755
Views
114
CrossRef citations to date
0
Altmetric
Research Article

Calcium and Cardiac Arrhythmias: DADs, EADs, and Alternans

Pages 337-375 | Published online: 29 Sep 2008

REFERENCES

  • Meech RW, Standen NB. Potassium activation in Helix aspersa neurons under voltage clamp: a component mediated by calcium influx. J Physiol 1975; 249: 211–239.
  • Clusin WT, Spray DC, Bennett MVL. Activation of a voltage insensitive conductance by inward calcium current. Nature 1975; 256: 425–427.
  • Jones EMC, Gray-Keller M, Fettiplace R. The role of Ca2+-activated K+ channel spliced variants in the tontopic organization of the turtle cochlea. J Physiol 1999; 518: 653–665.
  • Isenberg G. Is potassium conductance of cardiac Purkinje fibers controlled by [Ca++]i ? Nature 1975; 253: 273–274.
  • Bassingthwaighte JB, Fry CH, McGuigan JAS. Relationship between internal calcium and outward current in mammalian ventricular muscle: a mechanism for the control of action potential duration. J Physiol 1976; 262: 15–38.
  • Li RA, Leppo M, Takashi M, Seino S, Marban E. Molecular basis of electrocardiographic ST-segment elevation. Circ Res 2000; 87: 837–839.
  • Lederer WJ, Tsien RW. Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibers. J Physiol l976; 263: 73–100.
  • Kass RS, Lederer WJ, Tsien RW, Weingart R. Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibers. J Physiol 1978; 281: 187–208.
  • Kass RS, Tsien, Weingart R. Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibers. J Physiol 1978; 281: 209–226.
  • Ferrier GR, Moe GK. Effect of calcium on acetylstrophanthidin-induced transient depolarizations in canine Purkinje tissue. Circ Res 1973; 33: 508–515.
  • Ferrier GR, Saunders JH, Mendez C. A cellular mechanism for the generation of ventricular arrhythmias by acetylstrophanthidin. Circ Res. 1973; 32: 600–689.
  • Clusin WT. Caffeine induces a transient inward. Nature 1983; 301: 248–250.
  • Clusin WT, Fischmeister R, DeHaan R. Caffeine-induced current in embryonic heart cells: time course and voltage dependence. Am J Physiol 1983; 245: H528–H532.
  • Mechmann S, Pott L. Identification of Na-Ca exchange current in single cardiac myocytes. Nature 1986; 319: 597–599.
  • Berlin JR, Cannell MB, Lederer WJ. Cellular origins of the transient inward current in cardiac myocytes. Role of fluctuations and waves of elevated intracellular calcium. Circ Res 1989; 65: 115–126.
  • De Ferrari GM, Viola M-C, D’Amato E, Antolini R, Forti, S. Distinct patterns of calcium transients during early and delayed afterdepolarizations induced by isoproterenol in ventricular myocytes. Circulation 1995; 91: 2510–2514.
  • Schlotthauer K, Bers DM. Sarcoplasmic reticulum Ca2+ release causes myocyte depolarization. Circ Res 2000; 87: 774–780.
  • Colquhoun D, Neher E, Reuter H, Stevens CF. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 1981; 294: 752–754.
  • Zygmunt AC, Gibbons WR. Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 1991; 68: 424–437.
  • Zygmunt AC, Goodrow RJ, Weigel CM. INaCa and ICl(Ca) contribute to isoproterenol-induced delayed afterdepolarizations in midmyocardial cells. Am J Physiol 1998; 275: H1979–H1992.
  • Han X, Ferrier GR. Ionic mechanisms of transient inward current in the absence of Na+-Ca2+ exchange in rabbit cardiac Purkinje fibres. J Physiol 1992; 456: 19–38.
  • Verkerk AO, Veldkamp MW, Bouman LN, van Ginneken ACG. Calcium-activated Cl-current contributes to delayed afterdepolarizations in single Purkinje and ventricular myocytes. Circulation 2000; 101: 2639–2644.
  • Verkerk AO, Veldkamp MW, Baartscheer A, Schumacher CA, Klopping C, van Ginneken ACG, Ravesloot JH. Ionic mechanism of delayed afterdepolarizations in ventricular cells isolated from human end-stage failing hearts. Circulation 2001; 104: 2728–2733.
