, et al. Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. J Biol Chem 2001; 276: 29839–45.
  • Rahfeld J, Schutkowski M, Faust J, et al. Extended investigation of the substrate specificity of dipeptidyl peptidase IV from pig kidney. Biol Chem Hoppe-Seyler 1991; 372: 313–18.
  • Augustyns K, Lambeir AM, Borloo M, et al. Pyrrolidides: synthesis and structure-activity relationship as inhibitors of dipeptidyl peptidase IV. Eur J Med Chem 1997; 32: 301–9.
  • Heins J, Neubert K, Barth A, et al. Kinetic investigation of the hydrolysis of aminoacyl p-nitroanilides by dipeptidyl peptidase IV from human and pig kidney. Biochim Biophys Acta 1984; 785: 30–5.
  • Yaron A, Naider F. Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol 1993; 28: 31–81.
  • Kaspari A, Diefenthal T, Grosche G, et al. Substrates containing phosphorylated residues adjacent to proline decrease the cleavage by proline-specific peptidases. Biochim Biophys Acta 1996; 1293: 147–53.
  • Schutkowski M, Neubert K, Fischer G. Influence on proline-specific enzymes of a substrate containing the thioxoaminoacyl-prolyl peptide bond. Eur J Biochem 1994; 221: 455–61.
  • Oya H, Harada M, Nagatsu T. Peptidase activity of glycylprolyl ?-naphthylamidase from human submaxillary gland. Arch Oral Biol 1974; 19: 489–91.
  • Püschel G, Mentlein R, Heymann E. Isolation and characterization of dipeptidyl peptidase IV from human placenta. Eur J Biochem 1982; 126: 359–65.
  • Hoffmann T, Reinhold D, Kähne T, et al. Inhibition of dipeptidyl peptidase IV (DPP IV) by anti-DP IV antibodies and non-substrate X-X-Pro-oligopeptides ascertained by capillary electrophoresis. J Chromatogr A 1995; 716: 355–62.
  • Kikuchi M, Fukuyama K, Epstein WL. Soluble dipeptidyl peptidase IV from terminal differentiated rat epidermal cells: purification and its activity on synthetic and natural peptides. Arch Biochem Biophys 1988; 266: 369–76.
  • Fischer G, Heins J, Barth A. The conformation around the peptide bond between the P1-and P2-positions is important for catalytic activity of some proline-specific proteases. Biochim Biophys Acta 1983; 742: 452–62.
  • Hopsu-Havu VK, Ekfors TO. Distribution of a dipeptide naphthylamidase in rat tissues and its localisation by using diazo coupling and labeled antibody techniques. Histochemie 1969; 17: 30–8.
  • Kenny AJ, Booth AG, George SG, et al. Dipeptidyl peptidase IV, a kidney brush-border serine peptidase. Biochem J 1976; 157: 169–82.
  • Reutter W, Baum O, Löster K, et al. Functional aspects of the three extracellular domains of dipeptidyl peptidase IV: characterization of glycosylation events, of the collagen-binding site and of endopeptidase activity. In: Fleischer B, ed. Dipeptidyl Peptidase IV (CD26) in Metabolism and the Immune Response. Pp 55-78. Heidelberg: Springer-Verlag, 1995.
  • Bauvois B. Modulation and functional diversity of dipeptidyl peptidase IV in murine and human systems. In: Fleischer, B., ed. Dipeptidyl Peptidase IV (CD26) in Metabolism and the Immune Response. Pp 99-110. Heidelberg: Springer-Verlag, 1995.
  • Bermpohl F, Loster K, Reutter W, et al. Rat dipeptidyl peptidase IV (DPP IV) exhibits endopeptidase activity with specificity for denatured fibrillar collagens. FEBS Lett 1998; 428: 152–6.
  • Yoshimoto T, Fischl M, Orlowski RC, et al. Post-proline cleaving enzyme and post-proline dipeptidyl aminopeptidase. Comparison of two peptidases with high specificity for proline residues. J Biol Chem 1978; 253: 3708–16.
  • Heymann E, Mentlein R, Nausch I, et al. Processing of pro-colipase and trypsinogen by pancreatic dipeptidyl peptidase IV. Biomed Biochim Acta 1986; 45: 575–84.
  • Heiduschka P, Dittrich J, Heins J, et al. Application of dipeptidylpeptidase IV in formation of the peptide bond. Pharmazie 1989; 44: 778–80.
  • Barth A, Schulz H, Neubert K. Studies on the purification and characterization of dipeptidyl aminopeptidase IV. Acta Biol Med Ger 1974; 32: 157–74.
  • Yoshimoto T, Kita T, Ichinose M, et al. Dipeptidyl aminopeptidase IV from porcine pancreas. J Biochem (Tokyo) 1982; 92: 275–82.
  • Shibuya-Saruta H, Kasahara Y, Hashimoto Y. Human serum dipeptidyl peptidase IV (DPP IV) and its unique properties. J Clin Lab Anal 1996; 10: 435–40.
  • Steinmetzer T, Silberring J, Mrestani-Klaus C, et al. Peptidyl ammonium methyl ketones as substrate analog inhibitors of proline-specific peptidases. J Enzyme Inhib 1993; 7: 77–85.
  • Sudmeier JL, Gunther UL, Gutheil WG, et al. Solution structures of active and inactive forms of the DP IV (CD26) inhibitor Pro-boroPro determined by NMR spectroscopy. Biochemistry 1994; 33: 12427–38.
  • Coutts SJ, Kelly TA, Snow RJ, et al. Structure-activity relationships of boronic acid inhibitors of dipeptidyl peptidase IV. Variation of the P2 position of Xaa-boroPro dipep-tides. J Med Chem 1996; 39: 2087–94.
  • Augustyns K, Bal G, Thonus G, et al. The unique properties of dipeptidyl-peptidase IV (DPP IV/CD26) and the therapeutic potential of DPP IV inhibitors. Curr Med Chem 1999; 6: 311–27.
  • Demuth HU Recent developments in inhibiting cysteine and serine proteases. J Enzyme Inhib 1990; 3: 249–78.
  • Ashworth DM, Atrash B, Baker GR, et al. 2-Cyanopyrrolidides as potent, stable inhibitors of dipeptidyl peptidase IV. Bioorg Med Chem Lett 1996; 6: 1163–6.
  • Hughes TE, Mone MD, Russell ME, et al. NVP-DPP728 (1-[[[2-[(5-cyanopyridin-2-yl)amino]ethyl]amino]acetyl]-2-cyano-(S)-pyrrolidine), a slow-binding inhibitor of dipeptidyl peptidase IV. Biochemistry 1999; 38: 11597–603.
  • Gutheil WG, Bachovchin WW. Separation of L-Pro-DL-boroPro into its component dias-tereomers and kinetic analysis of their inhibition of dipeptidyl peptidase IV. A new method for the analysis of slow, tight-binding inhibition. Biochemistry 1993; 32: 8723–31.
  • Chiravuri M, Schmitz T, Yardley K, et al. A novel apoptotic pathway in quiescent lymphocytes identified by inhibition of a post-proline cleaving aminodipeptidase: a candidate target protease, quiescent cell proline dipeptidase. J Immunol 1999; 163: 3092–99.
  • De Meester I, Belyaev A, Lambeir AM, et al. In vivo inhibition of dipeptidyl peptidase IV activity by pro-pro-diphenyl-phosphonate (Prodipine). Biochem Pharmacol 1997; 54: 173–9.
  • Belyaev A, Zhang X, Augustyns K, et al. Structure-activity relationship of diaryl phosphonate esters as potent irreversible dipeptidyl peptidase IV inhibitors. J Med Chem 1999; 42: 1041–52.
  • Dobers J, Grams S, Reutter W, et al. Roles of cysteines in rat dipeptidyl peptidase IV/CD26 in processing and proteolytic activity. Eur J Biochem 2000; 267: 5093–100.
  • Aran JM, Colomer D, Matutes E, et al. Presence of adenosine deaminase on the surface of mononuclear blood cells: immunochemical localization using light and electron microscopy. J Histochem Cytochem 1991; 39: 1001–8.
  • Schrader WP, West CA, Miczek AD, et al. Characterization of the adenosine deaminase-adenosine deaminase complexing protein binding reaction. J Biol Chem 1990; 265: 19312–18.
  • Kameoka J, Tanaka T, Nojima Y, et al. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 1993; 261: 466–9.
  • Blanco J, Marie I, Callebaut C, et al. Specific binding of adenosine deaminase but not HIV-1 transactivator protein Tat to human CD26. Exp Cell Res 1996; 225: 102–11.
  • Dong RP, Tachibana K, Hegen M, et al. Determination of adenosine deaminase binding domain on CD26 and its immunoregulatory effect on T cell activation. J Immunol 1997; 159: 6070–6.
  • Dinjens WN, Ten Kate J, Wijnen JT, et al. Distribution of adenosine deaminase-complexing protein in murine tissues. J Biol Chem 1989; 264: 19215–20.
  • Iwaki-Egawa S, Watanabe Y, Fujimoto Y. CD26/dipeptidyl peptidase IV does not work as an adenosine deaminase-binding protein in rat cells. Cell Immunol 1997; 178: 180–16.
  • Richard E, Arredondo-Vega FX, Santisteban I, et al. The binding site of human adenosine deaminase for CD26/dipeptidyl peptidase IV: the Arg142Gln mutation impairs binding to CD26 but does not cause immune deficiency. J Exp Med 2000; 192: 1223–36.
  • Richard E, Alam SM, Arredondo-Vega FX, et al. Clustered charged amino acids of human adenosine deaminase comprise a functional epitope for binding the adenosine deaminase complexing protein CD26/dipeptidyl peptidase IV. J Biol Chem 2002; 277: 19720–6.
  • Valenzuela A, Blanco J, Callebaut C, et al. Adenosine deaminase binding to human CD26 is inhibited by HIV-1 envelope glycoprotein gp120 and viral particles. J Immunol 1997; 158: 3721–9.
  • Blanco J, Valenzuela A, Herrera C, et al. The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Lett 2000; 477: 123–8.
  • Hanski C, Huhle T, Reutter W. Involvement of plasma membrane dipeptidyl peptidase IV in fibronectin-mediated adhesion of cells on collagen. Biol Chem Hoppe-Seyler 1985; 366: 1169–76.
  • Piazza GA, Callanan HM, Mowery J, et al. Evidence for a role of dipeptidyl peptidase IV in fibronectin-mediated interactions of hepatocytes with extracellular matrix. Biochem J 1989; 262: 327–34.
  • Gonzalez-Gronow M, Gawdi G, Pizzo SV. Characterization of the plasminogen receptors of normal and rheumatoid arthritis human synovial fibroblasts. J Biol Chem 1994; 269: 4360–6.
  • Löster K, Zeilinger K, Schuppan D, et al. The cysteine-rich region of dipeptidyl peptidase IV (CD26) is the collagen-binding site. Biochem Biophys Res Commun 1995; 217: 341–8.
  • Dang NH, Torimoto Y, Schlossman SF, et al. Human CD4 helper T cell activation: functional involvement of two distinct collagen receptors, 1F7 and VLA integrin family. J Exp Med 1990; 172: 649–52.
  • Shimizu Y, Shaw S. Lymphocyte interactions with extracellular matrix. FASEB J 1991; 5: 2292–9.
  • Mattern T, Reich C, Schonbeck U, et al. CD26 (dipeptidyl peptidase i.v.) on human T lymphocytes does not mediate adhesion of these cells to endothelial cells or fibroblasts. Immunobiology 1998; 198: 465–75.
  • Gonzalez-Gronow M, Weber MR, Gawdi G, et al. Dipeptidyl peptidase IV (CD26) is a receptor for streptokinase on rheumatoid synovial fibroblasts. Fibrinolysis Proteolysis 1998; 12: 129–35.
  • Gonzalez-Gronow M, Grenett HE, Weber MR, et al. Interaction of plasminogen with dipeptidyl peptidase IV initiates a signal transduction mechanism which regulates expression of matrix metalloproteinase-9 by prostate cancer cells. Biochem J 2001; 355: 397–407.