  • Karagueuzian HS, Katzung BG. Voltage-clamp studies of transient inward current and mechanical oscillations induced by ouabain in ferret papillary muscle. J Physiol l982; 327: 255–271.
  • Miura M, Boyden PA, ter Keurs HEDJ. [Ca2+] waves during triggered propagated contractions in intact trabeculae. Am J Physiol 1998; 274: H266–H276.
  • Smith TW, Butler VP, Haber E, Fozzard H, Marcus FI, Bremner F, Schulman IC, Phillips A. Treatment of life-threatening digitalis intoxication with digoxin specific Fab antibody fragments. N Engl J Med 1982; 307: 1357–62.
  • Nguyen NX, Yang P-T, Huycke E, Sung RJ. Verapamil and ventricular tachyarrhythmias. Pacing Clin Electrophysiol 1987; 10: 571–578.
  • Sung RJ, Shapiro WA, Shen EN, Morady F. Effect of verapamil on ventricular tachycardias possibly caused by reentry, automaticity and triggered activity. J Clin Invest 1983; 72: 350–360.
  • Lazzara R. Mechanistic and clinical aspects of acquired long QT syndromes. Ann NY Acad Sci 1992; 644: 48–56.
  • Hiraoka M, Sunami A, Fan Z, Sawanobori T. Multiple ionic mechanisms of early afterdepolarizations in isolated ventricular myocytes from guinea pig hearts. Ann NY Acad Sci 1991; 644: 33–47.
  • Marban E, Robinson SW, Wier WG. Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J Clin Invest 1986; 78: 1185–1192.
  • Miura M, Ishide N, Oda H, Sakurai M, Shinozaki T, Takishima T. Spatial features of calcium transients during early and delayed afterdepolarizations. Am J Physiol 1993; 265: H439–444.
  • De Ferrari GM, Viola MC, D’Amato E, Antolini R, Forti S. Distinct patterns of calcium transients during early and delayed afterdepolarizations induced by isoproterenol in ventricular myocytes. Circulation 1995; 91: 2510–2515.
  • Cordeiro JM, Bridge JHB, Spitzer KW. Early and delayed afterdepolarizations in rabbit heart Purkinje cells viewed by confocal microscopy. Cell Calcium 2001; 29: 289–368.
  • Volders PGA, Kulcsar A, Vos MA, Sipido KR, Wellens HJJ, Lazzara R, Szabo B. Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. Cardiovasc Res 1997; 34: 348–359.
  • Levine JH, Spear JF, Guarnieri T, Weisfeldt ML, DeLangen CDJ, Becker LC, Moore EN. Cesium chloride-induced long QT syndrome: demonstration of afterdepolarizations and triggered activity in vivo. Circulation 1985; 72: 1092–1103.
  • Wit AL, Cranefield PF. Effect of verapamil on the SA and AV nodes of the rabbit and the mechanism by which it arrests reentrant atrioventricular nodal tachycardia. Circ Res 1974; 35: 413–425.
  • Cranefield PF. Conduction of the slow response. In: Conduction of the Cardiac Impulse. Pp 115-151. Mount Kisco, NY: Futura, 1976.
  • Hellerstein HK, Liebow IM. Electrical alternation in experimental coronary artery occlusion. Am Physiol 1950; 160: 366–374.
  • Downar E, Janse MJ, Durrer D. The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation 1977; 56: 217–224.
  • Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 1999; 99: 1385–1394.
  • Qian Y-W, Lin S-F, Sung RJ, Clusin WT. Spatial heterogeneity of action potential duration alternans in blood perfused ischemic rabbit hearts. Biophys J 2001; 80: 643a.
  • Kurz RW, Franz MR. Action potential alternans, electrical restitution, repolarization dispersion and arrhythmia vulnerability in the isolated ischemic rabbit heart. In: Franz MR, Ed. Monophasic Action Potentials: Bridging Cell and Bedside. Pp 195-208. Armonk, NY: Futura, 2000.
  • Watanabe MA, Fenton FH, Evans SJ, Hastings HM, Karma A. Mechanisms for discordant alternans. J Cardiovasc Electrophysiol 2001; 12: 196–206.
  • Qu Z, Garfinkel A, Chen P-S, Weiss JN. Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation 2000; 102: 1599–1739.
  • Kurz RW, Mohabir R, Ren X-L, Franz MR. Ischaemia induced alternans of action potential duration in the intact heart: dependence on coronary flow, preload and cycle length. Eur Heart J 1993; 14: 1410–1420.