  • Gonzalez-Gronow M, Weber MR, Shearin TV, et al. Plasmin(ogen) carbohydrate chains mediate binding to dipeptidyl peptidase IV (CD26) in rheumatoid arthritis human synovial fibroblasts. Fibrinolysis Proteolysis 1998; 12: 366–74.
  • Kähne T, Kroning H, Thiel U, et al. Alterations in structure and cellular localization of molecular forms of DP IV/CD26 during T cell activation. Cell Immunol 1996; 170: 63–70.
  • Yamashita K, Tachibana Y, Matsuda Y, et al. Comparative studies of the sugar chains of aminopeptidase N and dipeptidylpeptidase IV purified from rat kidney brush-border membrane. Biochemistry 1988; 27: 5565–73.
  • Fan H, Meng W, Kilian C, et al. Domain-specific N-glycosylation of the membrane glycoprotein dipeptidylpeptidase IV (CD26) influences its subcellular trafficking, biological stability, enzyme activity and protein folding. Eur J Biochem 1997; 246: 243–51.
  • Hansen JE, Lund O, Tolstrup N, et al. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 1998; 15: 115–30.
  • Matter K, McDowell W, Schwartz RT, et al. Asynchronous transport to the cell surface of intestinal brush border hydrolases is not due to differential trimming of N-linked oligosac-charides. J Biol Chem 1989; 264: 13131–9.
  • Naim HY, Joberty G, Alfalah M, et al. Temporal association of the N- and O-linked glycosylation events and their implication in the polarized sorting of intestinal brush border sucrase-isomaltase, aminopeptidase N, and dipeptidyl peptidase IV. J Biol Chem 1999; 274: 17961–7.
  • Slimane TA, Lenoir C, Sapin C, et al. Apical secretion and sialylation of soluble dipeptidyl peptidase IV are two related events. Exp Cell Res 2000; 258: 184–94.
  • Trugnan G, Baricault L, David F, et al. Control of dipeptidyl peptidase IV/CD26 cell surface expression in intestinal cells. In: Fleisher B, ed. Dipeptidyl Peptidase IV (CD26) in Metabolism and the Immune Response. Pp 79-98. Heidelberg: Springer-Verlag, 1995.
  • Iwaki-Egawa S, Watanabe Y, Kikuya Y, et al. Dipeptidyl peptidase IV from human serum: purification, characterization, and N-terminal amino acid sequence. J Biochem (Tokyo) 1998; 124: 428–33.
  • Bartles JR, Braiterman LT, Hubbard AL. Biochemical characterization of domain-specific glycoproteins of the rat hepatocyte plasma membrane. J Biol Chem 1985; 260: 12792–802.
  • Petell JK, Diamond M, Hong WJ, et al. Isolation and characterization of a Mr = 110,000 glycoprotein localized to the hepatocyte bile canaliculus. J Biol Chem 1987; 262: 14753–9.
  • Stehling P, Grams S, Nuck R, et al. In vivo modulation of the acidic N-glycans from rat liver dipeptidyl peptidase IV by N-propanoyl-D-mannosamine. Biochem Biophys Res Commun 1999; 263: 76–80.
  • Kreisel W, Hanski C, Tran-Thi TA, et al. Remodeling of a rat hepatocyte plasma membrane glycoprotein. De- and reglycosylation of dipeptidyl peptidase IV. J Biol Chem 1988; 263: 11736–42.
  • Smith RE, Talhouk JW, Brown EE, et al. The significance of hypersialylation of dipeptidyl peptidase IV (CD26) in the inhibition of its activity by Tat and other cationic peptides. CD26: a subverted adhesion molecule for HIV peptide binding. AIDS Res Hum Retroviruses 1998; 14: 851–68.
  • Ward PE. Immunoelectrophoretic analysis of vascular, membrane-bound angiotensin I converting enzyme, aminopeptidase M, and dipeptidyl(amino)peptidase IV. Biochem Pharmacol 1984; 33: 3183–93.
  • Mentzel S, Dijkman HB, Van Son JP, et al. Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice. J Histochem Cytochem 1996; 44: 445–61.
  • Gutheil WG, Subramanyam M, Flentke GR, et al. Human immunodeficiency virus 1 Tat binds to dipeptidyl aminopeptidase IV (CD26): a possible mechanism for Tat’s immuno-suppressive activity. Proc Natl Acad Sci USA 1994; 91: 6594–8.
  • Ikushima H, Munakata Y, Ishii T, et al. Internalization of CD26 by mannose 6-phosphate/ insulin-like growth factor II receptor contributes to T cell activation. Proc Natl Acad Sci USA 2000; 97: 8439–44.
  • Hartel S, Gossrau R, Hanski C, et al. Dipeptidyl peptidase (DPP) IV in rat organs. Comparison of immunohistochemistry and activity histochemistry. Histochemistry 1988; 89: 151–61.
  • Reutter W, Hartel S, Hanski C, et al. Biochemical properties of dipeptidyl peptidase IV in liver and hepatoma plasma membranes. Adv Enzyme Regul 1989; 28: 253–69.
  • Fukasawa KM, Fukasawa K, Sahara N, et al. Immunohistochemical localization of dipeptidyl aminopeptidase IV in rat kidney, liver, and salivary glands. J Histochem Cytochem 1981; 29: 337–43.
  • Slimane TA, Lenoir C, Bello V, et al. The cytoplasmic/transmembrane domain of dipeptidyl peptidase IV, a type II glycoprotein, contains an apical targeting signal that does not specifically interact with lipid rafts. Exp Cell Res 2001; 270: 45–55.
  • Lojda Z. Studies on dipeptidyl(amino)peptidase IV (glycyl-proline naphthylamidase). II. Blood vessels. Histochemistry 1979; 59: 153–66.
  • van der Velden V, Wierenga-Wolf AF, Adriaansen-Soeting PW, et al. Expression of aminopeptidase N and dipeptidyl peptidase IV in the healthy and asthmatic bronchus. Clin Exp Allergy 1998; 28: 110–20.
  • Gossrau R. Peptidases II. Localization of dipeptidylpeptidase IV (DPP IV). Histochemical and biochemical study. Histochemistry 1979; 60: 231–48.
  • Sahara N, Fukasawa K, Harada M, et al. Immunohistochemical localization of dipeptidyl peptidase IV in rat digestive organs. Acta Histochem Cytochem 1983; 16: 494–501.
  • Poulsen MD, Hansen GH, Dabelsteen E, et al. Dipeptidyl peptidase IV is sorted to the secretory granules in pancreatic islet A-cells. J Histochem Cytochem 1993; 41: 81–8.
  • Grondin G, Hooper NM, LeBel D. Specific localization of membrane dipeptidase and dipeptidyl peptidase IV in secretion granules of two different pancreatic islet cells. J Histochem Cytochem 1999; 47: 489–98.
  • Kenny AJ, Booth AG, Macnair RD. Peptidases of the kidney microvillus membrane. Acta Biol Med Ger 1977; 36: 1575–85.
  • Elovson J. Biogenesis of plasma membrane glycoproteins. Purification and properties of two rat liver plasma membrane glycoproteins. J Biol Chem 1980; 255: 5807–15.
  • Kettmann U, Humbel B, Holzhausen HJ. Ultrastructural localization of dipeptidylpeptidase IV in the glomerulum of the rat kidney. Acta Histochem 1992; 92: 225–7.
  • Sterchi E. The distribution of brush border peptidases along the small intestine of the adult human. Pediatr Res 1981; 15: 884–5.
  • Darmoul D, Voisin T, Couvineau A, et al. Regional expression of epithelial dipeptidyl peptidase IV in the human intestines. Biochem Biophys Res Commun 1994; 203: 1224–9.
  • van Niel G, Raposo G, Candalh C, et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 2001; 121: 337–49.
  • Zweibaum A, Hauri HP, Sterchi E, et al. Immunohistological evidence, obtained with monoclonal antibodies, of small intestinal brush border hydrolases in human colon cancers and foetal colons. Int J Cancer 1984; 34: 591–8.
  • Hopsu-Havu VK, Sarimo SR. Purification and characterization of an aminopeptidase hydro-lyzing glycyl-proline-naphthylamide. Hoppe-Seyler’s Z Physiol Chem 1967; 348: 1540–50.
  • Walborg EF, Jr., Tsuchida S, Weeden DS, et al. Identification of dipeptidyl peptidase IV as a protein shared by the plasma membrane of hepatocytes and liver biomatrix. Exp Cell Res 1985; 158: 509–18.
  • Büchsel R, Kreisel W, Fringes B, et al. Localization and turnover of dipeptidylpeptidase IV in the domains of rat liver plasma membrane. Eur J Cell Biol 1986; 40: 53–7.
  • Raynaud F, Bauvois B, Gerbaud P, et al. Characterization of specific proteases associated with the surface of human skin fibroblasts, and their modulation in pathology. J Cell Physiol 1992; 151: 378–85.
  • Stange T, Kettmann U, Holzhausen HJ, et al. Expression patterns of the ectopeptidases aminopeptidase N/CD13 and dipeptidyl peptidase IV/CD26: immunoultrastructural topographic localization on different types of cultured cells. Acta Histochem 1998; 100: 157–69.
  • Nemoto E, Sugawara S, Takada H, et al. Increase of CD26/dipeptidyl peptidase IV expression on human gingival fibroblasts upon stimulation with cytokines and bacterial components. Infect Immun 1999; 67: 6225–33.
  • Riemann D, Hansen GH, Niels-Christiansen L, et al. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains. Biochem J 2001; 354: 47–55.
  • Kato T, Hama T, Nagatsu T, et al. Changes of X-prolyl dipeptidyl-aminopeptidase activity in developing rat brain. Experientia 1979; 35: 1329–30.
  • Bernstein HG, Schon E, Ansorge S, et al. Immunolocalization of dipeptidyl aminopeptidase (DAP IV) in the developing human brain. Int J Dev Neurosci 1987; 5: 237–42.
  • Nagy JI, Yamamoto T, Uemura H, et al. Adenosine deaminase in rodent median eminence: detection by antibody to the mouse enzyme and co-localization with adenosine deaminase-complexing protein (CD26). Neuroscience 1996; 73: 459–71.
  • Gallegos ME, Zannatha MM, Osornio EG, et al. The activities of six exo- and endopeptidases in the substantia nigra, neostriatum, and cortex of the rat brain. Neurochem Res 1999; 24: 1557–61.
  • Kato T, Iwase K, Nagatsu T, et al. Comparison of X-prolyl dipeptidyl-aminopeptidase activity in human cerebrospinal fluid with that in serum. Experientia 1979; 35: 20–1.
  • Küllertz G, Kallenbach W, Küllertz G, et al. Post-Prolin-Hydrolyseaktivitäten im Liquor cerebrospinalis. Z Med Lab Diagn 1989; 30: 273–80.
  • Dubovy P. Histochemical evidence for the presence of dipeptidylpeptidase IV in the Schwann cells of skin unmyelinated axons. Experientia 1987; 43: 883–4.
  • Dubovy P, Kukletova M. A histochemical study by light and electron microscopy of the distribution of dipeptidyl peptidase-IV activity in the human dental pulp. Arch Oral Biol 1992; 37: 1–6.
  • Nagatsu I, Nagatsu T, Yamamoto T. Hydrolysis of amino acid beta-naphthylamides by aminopeptidases in human parotid saliva and human serum. Experientia 1968; 24: 347–48.
  • Oya H, Nagatsu I, Nagatsu T. Purification and properties of glycylprolyl ?-naphthylamidase in human submaxillary gland. Biochim Biophys Acta 1972; 258: 591–9.
  • Dinjens WN, Ten Kate J, Van der Linden EP, et al. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues. J Histochem Cytochem 1989; 37: 1869–75.
  • Imai K, Maeda M, Fujiwara H, et al. Dipeptidyl peptidase IV as a differentiation marker of the human endometrial glandular cells. Hum Reprod 1992; 7: 1189–94.
  • Imai K, Kanzaki H, Fujiwara H, et al. Expression and localization of aminopeptidase N, neutral endopeptidase, and dipeptidyl peptidase IV in the human placenta and fetal membranes. Am J Obstet Gynecol 1994; 170: 1163–8.
  • Vanhoof G, De Meester I, van Sande M, et al. Distribution of proline-specific aminopep-tidases in human tissues and body fluids. Eur J Clin Chem Clin Biochem 1992; 30: 333–8.
  • Wilson MJ, Ruhland AR, Pryor JL, et al. Prostate specific origin of dipeptidylpeptidase IV (CD-26) in human seminal plasma. J Urol 1998; 160: 1905–9.
  • Hino M, Nagatsu T, Kakumu S, et al. Glycylprolyl beta-naphthylamidase activity in human serum. Clin Chim Acta 1975; 62: 5–11.
  • Hino M, Fuyamada H, Hayakawa T, et al. X-Prolyl dipeptidyl-aminopeptidase activity, with X-proline p-nitroanilides as substrates, in normal and pathological human sera. Clin Chem 1976; 22: 1256–61.
  • Durinx C, Neels H, Van der Auwera JC, et al. Reference values for plasma dipeptidyl-peptidase IV activity and their association with other laboratory parameters. Clin Chem Lab Med 2001; 39: 155–9.
  • Gorrell MD, Wickson J, McCaughan GW. Expression of the rat CD26 antigen (dipeptidyl peptidase IV) on subpopulations of rat lymphocytes. Cell Immunol 1991; 134: 205–15.
  • Buhling F, Kunz D, Reinhold D, et al. Expression and functional role of dipeptidyl peptidase IV (CD26) on human natural killer cells. Nat Immun 1994; 13: 270–9.
  • Buhling F, Junker U, Reinhold D, et al. Functional role of CD26 on human B lymphocytes. Immunol Lett 1995; 45: 47–51.
  • Gliddon DR, Howard CJ. CD26 is expressed on a restricted subpopulation of dendritic cells in vivo. Eur J Immunol 2002; 32: 1472–81.
  • Hafler DA, Fox DA, Benjamin D, et al. Antigen reactive memory T cells are defined by Ta1. J Immunol 1986; 137: 414–8.
  • Morimoto C, Torimoto Y, Levinson G, et al. 1F7, a novel cell surface molecule, involved in helper function of CD4 cells. J Immunol 1989; 143: 3430–9.
  • Munoz E, Blazquez MV, Madueno JA, et al. CD26 induces T-cell proliferation by tyrosine protein phosphorylation. Immunology 1992; 77: 43–50.
  • Vanham G, Kestens L, De Meester I, et al. Decreased expression of the memory marker CD26 on both CD4+ and CD8+ T lymphocytes of HIV-infected subjects. J Acquir Immune Defic Syndr 1993; 6: 749–57.
  • De Meester IA, Kestens LL, Vanham GL, et al. Costimulation of CD4+ and CD8+ T cells through CD26: the ADA-binding epitope is not essential for complete signaling. J Leukoc Biol 1995; 58: 325–30.
  • Brezinschek RI, Lipsky PE, Galea P, et al. Phenotypic characterization of CD4+ T cells that exhibit a transendothelial migratory capacity. J Immunol 1995; 154: 3062–77.
  • Masuyama J, Yoshio T, Suzuki K, et al. Characterization of the 4C8 antigen involved in transendothelial migration of CD26(hi) T cells after tight adhesion to human umbilical vein endothelial cell monolayers. J Exp Med 1999; 189: 979–90.
  • De Meester I, Korom S, Van Damme J, et al. CD26, let it cut or cut it down. Immunol Today 1999; 20: 367–75.
  • Willheim M, Ebner C, Baier K, et al. Cell surface characterization of T lymphocytes and allergen-specific T cell clones: correlation of CD26 expression with T(H1) subsets. J Allergy Clin Immunol 1997; 100: 348–55.
  • Rogge L, Bianchi E, Biffi M, et al. Transcript imaging of the development of human T helper cells using oligonucleotide arrays. Nat Genet 2000; 25: 96–101.
  • Annunziato F, Galli G, Cosmi L, et al. Molecules associated with human Th1 or Th2 cells. Eur Cytokine Netw 1998; 9: 12–6.
  • Hong WJ, Petell JK, Swank D, et al. Expression of dipeptidyl peptidase IV in rat tissues is mainly regulated at the mRNA levels. Exp Cell Res 1989; 182: 256–66.
  • Böhm SK, Gum JR Jr, Erickson RH, et al. Human dipeptidyl peptidase IV gene promoter: tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter. Biochem J 1995; 311: 835–43.
  • Antczak C, De Meester I, Bauvois B. Ectopeptidases in pathophysiology. Bioessays 2001; 23: 251–60.
  • Erickson RH, Gum JR, Lotterman CD, et al. Regulation of the gene for human dipeptidyl peptidase IV by hepatocyte nuclear factor 1 alpha. Biochem J 1999; 338: 91–7.
  • Erickson RH, Lai RS, Kim YS. Role of hepatocyte nuclear factor 1alpha and 1beta in the transcriptional regulation of human dipeptidyl peptidase IV during differentiation of Caco-2 cells. Biochem Biophys Res Commun 2000; 270: 235–9.
  • Erickson RH, Lai RS, Lotterman CD, et al. Identification of upstream stimulatory factor as an activator of the human dipeptidyl peptidase IV gene in Caco-2 cells. Gene 2000; 258: 77–84.
  • Bauvois B, Djavaheri-Mergny M, Rouillard D, et al. Regulation of CD26/DPP IV gene expression by interferons and retinoic acid in tumor B cells. Oncogene 2000; 19: 265–72.
  • Stefanovic V, Ardaillou N, Vlahovic P, et al. Interferon-gamma induces dipeptidylpeptidase IV expression in human glomerular epithelial cells. Immunology 1993; 80: 465–70.
  • Riemann D, Kehlen A, Langner J. Stimulation of the expression and the enzyme activity of aminopeptidase N/CD13 and dipeptidylpeptidase IV/CD26 on human renal cell carcinoma cells and renal tubular epithelial cells by T cell-derived cytokines, such as IL-4 and IL-13. Clin Exp Immunol 1995; 100: 277–83.
  • Yamabe T, Takakura K, Sugie K, et al. Induction of the 2B9 antigen/dipeptidyl peptidase IV/CD26 on human natural killer cells by IL-2, IL-12 or IL-15. Immunology 1997; 91: 151–8.
  • Cordero OJ, Salgado FJ, Vinuela JE, et al. Interleukin-12-dependent activation of human lymphocyte subsets. Immunol Lett 1998; 61: 7–13.
  • Hosono O, Homma T, Kobayashi H, et al. Decreased dipeptidyl peptidase IV enzyme activity of plasma soluble CD26 and its inverse correlation with HIV-1 RNA in HIV-1-infected individuals. Clin Immunol 1999; 91: 283–95.
  • Cuchacovich M, Gatica H, Pizzo SV, et al. Characterization of human serum dipeptidyl peptidase IV (CD26) and analysis of its autoantibodies in patients with rheumatoid arthritis and other autoimmune diseases. Clin Exp Rheumatol 2001; 19: 673–80.
  • Perner F, Gyuris T, Rakoczy G, et al. Dipeptidyl peptidase activity of CD26 in serum and urine as a marker of cholestasis: experimental and clinical evidence. J Lab Clin Med 1999; 134: 56–67.
  • Senten K, Van der Veken P, Bal G, et al. Development of potent and selective dipeptidyl peptidase II inhibitors. Bioorg Med Chem Lett 2002; 12: 2825.
  • Lakatos PL, Firneisz G, Rakoczy G, et al. Elevated serum dipeptidyl peptidase IV (CD26, EC 3.4.14.5) activity in patients with primary biliary cirrhosis. J Hepatol. ^1999; 30: 740.
  • Kasahara Y, Fujii N, Mizukoshi M, et al. Multiple forms of glycylprolyl dipeptidyl-aminopeptidase in serum and tissues. Jpn J Clin Chem 1983; 12: 89–93.
  • Zanussi S, Simonelli C, Bortolin MT, et al. Immunological changes in peripheral blood and in lymphoid tissue after treatment of HIV-infected subjects with highly active anti-retroviral therapy (HAART) or HAART + IL-2. Clin Exp Immunol. ^1999; 116: 486–92.
  • Keane NM, Price P, Lee S, et al. An evaluation of serum soluble CD30 levels and serum CD26 (DPP IV) enzyme activity as markers of type 2 and type 1 cytokines in HIV patients receiving highly active antiretroviral therapy. Clin Exp Immunol 2001; 126: 111–6.
  • Korom S, De Meester I, Stein A, et al. Das T-Zell-Antigen CD26/DPP IV als Marker der Immunomodulation in humanen Empfängern allogener Nierentransplantate. Transplantationsmedizin 2000; 2000: 72.
  • Lefebvre J, Murphey LJ, Hartert TV, et al. Dipeptidyl peptidase IV activity in patients with ACE-inhibitor-associated angioedema. Hypertension 2002; 39: 460–4.
  • Antczak C, De Meester I, Bauvois B. Transmembrane proteases as disease markers and targets for therapy. J Biol Regul Homeost Agents 2001; 15: 130–9.
  • Hildebrandt M, Reutter W, Arck P, et al. A guardian angel: the involvement of dipeptidyl peptidase IV in psychoneuroendocrine function, nutrition and immune defence. Clin Sci (Lond) 2000; 99: 93–104.
  • Sakamoto J, Watanabe T, Teramukai S, et al. Distribution of adenosine deaminase binding protein in normal and malignant tissues of the gastrointestinal tract studied by monoclonal antibodies. J Surg Oncol 1993; 52: 124–34.
  • Stange T, Kettmann U, Holzhausen HJ. Immunoelectron microscopic demonstration of the membrane proteases aminopeptidase N/CD13 and dipeptidyl peptidase IV/CD26 in normal and neoplastic renal parenchymal tissues and cells. Eur J Histochem 2000; 44: 157–64.
  • Ten Kate J, Dinjens WN, Meera Khan P, et al. Adenosine deaminase complexing protein in cancer studies. Anticancer Res 1986; 6: 983–8.
  • Kajiyama H, Kikkawa F, Suzuki T, et al. Prolonged survival and decreased invasive activity attributable to dipeptidyl peptidase IV overexpression in ovarian carcinoma. Cancer Res 2002; 62: 2753–7.
  • Bogenrieder T, Finstad CL, Freeman RH, et al. Expression and localization of aminopep-tidase A, aminopeptidase N, and dipeptidyl peptidase IV in benign and malignant human prostate tissue. Prostate 1997; 33: 225–32.
  • Wilson MJ, Ruhland AR, Quast BJ, et al. Dipeptidylpeptidase IV activities are elevated in prostate cancers and adjacent benign hyperplastic glands. J Androl 2000; 21: 220–6.
  • Aratake Y, Kotani T, Tamura K, et al. Dipeptidyl aminopeptidase IV staining of cytologic preparations to distinguish benign from malignant thyroid diseases. Am J Clin Pathol 1991; 96: 306–10.
  • Tanaka T, Umeki K, Yamamoto I, et al. CD26 (dipeptidyl peptidase IV/DPP IV) as a novel molecular marker for differentiated thyroid carcinoma. Int J Cancer 1995; 64: 326–31.
  • Umeki K, Tanaka T, Yamamoto I, et al. Differential expression of dipeptidyl peptidase IV (CD26) and thyroid peroxidase in neoplastic thyroid tissues. Endocr J 1996; 43: 53–60.
  • Aratake Y, Umeki K, Kiyoyama K, et al. Diagnostic utility of galectin-3 and CD26/DPP IV as preoperative diagnostic markers for thyroid nodules. Diagn Cytopathol 2002; 26: 366–72.
  • Cordero OJ, Ayude D, Nogueira M, et al. Preoperative serum CD26 levels: diagnostic efficiency and predictive value for colorectal cancer. Br J Cancer 2000; 83: 1139–46.
  • Verstovsek S, Cabanillas F, Dang NH. CD26 in T-cell lymphomas: a potential clinical role? Oncology (Huntingt) 2000; 14: 17–23.
  • Jones D, Dang NH, Duvic M, et al. Absence of CD26 expression is a useful marker for diagnosis of T-cell lymphoma in peripheral blood. Am J Clin Pathol 2001; 115: 885–92.