  • Sutton PMI, Taggart P, Lab M, Runnalls ME, O’Brien W, Treasure T. Alternans of epicardial repolarization as a localized phenomenon in man. Eur Heart J 1991; 12: 70–78.
  • Konta T, Ikeda K, Yamaki M, Nakamura K, Honma K, Kubota I, Yasui S. Significance of discordant ST alternans in ventricular fibrillation. Circulation l990; 82: 2185–2189.
  • Allen DG, Eisner DA, Lab MJ, Orchard CH. The effects of low sodium solutions on intracellular calcium concentration and tension in ferret ventricular muscle. J Physiol 1983; 345: 391–407.
  • Lee HC, Smith N, Mohabir R, Clusin WT. Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci USA 1987; 84: 7793–7797.
  • Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing Indo-l: Correlation with monophasic action potentials and contraction. Circulation 1988; 78: 1047–1059.
  • Mohabir R, Lee H, Clusin WT. Effects of ischemia and hypercarbic acidosis on calcium transients, contraction and pHi in perfused rabbit hearts containing indo-l and BCECF. Circ Res 1991; 69: 1525–1537.
  • Kihara Y, Grossman W, Morgan JP. Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia and reperfusion in the intact heart. Circ Res 1989; 65: 1029–1044.
  • Camacho SA, Figueredo VM, Brandes R, Weiner MW. Ca2+ dependent fluorescence transients and phosphate metabolism during low-flow ischemia in rat hearts. Am J Physiol 1993; 265: H114–H122.
  • Camacho SA, Brandes R, Figueredo VM, Weiner MW. Ca2+ transient decline and myocar-dial relaxation are slowed during low flow ischemia in rat hearts. J Clin Invest 1994; 93: 951–957.
  • Figueredo VM, Brandes R, Weiner MW, Massie BM, Camacho SA. Endocardial versus epicardial differences of intracellular free calcium under normal and ischemic conditions in perfused rat hearts. Circ Res 1993; 72: 1082–1090.
  • Ylitalo KV, Ala-Rami A, Liimatta EV, Peuhkurinen KJ, Hassinen IE. Intracellular free calcium and mitochondrial membrane potential in ischemia/reperfusion and preconditioning. J Mol Cell Cardiol 2000; 32: 1223–1238.
  • Wu YM, Clusin WT. Calcium transient alternans in blood-perfused ischemic hearts: observations with fluorescent indicator Fura Red. Am J Physiol 1997; 273: H2161–H2169.
  • Qian Y-W, Clusin WT, Lin S-F, Han J, Sung RJ. Spatial heterogeneity of calcium transient alternans during the early phase of myocardial ischemia in the blood-perfused rabbit heart. Circulation 2001; 104: 2082–2087.
  • Chien WW, Mohabir R, Clusin WT. Effect of thrombin on calcium homeostasis in chick embryonic heart cells: receptor operated calcium entry with IP3 and a pertussin toxin-sensitive G protein as second messengers. J Clin Invest 1990; 86: 1436–1443.
  • Chien WW, Mohabir R, Clusin WT. Effect of platelet release products on cytosolic calcium in cardiac myocytes. Biochem Biophys Res Commun 1990; 170: 1121–1127.
  • Lauer MR, Gunn MD, Clusin WT. Endothelin activates voltage-dependent Ca2+ current by a G protein-dependent mechanism in cardiac myocytes. J Physiol 1992; 448: 727–747.
  • Clusin WT. The role of cytosolic calcium in electrical and mechanical alternans. In: Franz MR, Ed. Monophasic Action Potentials — Bridging Cell and Bedside. Pp 209-227. Armonk, NY: Futura Press, 2000.
  • Chudin E, Goldhaber J., Garfinkel A., Weiss J., Kogan B. Intracellular Ca2+ dynamics and stability of ventricular tachycardia. J Biophys 1999; 77: 2930–2941.
  • Stowe DF, Fujita S, An J, Paulsen RA, Varadarajan SG, Smart S. Modulation of myocardial function and [Ca2+]i sensitivity by moderate hypothermia in guinea pig isolated hearts. Am J Physiol 1999; 277: H2321–H2332.
  • Gyorke I, Gyorke S. Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J 1998; 75: 2801–2810.
  • Shannon TR, Ginsburg KS, Bers DM. Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intrasarcoplasmic reticulum calcium concentration. Biophys J 2000; 78: 334–343.