  • Bernengo MG, Novelli M, Quaglino P, et al. The relevance of the CD4+ CD26-subset in the identification of circulating Sézary cells. Br J Dermatol 2001; 144: 125–35.
  • Kondo S, Kotani T, Tamura K, et al. Expression of CD26/dipeptidyl peptidase IV in adult T cell leukemia/lymphoma (ATLL). Leuk Res 1996; 20: 357–63.
  • Bauvois B, De Meester I, Dumont J, et al. Constitutive expression of CD26/ dipeptidylpeptidase IV on peripheral blood B lymphocytes of patients with B chronic lymphocytic leukaemia. Br J Cancer 1999; 79: 1042–8.
  • Elgün S, Keskinege A, Akan H, et al. Serum dipeptidyl peptidase IV activity correlates with the T-cell CD26 antigen. Clin Chem Lab Med 1999; 37: 839–40.
  • Cordero OJ, Salgado FJ, Mera-Varela A, et al. Serum interleukin-12, interleukin-15, soluble CD26, and adenosine deaminase in patients with rheumatoid arthritis. Rheumatol Int 2001; 21: 69–74.
  • Rose M, Hildebrandt M, Fliege H, et al. T-cell immune parameters and depression in patients with Crohn’s disease. J Clin Gastroenterol 2002; 34: 40–8.
  • Hildebrandt M, Rose M, Ruter J, et al. Dipeptidyl peptidase IV (DP IV, CD26) in patients with inflammatory bowel disease. Scand J Gastroenterol 2001; 36: 1067–72.
  • Xiao Q, Boushey RP, Cino M, et al. Circulating levels of glucagon-like peptide-2 in human subjects with inflammatory bowel disease. Am J Physiol Regul Integr Comp Physiol 2000; 278: R1057–63.
  • Schonermarck U, Csernok E, Trabandt A, et al. Circulating cytokines and soluble CD23, CD26 and CD30 in ANCA-associated vasculitides. Clin Exp Rheumatol 2000; 18: 457–63.
  • Muller A, Trabandt A, Gloeckner-Hofmann K, et al. Localized Wegener’s granulomatosis: predominance of CD26 and IFN-gamma expression. J Pathol 2000; 192: 113–20.
  • Maes M, De Meester I, Vanhoof G, et al. Decreased serum dipeptidyl peptidase IV activity in major depression. Biol Psychiatry 1991; 30: 577–86.
  • Elgun S, Keskinege A, Kumbasar H. Dipeptidyl peptidase IV and adenosine deaminase activity. Decrease in depression. Psychoneuroendocrinology 1999; 24: 823–32.
  • Hildebrandt M, Rose M, Monnikes H, et al. Eating disorders: a role for dipeptidyl peptidase IV in nutritional control. Nutrition 2001; 17: 451–4.
  • van West D, Monteleone P, Di Lieto A, et al. Lowered serum dipeptidyl peptidase IV activity in patients with anorexia and bulimia nervosa. Eur Arch Psychiatry Clin Neurosci 2000; 250: 86–92.
  • Katoh N, Hirano S, Suehiro M, et al. Soluble CD30 is more relevant to disease activity of atopic dermatitis than soluble CD26. Clin Exp Immunol 2000; 121: 187–92.
  • Khoury SJ, Guttmann CR, Orav EJ, et al. Changes in activated T cells in the blood correlate with disease activity in multiple sclerosis. Arch Neurol 2000; 57: 1183–9.
  • Strunk T, Bubel S, Mascher B, et al. Increased numbers of CCR5+ interferon-gamma- and tumor necrosis factor-alpha-secreting T lymphocytes in multiple sclerosis patients. Ann Neurol 2000; 47: 269–73.
  • Meneilly GS, Demuth HU, McIntosh CH, et al. Effect of ageing and diabetes on glucose-dependent insulinotropic polypeptide and dipeptidyl peptidase IV responses to oral glucose. Diabet Med 2000; 17: 346–50.
  • Bergmann A, Bohuon C. Decrease of serum dipeptidylpeptidase activity in severe sepsis patients: relationship to procalcitonin. Clin Chim Acta 2002; 3211: 123–6.
  • Weglohner W, Struck J, Fischer-Schulz C, et al. Isolation and characterization of serum procalcitonin from patients with sepsis. Peptides 2001; 22: 2099–103.
  • Wrenger S, Kähne T, Bohuon C, et al. Amino-terminal truncation of procalcitonin, a marker for systemic bacterial infections, by dipeptidyl peptidase IV (DP IV). FEBS Lett 2000; 466: 155–9.
  • Brown AE, Dolan MJ, Michael NL, et al. Clinical prognosis of patients with early-stage human immunodeficiency virus (HIV) disease: contribution of HIV-1 RNA and T lymphocyte subset quantitation. Mil Med 2001; 166: 571–6.
  • Firneisz G, Lakatos PL, Szalay F. Serum dipeptidyl peptidase IV (DPP IV, CD26) activity in chronic hepatitis C. Scand J Gastroenterol 2001; 36: 877–80.
  • Maes M, Bonaccorso S, Marino V, et al. Treatment with interferon-alpha (IFN alpha) of hepatitis C patients induces lower serum dipeptidyl peptidase IV activity, which is related to IFN alpha-induced depressive and anxiety symptoms and immune activation. Mol Psychiatry 2001; 6: 475–80.
  • De Meester I, Durinx C, Proost P, et al. DPIV — Natural Substrates of Medical Importance. In: Langner J, Ansorge S, eds. Ectopeptidases. CD13/Aminopeptidase N and CD26/ Dipeptidylpeptidase IV in Medicine and Biology. Pp 223-257. New York: Kluwer Academic/Plenum Publishers, 2002.
  • De Meester I, Durinx C, Bal G, et al. Natural substrates of dipeptidyl peptidase IV. Adv Exp Med Biol 2000; 477: 67–87.
  • Fleischer, B. CD26: a surface protease involved in T-cell activation. Immunol Today 1994; 15: 180–4.
  • Kähne T, Lendeckel U, Wrenger S, et al. Dipeptidyl peptidase IV: a cell surface peptidase involved in regulating T cell growth. Int J Mol Med 1999; 4: 3–15.
  • Mentlein R. Dipeptidyl-peptidase IV (CD26) — role in the inactivation of regulatory peptides. Regul Pept 1999; 85: 9–24.
  • Morimoto C, Schlossman SF. The structure and function of CD26 in the T-cell immune response. Immunol Rev 1998; 161: 55–70.
  • Hinke SA, Kuhn-Wache K, Hoffmann T, et al. Metformin effects on dipeptidylpeptidase IV degradation of glucagon-like peptide-1. Biochem Biophys Res Commun 2002; 291: 1302–8.
  • Vanhoof G, Goossens F, De Meester I, et al. Proline motifs in peptides and their biological processing. FASEB J 1995; 9: 736–44.
  • Nilsson C, Westman A, Blennow K, et al. Processing of neuropeptide Y and somatostatin in human cerebrospinal fluid as monitored by radioimmunoassay and mass spectrometry. Peptides 1998; 19: 1137–46.
  • Eberlein GA, Eysselein VE, Schaeffer M, et al. A new molecular form of PYY: structural characterization of human PYY(3-36) and PYY(1-36). Peptides 1989; 10: 797–803.
  • Grandt D, Schimiczek M, Beglinger C, et al. Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regul Pept 1994; 51: 151–9.
  • Mentlein R, Dahms P, Grandt D, et al. Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul Pept 1993; 49: 133–44.
  • Medeiros MD, Turner AJ. Processing and metabolism of peptide-YY: pivotal roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. Endocrinology 1994; 134: 2088–94.
  • Lambeir AM, Durinx C, Proost P, et al. Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett 2001; 507: 327–30.
  • Zukowska-Grojec Z, Dayao EK, Karwatowska-Prokopczuk E, et al. Stress-induced mesen-teric vasoconstriction in rats is mediated by neuropeptide Y Y1 receptors. Am J Physiol 1996; 270: H796–800.
  • Zukowska-Grojec Z. Neuropeptide Y: implications in vascular remodeling and novel therapeutics. Drug News Perspectives 1997; 10: 587–95.
  • Zukowska-Grojec Z, Karwatowska-Prokopczuk E, Rose W, et al. Neuropeptide Y: a novel angiogenic factor from the sympathetic nerves and endothelium. Circ Res 1998; 83: 187–95.
  • Zukowska-Grojec Z. Neuropeptide Y: an adrenergic cotransmitter, vasoconstrictor, and a nerve-derived vascular growth factor. Adv Pharmacol 1998; 42: 125–8.
  • Ahrén B. Autonomic regulation of islet hormone secretion — implications for health and disease. Diabetologia 2000; 43: 393–410.
  • Ghersi G, Chen W, Lee EW, et al. Critical role of dipeptidyl peptidase IV in neuropeptide Y-mediated endothelial cell migration in response to wounding. Peptides 2001; 22: 453–8.
  • Lundberg JM, Tatemoto K, Terenius L, et al. Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc Natl Acad Sci USA 1982; 79: 4471–5.
  • Broome M, Hokfelt T, Terenius L. Peptide YY (PYY)-immunoreactive neurons in the lower brain stem and spinal cord of rat. Acta Physiol Scand 1985; 125: 349–52.
  • Tatemoto K. Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc Natl Acad Sci USA 1982; 79: 2514–8.
  • Gomez G, Udupi V, Greeley GH. Peptide YY. In: Greeley GH, ed. Gastrointestinal Endocrinology. Pp 551-576. Totowa: Humana Press, 1999.
  • Pappas TN, Debas HT, Goto Y, et al. Peptide YY inhibits meal-stimulated pancreatic and gastric secretion. Am J Physiol 1985; 248: G118–23.
  • Adrian TE, Savage AP, Sagor GR, et al. Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology 1985; 89: 494–9.
  • Goumain M, Voisin T, Lorinet AM, et al. The peptide YY-preferring receptor mediating inhibition of small intestinal secretion is a peripheral Y(2) receptor: pharmacological evidence and molecular cloning. Mol Pharmacol 2001; 60: 124–34.
  • Deng X, Guarita DR, Wood PG, et al. PYY potently inhibits pancreatic exocrine secretion mediated through CCK-secretin-stimulated pathways but not 2-DG-stimulated pathways in awake rats. Dig Dis Sci 2001; 46: 156–65.
  • Chance WT, Zhang X, Balasubramaniam A, et al. Preservation of intestine protein by peptide YY during total parenteral nutrition. Life Sci 1996; 58: 1785–94.
  • Mannon PJ, Mele JM. Peptide YY Y1 receptor activates mitogen-activated protein kinase and proliferation in gut epithelial cells via the epidermal growth factor receptor. Biochem J 2000; 350 Pt 3: 655–61.
  • Keire DA, Mannon P, Kobayashi M, et al. Primary structures of PYY, [Pro(34)]PYY, and PYY-(3-36) confer different conformations and receptor selectivity. Am J Physiol Gastrointest Liver Physiol. 2000; 279: G126–31.
  • Keire DA, Bowers CW, Solomon TE, et al. Structure and receptor binding of PYY analogs. Peptides 2002; 23: 305–21.
  • Zubrzycka M, Janecka A. Substance P: transmitter of nociception (Minireview). Endocr Regul 2000; 34: 195–201.
  • Grouzmann E, Monod M, Landis B, et al. Loss of dipeptidylpeptidase IV activity in chronic rhinosinusitis contributes to the neurogenic inflammation induced by substance P in the nasal mucosa. FASEB J 2002; 16: 1132–4.
  • Ahmad S, Wang L, Ward PE. Dipeptidyl(amino)peptidase IV and aminopeptidase M metabolize circulating substance P in vivo. J Pharmacol Exp Ther 1992; 260: 1257–61.
  • Palmieri FE, Ward PE. Mesentery vascular metabolism of substance P. Biochim Biophys Acta 1983; 755: 522–5.
  • Heymann E, Mentlein R. Liver dipeptidyl aminopeptidase IV hydrolyzes substance P. FEBS Lett 1978; 91: 360–4.
  • Mussap CJ, Geraghty DP, Burcher E. Tachykinin receptors: a radioligand binding perspective. J Neurochem 1993; 60: 1987–2009.
  • Hartrodt B, Neubert K, Fischer G, et al. Degradation of beta-casomorphin-5 by proline-specific-endopeptidase (PSE) and post-proline-cleaving-enzyme (PPCE). Comparative studies of the beta-casomorphin-5 cleavage by dipeptidyl-peptidase IV. Pharmazie 1982; 37: 72–3.
  • Kreil G, Umbach M, Brantl V, et al. Studies on the enzymatic degradation of beta-casomorphins. Life Sci 1983; 33 Suppl 1: 137–140.
  • Nausch I, Mentlein R, Heymann E. The degradation of bioactive peptides and proteins by dipeptidyl peptidase IV from human placenta. Biol Chem Hoppe-Seyler 1990; 371: 1113–8.
  • Ronai AZ, Timar J, Mako E, et al. Diprotin A, an inhibitor of dipeptidyl aminopeptidase IV(EC 3.4.14.5) produces naloxone-reversible analgesia in rats. Life Sci 1999; 64: 145–52.
  • Shane R, Wilk S, Bodnar RJ. Modulation of endomorphin-2-induced analgesia by dipeptidyl peptidase IV. Brain Res 1999; 815: 278–86.
  • Bird AP, Faltinek JR, Shojaei AH. Transbuccal peptide delivery: stability and in vitro permeation studies on endomorphin-1. J Control Release 2001; 73: 31–6.
  • Kastin AJ, Banks WA, Hahn K, et al. Extreme stability of Tyr-MIF-1 in CSF. Neurosci Lett 1994; 174: 26–8.
  • Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 2000; 21: 619–70.
  • Brown JC, Dahl M, Kwauk S, et al. Actions of GIP. Peptides 1981; 2: 241–5.
  • Christophe J, Svoboda M, Dehaye JP, et al. The VIP/PHI/secretin/helodermin/helo-spectin/ GRF family: structure-function relationship of the natural peptides, their precursors and synthetic analogues as tested in vitro on receptors and adenylate cyclase in a panel of tissue membranes. In: Martinez J, ed. Peptide Hormones as Pro-Hormones: Processing, Biological Activity, Pharmacology. Pp 211-243. Chichester: Ellis Horwood, 1989.
  • Drucker DJ, Shi Q, Crivici A, et al. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat Biotechnol 1997; 15: 673–7.
  • Frohman LA, Jansson JO Growth hormone-releasing hormone. Endocr Rev 1986; 7: 223–53.
  • Gefel D, Hendrick GK, Mojsov S, et al. Glucagon-like peptide-I analogs: effects on insulin secretion and adenosine 3',5'-monophosphate formation. Endocrinology 1990; 126: 2164–8.
  • Knudsen LB, Pridal L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 1996; 318: 429–35.
  • Lin MC, Wright DE, Hruby VJ, et al. Structure-function relationships in glucagon: properties of highly purified des-His-1-, monoiodo-, and (des-Asn-28, Thr-29) (homoserine lactone-27)-glucagon. Biochemistry 1975; 14: 1559–63.
  • Nicole P, Lins L, Rouyer-Fessard C, et al. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 2000; 275: 24003–12.
  • Robberecht P, Gourlet P, de Neef P, et al. Structural requirements for the occupancy of pituitary adenylate-cyclase-activating-peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6-38) as a potent antagonist. Eur J Biochem 1992; 207: 239–46.
  • Mentlein R, Gallwitz B, Schmidt WE Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214: 829–35.
  • Hinke SA, Pospisilik JA, Demuth HU, et al. Dipeptidyl peptidase IV (DPIV/CD26) degradation of glucagon. Characterization of glucagon degradation products and DPIV-resistant analogs. J Biol Chem 2000; 275: 3827–34.
  • Dhanvantari S, Seidah NG, Brubaker PL Role of prohormone convertases in the tissue-specific processing of proglucagon. Mol Endocrinol 1996; 10: 342–55.
  • Drucker DJ. Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 2002; 122: 531–44.
  • Drucker DJ. Gut adaptation and the glucagon-like peptides. Gut 2002; 50: 428–35.
  • L’Heureux MC, Brubaker PL. Therapeutic potential of the intestinotropic hormone, gluca-gon-like peptide-2. Ann Med 2001; 33: 229–35.
  • Cheeseman CI, Tsang R. The effect of GIP and glucagon-like peptides on intestinal basolateral membrane hexose transport. Am J Physiol 1996; 271: G477–82.
  • Wojdemann M, Wettergren A, Hartmann B, et al. Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs. Scand J Gastroenterol 1998; 33: 828–32.
  • Wojdemann M, Wettergren A, Hartmann B, et al. Inhibition of sham feeding-stimulated human gastric acid secretion by glucagon-like peptide-2. J Clin Endocrinol Metab 1999; 84: 2513–7.
  • Tavares W, Drucker DJ, Brubaker PL. Enzymatic- and renal-dependent catabolism of the intestinotropic hormone glucagon-like peptide-2 in rats. Am J Physiol Endocrinol Metab 2000; 278: E134–9.
  • Lambeir AM, Proost P, Scharpé S, et al. A kinetic study of glucagon-like peptide-1 and glucagon-like peptide-2 truncation by dipeptidyl peptidase IV, in vitro. Biochem Pharmacol 2003; 64: 1753–6.
  • Krarup T, Holst JJ, Larsen KL. Responses and molecular heterogeneity of IR-GIP after intraduodenal glucose and fat. Am J Physiol 1985; 249: E195–200.
  • Brown JC, Dryburgh JR. A gastric inhibitory polypeptide. II. The complete amino acid sequence. Can J Biochem 1971; 49: 867–72.
  • Usdin TB, Mezey E, Button DC, et al. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993; 133: 2861–70.
  • Dupre J, Ross SA, Watson D, et al. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37: 826–8.
  • Elahi D, McAloon-Dyke M, Fukagawa NK, et al. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regul Pept 1994; 51: 63–74.
  • Fehmann HC, Goke B. Characterization of GIP(1-30) and GIP(1-42) as stimulators of proinsulin gene transcription. Peptides 1995; 16: 1149–52.
  • Bailey CJ, Wilkes LC, Conlon JM, et al. Effects of gastric inhibitory polypeptide, vasoac-tive intestinal polypeptide and peptide histidine isoleucine on the secretion of hormones by isolated mouse pancreatic islets. J Endocrinol 1990; 125: 375–9.
  • Ding WG, Renstrom E, Rorsman P, et al. Glucagon-like peptide I and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat alpha-cells by a protein kinase A-mediated mechanism. Diabetes 1997; 46: 792–800.
  • Jörnvall H, Carlquist M, Kwauk S, et al. Amino acid sequence and heterogeneity of gastric inhibitory polypeptide (GIP). FEBS Lett 1981; 123: 205–10.
  • Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995; 136: 3585–96.
  • Deacon CF, Nauck MA, Meier J, et al. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 2000; 85: 3575–81.
  • Laburthe M, Couvineau A, Voisin T. Receptors for peptides of the VIP/PACAP and PYY/ NPY/PP families. In: Greeley GH, ed. Gastrointestinal Endocrinology. Pp 125-157. Totowa: Humana Press, 1999.
  • Kato I, Suzuki Y, Akabane A, et al. Transgenic mice overexpressing human vasoactive intestinal peptide (VIP) gene in pancreatic beta cells. Evidence for improved glucose tolerance and enhanced insulin secretion by VIP and PHM-27 in vivo. J Biol Chem 1994; 269: 21223–8.
  • Jamen F, Persson K, Bertrand G, et al. PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. J Clin Invest 2000; 105: 1307–15.
  • Yada T, Sakurada M, Ihida K, et al. Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intrapancreatic regulator of insulin secretion from islet beta cells. J Biol Chem 1994; 269: 1290–3.
  • McDonald TJ, Jornvall H, Nilsson G, et al. Characterization of a gastrin-releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 1979; 90: 227–33.
  • Moghimzadeh E, Ekman R, Hakanson R, et al. Neuronal gastrin-releasing peptide in the mammalian gut and pancreas. Neuroscience 1983; 10: 553–63.
  • Ferris HA, Carroll RE, Lorimer DL, et al. Location and characterization of the human GRP receptor expressed by gastrointestinal epithelial cells. Peptides 1997; 18: 663–72.
  • Xiao D, Wang J, Hampton LL, et al. The human gastrin-releasing peptide receptor gene structure, its tissue expression and promoter. Gene 2001; 264: 95–103.
  • Ghatei MA, Jung RT, Stevenson JC, et al. Bombesin: action on gut hormones and calcium in man. J Clin Endocrinol Metab 1982; 54: 980–5.
  • Horstmann O, Nustede R, Schmidt W, et al. On the role of gastrin-releasing peptide in meal-stimulated exocrine pancreatic secretion. Pancreas 1999; 19: 126–32.
  • Jensen RT, Coy DH, Saeed ZA, et al. Interaction of bombesin and related peptides with receptors on pancreatic acinar cells. Ann NY Acad Sci 1988; 547: 138–49.
  • Karlsson S, Sundler F, Ahrén B. Insulin secretion by gastrin-releasing peptide in mice: ganglionic versus direct islet effect. Am J Physiol 1998; 274: E124–9.
  • Roberge JN, Gronau KA, Brubaker PL. Gastrin-releasing peptide is a novel mediator of proximal nutrient-induced proglucagon-derived peptide secretion from the distal gut. Endocrinology 1996; 137: 2383–8.
  • Rocca AS, Brubaker PL. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 1999; 140: 1687–94.
  • Karlsson S, Sundler F, Ahrén B. Direct cytoplasmic CA(2+) responses to gastrin-releasing peptide in single beta cells. Biochem Biophys Res Commun 2001; 280: 610–4.
  • Persson K, Gingerich RL, Nayak S, et al. Reduced GLP-1 and insulin responses and glucose intolerance after gastric glucose in GRP receptor-deleted mice. Am J Physiol Endocrinol Metab 2000; 279: E956–62.
  • Chu KU, Higashide S, Evers BM, et al. Bombesin stimulates mucosal growth in jejunal and ileal Thiry-Vella fistulas. Ann Surg 1995; 221: 602–9.
  • Upp JR Jr, Poston GJ, MacLellan DG, et al. Mechanisms of the trophic actions of bombesin on the pancreas. Pancreas 1988; 3: 193–8.
  • Clive S, Jodrell D, Webb D. Gastrin-releasing peptide is a potent vasodilator in humans. Clin Pharmacol Ther 2001; 69: 252–9.
  • Heuser M, Pfaar O, Gralla O, et al. Impact of gastrin-releasing peptide on intestinal microcirculation after ischemia-reperfusion in rats. Digestion 2000; 61: 172–80.
  • Reeve JR Jr, Walsh JH, Chew P, et al. Amino acid sequences of three bombesin-like peptides from canine intestine extracts. J Biol Chem 1983; 258: 5582–8.
  • Heimbrook DC, Boyer ME, Garsky VM, et al. Minimal ligand analysis of gastrin releasing peptide. Receptor binding and mitogenesis. J Biol Chem 1988; 263: 7016–9.
  • Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995; 80: 952–7.
  • Brubaker PL, Crivici A, Izzo A, et al. Circulating and tissue forms of the intestinal growth factor, glucagon-like peptide-2. Endocrinology 1997; 138: 4837–43.
  • Vilsboll T, Krarup T, Deacon CF, et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001; 50: 609–13.
  • Wolf R, Rosche F, Hoffmann T, et al. Immunoprecipitation and liquid chromatographic-mass spectrometric determination of the peptide glucose-dependent insulinotropic polypep-tides GIP1-42 and GIP3-42 from human plasma samples. New sensitive method to analyze physiological concentrations of peptide hormones. J Chromatogr A 2001; 926: 21–7.
  • Deacon CF, Wamberg S, Bie P, et al. Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV suppresses meal-induced incretin secretion in dogs. J Endocrinol 2002; 172: 355–62.
  • Deacon CF, Nauck MA, Toft-Nielsen M, et al. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995; 44: 1126–31.