  • Laurita KR, Singal A. Mapping action potentials and calcium transients simultaneously from the intact heart. Heart Circ Physiol 2001; 280: H2053–H2060.
  • Choi B-R, Salama G. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J Physiol 2000; 529: 171–188.
  • Orchard CH, McCall E, Kirby MS, Boyett MR. Mechanical alternans during acidosis in ferret ventricular muscle. Circ Res 1991; 68: 69–76.
  • Morad M, Trautwein W. The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pfluger’s Archiv 1968; 299: 66–82.
  • Lee KS, Marban E, Tsien RW. Inactivation of calcium channels in mammalian heart cells: joint dependence on membrane potential and intracellular calcium. J Physiol 1985; 364: 395–411.
  • Zuhlke RD, Pitt GS, Diesseroth K, Tsien RW, Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 1999; 159–162.
  • Anderson ME. Calmodulin and the philosopher’s stone: changing Ca2+ into arrhythmias. J Cardiovasc Electrophysiol 2002; 13: 195–197.
  • Mohabir R, Franz MR, Clusin WT. In vivo electrophysiologic detection of myocardial ischemia through monophasic action potential recording. Prog Cardiovasc Dis 1991; 34: 15–28.
  • Clusin WT, Han J, Qian Y-W. Simultaneous recordings of calcium transients and action potentials from small regions of the perfused rabbit heart. Pacing Clin Electrophysiol 1999; 22: 843a.
  • Clusin WT, Buchbinder M, Harrison DC. Calcium overload “injury” current and early ischemic cardiac arrhythmias — a direct connection. Lancet 1983; I: 272–274.
  • Clusin WT, Bristow MR, Karagueuzian HS, Katzung BG, Schroeder JS. Do calcium-dependent ionic currents mediate ischemic ventricular fibrillation? Am J Cardiol 1982; 49: 606–612.
  • Opie LH, Thandroyen FT. Multiple sites of modulation of calcium ion movements in cardiac tissue: implications for early ischemic ventricular fibrillation. In: Berman MC, Gevers W, Opie LH, eds. Membranes and Muscle, Pp 279-291, Oxford: IRL Press, 1985.
  • Clusin WT, Bristow MR, Baim DS, Schroeder JS, Jaillon P, Brett P, Harrison DC. The effects of diltiazem and reduced serum ionized calcium on ischemic ventricular fibrillation in the dog. Circ Res 1982; 50: 518–526.
  • Fearon RE. Propranolol in the prevention of ventricular fibrillation due to experimental coronary artery occlusion: observations on its mode of action. Am J Cardiol 1967; 20: 222–228.
  • Kaumann AJ, Aramendia P. Prevention of ventricular fibrillation induced by coronary ligation. J Pharmacol Exp Ther 1968; 164: 326–332.
  • Clusin WT, Buchbinder M, Ellis AK, Kernoff RS, Giacomini JC, Harrison DC. Reduction of ischemic depolarization by the calcium channel blocker diltiazem — correlation with improvement of ventricular conduction and early arrhythmias in the dog. Circ Res 1984; 54: 10–20.
  • Blake K, Clusin WT. Effect of diltiazem on ischemic myocardial depolarization and extracellular K+ accumulation. Eur J Pharmacol 1986; 127: 261–265.
  • Blake K, Smith NA, Clusin WT. Rate dependence of ischaemic myocardial depolarisation: evidence for a novel membrane current. Cardiovasc Res 1986; 20: 557–562.
  • Blake K, Clusin WT, Franz MR, Smith NA. Mechanism of depolarization in the ischaemic dog heart: discrepancy between T-Q potentials and potassium accumulation. J Physiol 1988; 397: 307–330.
  • Thandroyen FT, McCarthy J, Burton KP, Opie LH. Ryanodine and caffeine prevent ventricular arrhythmias during acute myocardial ischemia and reperfusion in rat heart. Circ Res 1988; 62: 306–314.
  • Hashimoto H, Asano M, Nakashima M. Potentiating effects of a ventricular premature beat on the alternation of the ST-T complex of epicardial electrograms and the incidence of ventricular arrhythmias during acute coronary occlusion in dogs. Circ Res l983; 68: 667–672.
  • Brooks WW, Verrier RL, Lown B. Protective effect of verapamil on vulnerability to ventricular fibrillation during myocardial ischemia and reperfusion. Cardiovasc Res 1980; 14: 295–302.