  • Gutniak MK, Juntti-Berggren L, Hellstrom PM, et al. Glucagon-like peptide I enhances the insulinotropic effect of glibenclamide in NIDDM patients and in the perfused rat pancreas. Diabetes Care 1996; 19: 857–63.
  • Gutzwiller JP, Drewe J, Goke B, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999; 276: R1541–4.
  • Nauck MA, Kleine N, Orskov C, et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993; 36: 741–4.
  • Nauck MA, Sauerwald A, Ritzel R, et al. Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure. Diabetes Care 1998; 21: 1925–31.
  • Toft-Nielsen MB, Madsbad S, Holst, JJ. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 1999; 22: 1137–43.
  • Pauly RP, Rosche F, Wermann M, et al. Investigation of glucose-dependent insulinotropic polypeptide-(1-42) and glucagon-like peptide-1-(7-36) degradation in vitro by dipeptidyl peptidase IV using matrix-assisted laser desorption/ionization-time of flight mass spec-trometry. A novel kinetic approach. J Biol Chem 1996; 271: 23222–9.
  • Deacon CF, Plamboeck A, Moller S, et al. GLP-1-(9-36) amide reduces blood glucose in anesthetized pigs by a mechanism that does not involve insulin secretion. Am J Physiol Endocrinol Metab 2002; 282: E873–9.
  • Hansen L, Deacon CF, Orskov C, et al. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 1999; 140: 5356–63.
  • Burcelin R, Dolci W, Thorens B. Long-lasting antidiabetic effect of a dipeptidyl peptidase IV-resistant analog of glucagon-like peptide-1. Metabolism 1999; 48: 252–8.
  • Deacon CF, Knudsen LB, Madsen K, et al. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia 1998; 41: 271–8.
  • O’Harte FP, Mooney MH, Lawlor A, et al. N-terminally modified glucagon-like peptide-1(7-36) amide exhibits resistance to enzymatic degradation while maintaining its antihyperglycaemic activity in vivo. Biochim Biophys Acta 2000; 1474: 13–22.
  • O’Harte FP, Mooney MH, Kelly CM, et al. Degradation and glycemic effects of His(7)-glucitol glucagon-like peptide-1(7-36)amide in obese diabetic ob/ob mice. Regul Pept 2001; 96: 95–104.
  • Ritzel U, Leonhardt U, Ottleben M, et al. A synthetic glucagon-like peptide-1 analog with improved plasma stability. J Endocrinol 1998; 159: 93–102.
  • Siegel EG, Gallwitz B, Scharf G, et al. Biological activity of GLP-1-analogues with N-terminal modifications. Regul Pept 1999; 79: 93–102.
  • Balkan B, Kwasnik L, Miserendino R, et al. Inhibition of dipeptidyl peptidase IV with NVP-DPP728 increases plasma GLP-1 (7-36 amide) concentrations and improves oral glucose tolerance in obese Zucker rats. Diabetologia 1999; 42: 1324–31.
  • Holst JJ, Deacon CF. Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. Diabetes 1998; 47: 1663–70.
  • Pauly RP, Demuth HU, Rosche F, et al. Improved glucose tolerance in rats treated with the dipeptidyl peptidase IV (CD26) inhibitor Ile-thiazolidide. Metabolism 1999; 48: 385–9.
  • Pederson RA, White HA, Schlenzig D, et al. Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes 1998; 47: 1253–8.
  • Deacon CF, Holst JJ. Dipeptidyl peptidase IV inhibition as an approach to the treatment and prevention of type 2 diabetes: a historical perspective. Biochem Biophys Res Commun 2002; 294: 1–4.
  • Demuth HU, Hinke SA, Pederson RA, et al. Rebuttal to Deacon and Holst: “Metformin effects on dipeptidyl peptidase IV degradation of glucagon-like peptide-1” versus “Dipeptidyl peptidase inhibition as an approach to the treatment and prevention of type 2 diabetes: a historical perspective”. Biochem Biophys Res Commun 2002; 296: 229–32.
  • Deacon CF, Danielsen P, Klarskov L, et al. Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes 2001; 50: 1588–97.
  • O’Harte FP, Mooney MH, Flatt PR. NH2-terminally modified gastric inhibitory polypep-tide exhibits amino-peptidase resistance and enhanced antihyperglycemic activity. Diabetes 1999; 48: 758–65.
  • O’Harte FP, Mooney MH, Kelly CM, et al. Improved glycaemic control in obese diabetic ob/ob mice using N-terminally modified gastric inhibitory polypeptide. J Endocrinol 2000; 165: 639–48.
  • Marguet D, Baggio L, Kobayashi T, et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci USA 2000; 97: 6874–9.
  • Tsuji E, Misumi Y, Fujiwara T, et al. An active-site mutation (Gly633—>Arg) of dipeptidyl peptidase IV causes its retention and rapid degradation in the endoplasmic reticulum. Biochemistry 1992; 31: 11921–7.
  • Watanabe Y, Kojima T, Fujimoto Y. Deficiency of membrane-bound dipeptidyl aminopep-tidase IV in a certain rat strain. Experientia 1987; 43: 400–1.
  • Pederson RA, Kieffer TJ, Pauly R, et al. The enteroinsular axis in dipeptidyl peptidase IV-negative rats. Metabolism 1996; 45: 1335–41.
  • Nagakura T, Yasuda N, Yamazaki K, et al. Improved glucose tolerance via enhanced glucose-dependent insulin secretion in dipeptidyl peptidase IV-deficient Fischer rats. Biochem Biophys Res Commun 2001; 284: 501–6.
  • Reimer MK, Holst JJ, Ahren B. Long-term inhibition of dipeptidyl peptidase IV improves glucose tolerance and preserves islet function in mice. Eur J Endocrinol 2002; 146: 717–27.
  • Sudre B, Broqua P, White RB, et al. Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes 2002; 51: 1461–9.
  • Pospisilik JA, Stafford SG, Demuth HU, et al. Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes 2002; 51: 943–50.
  • Ahren B, Simonsson E, Larsson H, et al. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care 2002; 25: 869–75.
  • von Bonin A, Hühn J, Fleischer B. Dipeptidyl-peptidase IV/CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol Rev 1998; 161: 43–53.
  • Dang NH, Torimoto Y, Sugita K, et al. Cell surface modulation of CD26 by anti-1F7 monoclonal antibody. Analysis of surface expression and human T cell activation. J Immunol 1990; 145: 3963–71.
  • Hegen M, Kameoka J, Dong RP, et al. Cross-linking of CD26 by antibody induces tyrosine phosphorylation and activation of mitogen-activated protein kinase. Immunology 1997; 90: 257–64.
  • Hühn J, Ehrlich S, Fleischer B, et al. Molecular analysis of CD26-mediated signal trans-duction in T cells. Immunol Lett 2000; 72: 127–32.
  • Ishii T, Ohnuma K, Murakami A, et al. CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc Natl Acad Sci USA 2001; 98: 12138–43.
  • Tanaka T, Kameoka J, Yaron A, et al. The costimulatory activity of the CD26 antigen requires dipeptidyl peptidase IV enzymatic activity. Proc Natl Acad SciUSA 1993; 90: 4586–90.
  • Hegen M, Mittrucker HW, Hug R, et al. Enzymatic activity of CD26 (dipeptidylpeptidase IV) is not required for its signalling function in T cells. Immunobiology 1993; 189: 483–93.
  • Steeg C, Hartwig U, Fleischer B. Unchanged signaling capacity of mutant CD26/ dipeptidylpeptidase IV molecules devoid of enzymatic activity. Cell Immunol 1995; 164: 311–5.
  • Tanaka T, Duke-Cohan JS, Kameoka J, et al. Enhancement of antigen-induced T-cell proliferation by soluble CD26/dipeptidyl peptidase IV. Proc Natl Acad Sci USA 1994; 91: 3082–6.
  • Schmitz T, Underwood R, Khiroya R, et al. Potentiation of the immune response in HIV-1+ individuals. J Clin Invest 1996; 97: 1545–9.
  • Ohnuma K, Munakata Y, Ishii T, et al. Soluble CD26/dipeptidyl peptidase IV induces T cell proliferation through CD86 up-regulation on APCs. J Immunol 2001; 167: 6745–55.
  • Schön E, Mansfeld HW, Demuth HU, et al. The dipeptidyl peptidase IV, a membrane enzyme involved in the proliferation of T lymphocytes. Biomed Biochim Acta 1985; 44: K9–15.
  • Schön E, Jahn S, Kiessig ST, et al. The role of dipeptidyl peptidase IV in human T lymphocyte activation. Inhibitors and antibodies against dipeptidyl peptidase IV suppress lymphocyte proliferation and immunoglobulin synthesis in vitro. Eur J Immunol 1987; 17: 1821–6.
  • Flentke GR, Munoz E, Huber BT, et al. Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function. Proc Natl Acad Sci USA 1991; 88: 1556–9.
  • Schön E, Born I, Demuth HU, et al. Dipeptidyl peptidase IV in the immune system. Effects of specific enzyme inhibitors on activity of dipeptidyl peptidase IV and proliferation of human lymphocytes. Biol Chem Hoppe-Seyler 1991; 372: 305–11.
  • Reinhold D, Bank U, Buhling F, et al. Dipeptidyl peptidase IV (CD26) on human lymphocytes. Synthetic inhibitors of and antibodies against dipeptidyl peptidase IV suppress the proliferation of pokeweed mitogen-stimulated peripheral blood mononuclear cells, and IL-2 and IL-6 production. Immunobiology 1993; 188: 403–14.
  • Reinhold D, Bank U, Buhling F, et al. Transforming growth factor-?1 (TGF-?1) inhibits DNA synthesis of PWM-stimulated PBMC via suppression of IL-2 and IL-6 production. Cytokine 1994; 6: 382–8.
  • Reinhold D, Bank U, Buhling F, et al. Transforming growth factor ?1 inhibits interleukin-10 mRNA expression and production in pokeweed mitogen-stimulated peripheral blood mononuclear cells and T cells. J Interferon Cytokine Res 1995; 15: 685–90.
  • Reinhold D, Bank U, Buhling F, et al. Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor-beta 1 in PWM-stimulated PBMC and T cells. Immunology 1997; 91: 354–60.
  • Wrenger S, Faust J, Mrestani-Klaus C, et al. Down-regulation of T cell activation following inhibition of dipeptidyl peptidase IV/CD26 by the N-terminal part of the thromboxane A2 receptor. J Biol Chem 2000; 275: 22180–6.
  • Franco R, Valenzuela A, Lluis C, et al. Enzymatic and extraenzymatic role of ectoadenosine deaminase in lymphocytes. Immunol Rev 1998; 161: 27–42.
  • Dong RP, Kameoka J, Hegen M, et al. Characterization of adenosine deaminase binding to human CD26 on T cells and its biologic role in immune response. J Immunol 1996; 156: 1349–55.
  • Hirschhorn R, Nicknam MN, Eng F, et al. Novel deletion and a new missense mutation (Glu217Lys) at the catalytic site in two adenosine deaminase alleles of a patient with neonatal onset adenosine deaminase — severe combined immunodeficiency. J Immunol 1992; 149: 3107–12.
  • Santisteban I, Arredondo-Vega FX, Kelly S, et al. Three new adenosine deaminase mutations that define a splicing enhancer and cause severe and partial phenotypes: implications for evolution of a CpG hotspot and expression of a transduced ADA cDNA. Hum Mol Genet 1995; 4: 2081–7.
  • Martín M, Huguet J, Centelles JJ, et al. Expression of ecto-adenosine deaminase and CD26 in human T cells triggered by the TCR-CD3 complex. Possible role of adenosine deaminase as costimulatory molecule. J Immunol 1995; 155: 4630–43.
  • Gines S, Marino M, Mallol J, et al. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction. Biochem J 2002; 361: 203–9.
  • Blanco J, Barretina J, Henson G, et al. The CXCR4 antagonist AMD3100 efficiently inhibits cell-surface-expressed human immunodeficiency virus type 1 envelope-induced apoptosis. Antimicrob Agents Chemother 2000; 44: 51–6.
  • Baggiolini M. Chemokines and leukocyte traffic. Nature 1998; 392: 565–8.
  • Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12: 121–7.
  • Baggiolini M. Chemokines in pathology and medicine. J Intern Med 2001; 250: 91–104.
  • Mackay CR. Chemokines: immunology’s high impact factors. Nat Immunol 2001; 2: 95–101.
  • Noso N, Sticherling M, Bartels J, et al. Identification of an N-terminally truncated form of the chemokine RANTES and granulocyte-macrophage colony-stimulating factor as major eosinophil attractants released by cytokine-stimulated dermal fibroblasts. J Immunol 1996; 156: 1946–53.
  • Pal R, Garzino-Demo A, Markham P D, et al. Inhibition of HIV-1 infection by the beta-chemokine MDC. Science 1997; 278: 695–8.
  • Struyf S, De Meester I, Scharpé S, et al. Natural truncation of RANTES abolishes signaling through the CC chemokine receptors CCR1 and CCR3, impairs its chemotactic potency and generates a CC chemokine inhibitor. Eur J Immunol 1998; 28: 1262–71.
  • Proost P, De Meester I, Schols D, et al. Amino-terminal truncation of chemokines by CD26/ dipeptidyl-peptidase IV. Conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-1-infection. J Biol Chem 1998; 273: 7222–7.
  • Noso N, Bartels J, Mallet AI, et al. Delayed production of biologically active O-glycosylated forms of human eotaxin by tumor-necrosis-factor-alpha-stimulated dermal fibroblasts. Eur J Biochem 1998; 253:</b>114-22.
  • Menten P, Struyf S, Schutyser E, et al. The LD78beta isoform of MIP-1alpha is the most potent CCR5 agonist and HIV-1-inhibiting chemokine. J Clin Invest 1999; 104: R1–5.
  • Proost P, Menten P, Struyf S, et al. Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78beta into a most efficient monocyte attractant and CCR1 agonist. Blood 2000; 96: 1674–80.
  • Vulcano M, Albanesi C, Stoppacciaro A, et al. Dendritic cells as a major source of macrophage-derived chemokine/CCL22 in vitro and in vivo. <i>Eur J Immunol 2001; 31: 812–22.
  • Oravecz T, Pall M, Roderiquez G, et al. Regulation of the receptor specificity and function of the chemokine RANTES (regulated on activation, normal T cell expressed and secreted) by dipeptidyl peptidase IV (CD26)-mediated cleavage. J Exp Med 1997; 186: 1865–72.
  • Schols D, Proost P, Struyf S, et al. CD26-processed RANTES(3-68), but not intact RANTES, has potent anti-HIV-1 activity. Antiviral Res 1998; 39: 175–87.
  • Proost P, Schutyser E, Menten P, et al. Aminoterminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, whilst preserving anti-angiogenic properties. Blood 2001; 98: 3554–61.
  • Ludwig A, Schiemann F, Mentlein R, et al. Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. J Leukoc Biol 2002; 72: 183–91.
  • Farber JM. MIG. In: Oppenheim JJ, Feldmann M, eds. Cytokine Reference — Volume 1: Ligands. Pp 1111-1117. London: Academic Press, 2001.
  • Luster AD, Cardiff RD, MacLean JA, et al. Delayed wound healing and disorganized neovascularization in transgenic mice expressing the IP-10 chemokine. Proc Assoc Am Physicians 1998; 110: 183–96.
  • Zhou Y, Kurihara T, Ryseck RP, et al. Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J Immunol 1998; 160: 4018–25.
  • Mackay CR. SDF-1. In: Oppenheim JJ, Feldmann M, eds. Cytokine Reference — Volume 1: Ligands. Pp 1119-1123. London: Academic Press, 2001.
  • Delgado MB, Clark-Lewis I, Loetscher P, et al. Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur J Immunol 2001; 31: 699–707.
  • McQuibban GA, Butler GS, Gong JH, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem 2001; 276: 43503–8.
  • Valenzuela-Fernandez A, Planchenault T, Baleux F, et al. Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 2002; 277: 15677–89.
  • Pozo D, Delgado M, Martinez M, et al. Immunobiology of vasoactive intestinal peptide (VIP). Immunol Today 2000; 21: 7–11.
  • Goetzl EJ, Voice JK, Dorsam G. VIP and PACAP. In: Oppenheim JJ, Feldmann M, eds. Cytokine Reference — Volume 1: Ligands. Pp 1397-1405. London: Academic Press, 2001.
  • Delgado M, Abad C, Martinez C, et al. Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease. Nat Med 2001; 7: 563–8.
  • Delgado M, Munoz-Elias EJ, Martinez C, et al. VIP and PACAP38 modulate cytokine and nitric oxide production in peritoneal macrophages and macrophage cell lines. Ann NY Acad Sci 1999; 897: 401–14.
  • Conroy DM, St Pierre S, Sirois P. Relaxant effects of pituitary adenylate cyclase activating polypeptide (PACAP) on epithelium-intact and -denuded guinea-pig trachea: a comparison with vasoactive intestinal peptide (VIP). Neuropeptides 1995; 29: 121–7.
  • Del Rio M, De la Fuente M. Chemoattractant capacity of bombesin, gastrin-releasing peptide and neuromedin C is mediated through PKC activation in murine peritoneal leukocytes. Regul Pept 1994; 49: 185–93.
  • Del Rio M, Hernanz A, De la Fuente M. Bombesin, gastrin-releasing peptide, and neuromedin C modulate murine lymphocyte proliferation through adherent accessory cells and activate protein kinase C. Peptides 1994; 15: 15–22.
  • Levite M. Neuropeptides, by direct interaction with T cells, induce cytokine secretion and break the commitment to a distinct T helper phenotype. Proc Natl Acad Sci USA 1998; 95: 12544–9.
  • Medina S, Del Rio M, Manuel Victor V, et al. Changes with ageing in the modulation of murine lymphocyte chemotaxis by CCK-8S, GRP and NPY. Mech Ageing Dev 1998; 102: 249–61.
  • Hoffmann T, Demuth HU. Therapeutic strategies exploiting DP IV inhibition. In: Langner J, Ansorge S, eds. Ectopeptidases — CD13/Aminopeptidase N and CD26/Dipeptidylpeptidase IV in Medicine and Biology. Pp 259-278. New York: Kluwer Academic/Plenum Publishers, 2002.
  • Kubota T, Flentke GR, Bachovchin WW, et al. Involvement of dipeptidyl peptidase IV in an in vivo immune response. Clin Exp Immunol 1992; 89: 192–7.
  • Tanaka S, Murakami T, Horikawa H, et al. Suppression of arthritis by the inhibitors of dipeptidyl peptidase IV. Int J Immunopharmacol 1997; 19: 15–24.
  • Tanaka S, Murakami T, Nonaka N, et al. Anti-arthritic effects of the novel dipeptidyl peptidase IV inhibitors TMC-2A and TSL-225. Immunopharmacology 1998; 40: 21–6.
  • Korom S, De Meester I, Onodera K, et al. The effects of CD26/DPP IV-targeted therapy on acute allograft rejection. Transplant Proc 1997; 29: 1274–5.
  • Korom S, De Meester I, Stadlbauer TH, et al. Inhibition of CD26/dipeptidyl peptidase IV activity in vivo prolongs cardiac allograft survival in rat recipients. Transplantation 1997; 63: 1495–1500.
  • Korom S, De Meester I, Schmidbauer G, et al. Specific inhibition of CD26/DPP IV enzymatic activity in allograft recipients: effects on humoral immunity. Transplant Proc 1999; 31: 778
  • Brocke S, Reinhold D, Steinbrecher A. CD26/DPIV in diseases of the Central Nervous System. In: Langner J, Ansorge S, eds. Ectopeptidases — CD13/Aminopeptidase N and CD26/Dipeptidylpeptidase IV in Medicine and Biology. Pp 279-287. New York: Kluwer Academic/Plenum Publishers, 2002.
  • Steinbrecher A, Reinhold D, Quigley L, et al. Targeting dipeptidyl peptidase IV (CD26) suppresses autoimmune encephalomyelitis and up-regulates TGF-beta 1 secretion in vivo. J Immunol 2001; 166: 2041–8.
  • De Pasquale A, Ginaldi L, Limoncelli P, Quaglino D. Dipeptidyl amino peptidase IV cytochemistry in circulating lymphocytes from HIV-I-seropositive subjects. Acta Haematol 1989; 81: 19–21.
  • Blazquez MV, Madueno JA, Gonzalez R, et al. Selective decrease of CD26 expression in T cells from HIV-1-infected individuals. J Immunol 1992; 149: 3073–7.
  • Gougeon ML, Lecoeur H, Callebaut C, et al. G. Selective loss of the CD4+/CD26+ T-cell subset during HIV infection. Res Immunol 1996; 147: 5–8.
  • Callebaut C, Krust B, Jacotot E, et al. T cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science 1993; 262: 2045–50.
  • Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272: 872–7.
  • Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272: 1955–8.
  • Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996; 381: 661–6.
  • Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–73.
  • Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85: 1135–48.
  • Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/ fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382: 833–5.
  • Feito MJ, Bragardo M, Buonfiglio D, et al. gp 120s derived from four syncytium-inducing HIV-1 strains induce different patterns of CD4 association with lymphocyte surface molecules. Int Immunol 1997; 9: 1141–7.
  • Iyengar S, Hildreth JE, Schwartz, DH. Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J Virol 1998; 72: 5251–5.
  • Wu L, Paxton WA, Kassam N, et al. R. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med 1997; 185: 1681–91.
  • Oravecz T, Roderiquez G, Koffi J, et al. CD26 expression correlates with entry, replication and cytopathicity of monocytotropic HIV-1 strains in a T-cell line. Nat Med 1995; 1: 919–26.
  • Callebaut C, Jacotot E, Blanco J, et al. Increased rate of HIV-1 entry and its cytopathic effect in CD4+/CXCR4+ T cells expressing relatively high levels of CD26. Exp Cell Res 1998; 241: 352–62.
  • Ohtsuki T, Hosono O, Kobayashi H, et al. Negative regulation of the anti-human immunodeficiency virus and chemotactic activity of human stromal cell-derived factor 1alpha by CD26/dipeptidyl peptidase IV. FEBS Lett 1998; 431: 236–40.
  • Garzino-Demo A, DeVico AL, Conant KE, et al. The role of chemokines in human immunodeficiency virus infection. Immunol Rev 2000; 177: 79–87.
  • Kinter A, Arthos J, Cicala C, et al. Chemokines, cytokines and HIV: a complex network of interactions that influence HIV pathogenesis. Immunol Rev 2000; 177: 88–98.
  • Simmons G, Reeves JD, Hibbitts S, et al. Co-receptor use by HIV and inhibition of HIV infection by chemokine receptor ligands. Immunol Rev 2000; 177: 112–26.
  • Jiang JD, Wilk S, Li J, et al. Inhibition of human immunodeficiency virus type 1 infection in a T-cell line (CEM) by new dipeptidyl-peptidase IV (CD26) inhibitors. Res Virol 1997; 148: 255–66.
  • Cocchi F, DeVico AL, Garzino-Demo A, et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270: 1811–5.
  • Simmons G, Clapham PR, Picard L, et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 1997; 276: 276–9.
  • Nibbs RJ, Yang J, Landau NR, et al. LD78beta, a non-allelic variant of human MIP-1alpha (LD78alpha), has enhanced receptor interactions and potent HIV suppressive activity. J Biol Chem 1999; 274: 17478–83.
  • Struyf S, Menten P, Lenaerts JP, et al. Diverging binding capacities of natural LD78beta isoforms of macrophage inflammatory protein-1alpha to the CC chemokine receptors 1, 3, and 5 affect their anti-HIV-1 activity and chemotactic potencies for neutrophils and eosinophils. Eur J Immunol 2001; 31: 2170–8.
  • Shioda T, Kato H, Ohnishi Y, et al. Anti-HIV-1 and chemotactic activities of human stromal cell-derived factor 1alpha (SDF-1alpha) and SDF-1beta are abolished by CD26/ dipeptidyl peptidase IV-mediated cleavage. Proc Natl Acad Sci USA 1998; 95: 6331–6.