  • Holley LK, Knisley SB. Transmembrane potentials during high-voltage shocks in ischemic cardiac tissue. Pacing Clin Electrophysiol 1997; 20: 146–152.
  • Knisly SB, Holley LK. Characterization of shock-induced action potential extension during acute regional ischemia in rabbit hearts. J Cardiovasc Electrophysiol 1995; 6: 775–785.
  • Norwegian Study Group. Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N Engl J Med 1981; 304: 801–807.
  • Beta Blocker Heart Attack Trial. A randomized trial of propranolol in patients with acute myocardial infarction. I. Mortality results. JAMA 1982; 247: 1707–1714.
  • Hjalmarson A, Elmfeldt D, Herlitz J, Holmberg S, Malek I, Nyberg G, Ryden L, Swedberg K, Vedin A, Waagstein F, Waldenstrom A, Waldenstrom J, Wedel, H, Wilhemsen L, Wilhelmsson C. Effect on mortality of metoprolol in acute myocardial infarction: a double-blind randomised trial. Lancet l98l; 2: 823–827.
  • DAVIT II. Effect of verapamil on mortality and major events after acute myocardial infarction (the Danish Verapamil Infarction Trial II — DAVIT II). Am J Cardiol 1990; 66: 779–785.
  • Multicenter Diltiazem Postinfarction Trial Research Group. The effect of diltiazem on mortality and reinfarction after myocardial infarction. N Engl J Med l988; 319: 385–392.
  • Chan AW, Quinn MJ, Bhatt DL, Chew DP, Moliterno DJ, Topol EJ, Ellis SG. Mortality benefit of beta-blockade after successful elective percutaneous coronary intervention. J Am Coll Cardiol 2002; 40: 669–675.
  • Goldbourt U, Behar S, Reicher-Reiss H, Zion M, Mandelzweig L, Kaplinsky E. Early administration of nifedipine in suspected acute myocardial infarction: The Secondary Prevention Reinfarction Israel Nifedipine Trial 2 Study. Arch Intern Med 1993; 153: 345–353.
  • Furburg CD, Psaty BM, Meyer JV. Nifedipine. Dose-related increase in mortality in patients with coronary heart disease. Circulation 1995; 92: 1326–1331.
  • GISSI-Prevenzione Investigators. Early protection against sudden death by n-3 polyunsatu-rated fatty acids after myocardial infarction. Circulation 2002; 105: 1897–1903.
  • Billman GE, Kang JX, Leaf A. Prevention of sudden cardiac death by dietary pure ?-3 polyunsaturated fatty acids in dogs. Circulation 1999; 99: 2452–2457.
  • Marks AR. Clinical implications of cardiac ryanodine receptor/calcium release channel mutations linked to sudden cardiac death. Circulation 2002; 106: 8–10.
  • Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V, Danieli GA. Mutations in the cardiac ryanodine receptor gene (RyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001; 103: 196–200.
  • Laitinen PJ, Brown KM, Piippo K, Swan H, Devaney JM, Brahmbhatt B, Donarum EA, Marino M, Tiso N, Viitasalo M, Toivonen L, Stephan DA, Kontula K. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 2001; 103: 485–490.
  • Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catechol-aminergic polymorphic ventricular tachycardia in children: a 7-year follow-up of 21 patients. Circulation l995; 91: 1512–1519.
  • Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F, Larderet G, Brahmbhatt B, Brown K, Bauce B, Muriago M, Basso C, Thiene G, Danieli GA, Rampazzo A. Identification of mutations in the cardiac ryanodine receptor (RyR2) gene in families affected with arrythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 2001; 10: 189–194.
  • Bauce B, Rampazzo A, Basso C, Bagattin A, Daliento L, Tiso N, Turrini P, Thiene G, Danieli G, Nava A. Screening for ryanodine receptor type 2 mutations in families with effort-induced polymorphic ventricular arrhythmias and sudden death. Early diagnosis of asymptomatic carriers. J Am Coll Cardiol 2002; 40: 341–349.
  • Jiang D, Xiao B, Zhang L, Chen SRW. Enhanced basal activity of a cardiac Ca2+ release channel (ryanodine receptor) mutant associated with ventricular tachycardia and sudden death. Circ Res 2002; 91: 218–225.
  • Wohlfart B. Analysis of mechanical alternans in rabbit papillary muscles. Acta Physiol Scan. 115: 405–414, 1982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.