  • Proost P, Struyf S, Schols D, et al. Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1alpha. FEBS Lett 1998; 432: 73–6.
  • Proost P, Struyf S, Schols D, et al. Truncation of macrophage-derived chemokine by CD26/ dipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction. J Biol Chem 1999; 274: 3988–93.
  • Subramanyam M, Gutheil WG, Bachovchin WW, et al. Mechanism of HIV-1 Tat induced inhibition of antigen-specific T cell responsiveness. J Immunol 1993; 150: 2544–53.
  • Reinhold D, Wrenger S, Bank U, et al. CD26 mediates the action of HIV-1 Tat protein on DNA synthesis and cytokine production in U937 cells. Immunobiology 1996; 195: 119–28.
  • Hühn J, Olek S, Fleischer B, et al. The adenosine deaminase-binding region is distinct from major anti-CD26 mAb epitopes on the human dipeptidyl peptidase IV (CD26) molecule. Cell Immunol 1999; 192: 33–40.
  • Kwong PD, Wyatt R, Robinson J, et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998; 393: 648–59.
  • Carbone A, Gloghini A, Zagonel V, et al. The expression of CD26 and CD40 ligand is mutually exclusive in human T-cell non-Hodgkin’s lymphomas/leukemias. Blood 1995; 86: 4617–26.
  • Ruiz P, Mailhot S, Delgado P, et al. CD26 expression and dipeptidyl peptidase IV activity in an aggressive hepatosplenic T-cell lymphoma. Cytometry 1998; 34: 30–5.
  • Reinhold D, Bank U, Buhling F, et al. Inhibitors of dipeptidyl peptidase IV (DP IV, CD26) specifically suppress proliferation and modulate cytokine production of strongly CD26 expressing U937 cells. Immunobiology 1994; 192: 121–36.
  • Ho L, Aytac U, Stephens LC, et al. In vitro</i> and in vivo antitumor effect of the anti-CD26 monoclonal antibody 1F7 on human CD30+ anaplastic large cell T-cell lymphoma Karpas 299. Clin Cancer Res 2001; 7: 2031–40.
  • Morrison ME, Vijayasaradhi S, Engelstein D, et al. A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase. J Exp Med 1993; 177: 1135–43.
  • Albino AP, Sozzi G, Nanus DM, et al. Malignant transformation of human melanocytes: induction of a complete melanoma phenotype and genotype. Oncogene 1992; 7: 2315–21.
  • Van den Oord JJ. Expression of CD26/dipeptidyl-peptidase IV in benign and malignant pigment-cell lesions of the skin. Br J Dermatol 1998; 138: 615–21.
  • Pethiyagoda CL, Welch DR, Fleming TP. Dipeptidyl peptidase IV (DPP IV) inhibits cellular invasion of melanoma cells. Clin Exp Metastasis 2000; 18: 391–400.
  • Fountain JW, Bale SJ, Housman DE, et al. Genetics of melanoma. Cancer Surv 1990; 9: 645–71.
  • Johnson RC, Zhu D, Augustin-Voss HG, et al. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells. J Cell Biol 1993; 121: 1423–32.
  • Cheng HC, Abdel-Ghany M, Elble RC, et al. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. J Biol Chem 1998; 273: 24207–15.
  • Cheng HC, Abdel-Ghany M, Zhang S, et al. Is the Fischer 344/CRJ rat a protein-knockout model for dipeptidyl peptidase IV-mediated lung metastasis of breast cancer? Clin Exp Metastasis 1999; 17: 609–15.
  • Gossrau R, Hartel-Schenk S, Reutter, W. Protease histochemistry of rats of Fischer strain 344. Histochem J 1990; 22: 172–3.
  • Thompson NL, Hixson DC, Callanan H, et al. A Fischer rat substrain deficient in dipeptidyl peptidase IV activity makes normal steady-state RNA levels and an altered protein. Use as a liver-cell transplantation model. Biochem J 1991; 273: 497–502.
  • Sedo A, Malik R. Dipeptidyl peptidase IV-like molecules: homologous proteins or homologous activities? Biochim Biophys Acta 2001; 1550: 107–16
  • Harada M, Fukasawa KM, Fukasawa K, et al. Inhibitory action of proline-containing peptides on Xaa-Pro-dipeptidylaminopeptidase. Biochim Biophys Acta 1982; 705: 288–90.
  • Umezawa H, Aoyagi T, Ogawa K, et al. Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. J Antibiot (Tokyo) 1984; 37: 422–5.
  • Demuth HU, Schlenzig D, Schierhorn A, et al. Design of (omega-N-(O-acyl)hydroxy amid) aminodicarboxylic acid pyrrolidides as potent inhibitors of proline-specific peptidases. FEBS Lett 1993; 320: 23–7.
  • Stöckel-Maschek A, Mrestani-Klaus C, Stiebitz B, et al. Thioxo amino acid pyrrolidides and thiazolidides: new inhibitors of proline specific peptidases. Biochim Biophys Acta 2000; 1479: 15–31.
  • Li J, Wilk E, Wilk S. Aminoacylpyrrolidine-2-nitriles: potent and stable inhibitors of dipeptidyl-peptidase IV (CD 26). Arch Biochem Biophys 1995; 323: 148–54.
  • Ashworth DM, Atrash B, Baker GR, et al. 4-Cyanothiazolidides as very potent, stable inhibitors of dipeptidyl peptidase IV. Bioorg Med Chem Lett 1996; 6: 2745–8.
  • Villhauer EB, Brinkman JA, Naderi GB, et al. 1-[2-[(5-Cyanopyridin-2-yl)amino] ethylamino]acetyl-2-(S)-pyrrolidinecarbonitrile: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 2002; 45: 2362–5.
  • Kelly TA, Adams J, Bachovchin WW, et al. Immunosuppressive boronic acid dipeptides: correlation between conformation and activity. J Am Chem Soc 1993; 115: 12637–8.
  • Snow RJ, Bachovchin WW, Barton RW, et al. Studies on proline boronic acid dipeptide inhibitors of dipeptidyl peptidase IV: identification of a cyclic species containing a B-N bond. J Am Chem Soc 1994; 116: 10860–9.
  • Pargellis CA, Campbell SJ, Pav S, et al. Inhibition of dipeptidyl peptidase IV (CD26) by peptide boronic acid dipeptides. J Enzyme Inhib 1997; 11: 151–69.
  • Welch JT, Lin J. Fluoroolefin containing dipeptide isosteres as inhibitors of dipeptidyl peptidase IV (CD26). Tetrahedron 1996; 52: 291–304.
  • Lin J, Toscano PJ, Welch JT. Inhibition of dipeptidyl peptidase IV by fluoroolefin-containing N-peptidyl-O-hydroxylamine peptidomimetics. Proc Natl Acad Sci USA 1998; 95: 14020–4.
  • Coppola GM, Zhang YL, Schuster HF, et al. 1-Aminomethylisoquinoline-4-carboxylates as novel dipeptidylpeptidase IV inhibitors. Bioorg Med Chem Lett 2000; 10: 1555–8.
  • Shimazawa R, Takayama H, Kato F, et al. Nonpeptide small-molecular inhibitors of dipeptidyl peptidase. IV. N-phenylphthalimide analogs. Bioorg Med Chem Lett 1999; 9: 559–62.
  • Asai Y, Nonaka N, Nishio M, et al. TMC-2A,-2B and -2C, new dipeptidyl peptidase IV inhibitors produced by Aspergillus oryzae A374. II. Isolation and structure determination. J Antibiot (Tokyo) 1997; 50: 653–8.
  • Nonaka N, Asai Y, Nishio M, et al. TMC-2A,-2B and -2C, novel dipeptidyl peptidase IV inhibitors produced by Aspergillus oryzae A374. I. Taxonomy of producing strain, fermentation, and biochemical properties. J Antibiot (Tokyo) 1997; 50: 646–52.
  • Fischer G, Demuth HU, Barth A. N,O-diacylhydroxylamines as enzyme-activated inhibitors for serine proteases. Pharmazie 1983; 38: 249–50.
  • Demuth HU, Baumgrass R, Schaper C, et al. Dipeptidylpeptidase IV—inactivation with N-peptidyl-O-aroyl hydroxylamines. J Enzyme Inhib 1988; 2: 129–42.
  • Demuth HU, Neumann U, Barth A. Reactions between dipeptidyl peptidase IV and diacyl hydroxylamines: mechanistic investigations. J Enzyme Inhib 1989; 2: 239–48.
  • Demuth HU, Schonlein C, Barth A. Potent and selective inactivation of proteinases with N-peptidyl-O-acylhydroxylamines. Biochim Biophys Acta 1989; 996: 19–22.
  • Boduszek B, Oleksyszyn J, Kam CM, et al. Dipeptide phosphonates as inhibitors of dipeptidyl peptidase IV. J Med Chem 1994; 37: 3969–76.
  • Belyaev A, Borloo M, Augustyns K, et al. A new synthetic method for proline diphenyl phosphonates. Tetrahedron Lett 1995; 36: 3755–8.
  • Lambeir AM, Borloo M, De Meester I, et al. Dipeptide-derived diphenyl phosphonate esters: mechanism-based inhibitors of dipeptidyl peptidase IV. Biochim Biophys Acta 1996; 1290: 76–82.
  • Nguyen C, Blanco J, Mazaleyrat JP, et al. Specific and irreversible cyclopeptide inhibitors of dipeptidyl peptidase IV activity of the T-cell activation antigen CD26. J Med Chem 1998; 41: 2100–10.
  • Frohman LA, Downs TR, Heimer EP, et al. Dipeptidylpeptidase IV and trypsin-like enzymatic degradation of human growth hormone-releasing hormone in plasma. J Clin Invest 1989; 83: 1533–40.
  • Nausch I, Heymann E. Substance P in human plasma is degraded by dipeptidyl peptidase IV, not by cholinesterase. J Neurochem 1985; 44: 1354–7.
  • Tiruppathi C, Miyamoto Y, Ganapathy V, et al. Genetic evidence for role of DPP IV in intestinal hydrolysis and assimilation of prolyl peptides. Am J Physiol 1993; 265: G81–9.
  • Bouras M, Huneau JF, Luengo C, et al. Metabolism of enterostatin in rat intestine, brain membranes, and serum: differential involvement of proline-specific peptidases. Peptides 1995; 16: 399–405.
  • Mentlein R, Heymann E. Dipeptidyl peptidase IV inhibits the polymerization of fibrin monomers. Arch Biochem Biophys 1982; 217: 748–50.
  • Zhang XY, De Meester I, Lambeir AM, et al. Study of the enzymatic degradation of vasostatin I and II and their precursor chromogranin A by dipeptidyl peptidase IV using high-performance liquid chromatography/electrospray mass spectrometry. J Mass Spectrom 1999; 34: 255–63.
  • Depreitere J, Durinx C, Wang Z, et al. Presence and release of SR-17 (chromogranin B586-602) in the porcine splenic nerve and its truncation by dipeptidyl-peptidase IV/CD26. Regul Pept 2002; 106: 71–9.
  • Hoffmann T, Faust J, Neubert K, et al. Dipeptidyl peptidase IV (CD26) and aminopeptidase N (CD13) catalyzed hydrolysis of cytokines and peptides with N-terminal cytokine sequences. FEBS Lett 1993; 336: 61–4.
  • Van Coillie E, Proost P, Van Aelst I, et al. Functional comparison of two human monocyte chemotactic protein-2 isoforms, role of the amino-terminal pyroglutamic acid and processing by CD26/dipeptidyl peptidase IV. Biochemistry 1998; 37: 12672–80.
  • Kato T, Nagatsu T, Fukasawa K, et al. Successive cleavage of N-terminal Arg1-Pro2 and Lys3-Pro4 from substance P but no release of Arg1-Pro2 from bradykinin, by X-Pro dipeptidyl-aminopeptidase. Biochim Biophys Acta 1978; 525: 417–22.
  • Guan E, Wang J, Roderiquez G, et al. Natural truncation of the chemokine MIP-1?/CCL4 affects receptor specificity but not anti-HIV-1 activity. J Biol Chem 2002; 277: 32348–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.