1,158
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Molecular Understanding of Meat Quality Through Application of Proteomics

, , , &

References

  • Wilkins, M.R.; Pasquali, C.; Appel, R.D.; Ou, K.; Golaz, O.; Sanchez, J.C.; Yan, J.X.; Gooley, A.A.; Hughes, G.; HumpherySmith, I.; Williams, K.L.; Hochstrasser, D.F. From proteins to proteomes: Large Scale protein identification by two-dimensional electrophoresis and arnino acid analysis. Nat. Biotechnol. 1996, 14, 61 –65.
  • Bendixen, E. The use of proteomics in meat science. Meat Sci. 2005, 71, 138 –149.
  • Hollung, K.; Timperio, A. M.; Olivan, M.; Kemp, C.; Coto-Montes, A.; Sierra, V.; Zolla, L. Systems biology: A new tool for farm animal science. Curr. Protein Pept. Sci. 2014, 15, 100 –117.
  • Hollung, K.; Veiseth, E.; Jia, X.; Færgestad, E.M.; Hildrum, K.I. Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Sci. 2007, 77, 97 –104.
  • Bendixen, E.; Danielsen, M.; Hollung, K.; Gianazza, E.; Miller, I. Farm animal proteomics—A review. J. Proteomics 2011, 74, 282 –293.
  • D’Alessandro, A.; Zolla, L. Foodomics to investigate meat tenderness. Trend. Anal. Chem. 2013, 52, 47 –53.
  • Vercauteren, F.G.G.; Arckens, L.; Quirion, R. Applications and current challenges of proteomic approaches, focusing on two-dimensional electrophoresis. Amino Acids 2007, 33, 405 –414.
  • Marouga, R.; David, S; Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal. Bioanal. Chem. 2005, 382, 669 –678.
  • Liebler, D.C. Proteomic approaches to characterize protein modifications: New tools to study the effects of environmental exposures. Environ. Health Perspect. 2002, 110 (Suppl 1), 3 –9.
  • Yates, J.R. Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biom. 2004, 33, 297 –316.
  • Taylor, C.F.; Paton, N.W.; Garwood, K.L.; Kirby, P.D.; Stead, D.A.; Yin, Z.; Deutsch, E.W.; Selway, L.; Walker, J.; Riba-Garcia, I.; Mohammed, S.; Deery, M.;J.; Howard, J.A.; Dunkley, T.; Aebersold, R.; Kell, D.B.; Lilley, K.S.; Roepstorff, P.; Yates, J.R.; Brass, A.; Brown, A.J.P.; Cash, P.; Gaskell, S.J.; Hubbard, S; Oliver, S.G. A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nat. Biotechnol. 2003, 21, 247 –254.
  • Pan, S.; Aebersold, R.; Chen, R.; Rush, J.; Goodlett, D. R.; McIntosh, M. W.; Zhang, J; Brentnall, T. A. Mass spectrometry based targeted protein quantification: Methods and applications. J. Proteome Res. 2008, 8, 787 –797.
  • Wiese, S.; Reidegeld, K. A.; Meyer, H. E.; Warscheid, B. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7, 340 –350.
  • Drissi, R.; Dubois, M. L.; Boisvert, F. M. Proteomics methods for subcellular proteome analysis. FEBS J. 2013, 280, 5626 –5634.
  • Bantscheff, M.; Lemeer, S.; Savitski, M. M.; Kuster, B. Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present. Anal. Bioanal. Chem. 2012. 404, 939 –965.
  • Schiess, R.; Wollscheid, B.; Aebersold, R. Targeted proteomic strategy for clinical biomarker discovery. Mol. Oncol. 2009, 3, 33 –44.
  • Hu, Z. Y.; Parker, R. B.; Herring, V. L.; Laizure, S. C. Conventional liquid chromatography/triple quadrupole mass spectrometry based metabolite identification and semi-quantitative estimation approach in the investigation of in vitro dabigatran etexilate metabolism. Anal. Bioanal. Chem. 2013, 405, 1695 –1704.
  • Paredi, G.; Raboni, S.; Bendixen, E.; de Almeida, A.M.; Mozzarelli, A. “Muscle to meat” molecular events and technological transformations: The proteomics insight. J. Proteomics 2012, 75, 4275 –4289.
  • Huffman, K.L.; Miller, M.F.; Hoover, L.C.; Wu, C.K.; Brittin, H.C.; Ramsey, C.B. Effect of beef tenderness on consumer satisfaction with steaks consumed in the home and restaurant. J. Anim. Sci. 1996, 74, 91 –97.
  • Miller, M.F.; Carr, M.A.; Ramsey, C.B.; Crockett, K.L.; Hoover, L.C. Consumer thresholds for establishing the value of beef tenderness. J. Anim. Sci. 2001, 79, 3062 –3068.
  • Ashie, I.N.A.; Sorensen, T.L.; Nielsen, P.M. Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J. Food Sci. 2002, 67, 2138 –2142.
  • Belew, J.B.; Brooks, J.C.; McKenna, D.R.; Savell, J.W. Warner–Bratzler shear evaluations of 40 bovine muscles. Meat Sci. 2003, 64, 507 –512.
  • Dransfield, E. Optimization of tenderization, aging and tenderness. Meat Sci. 1994, 36, 105 –121.
  • Suman S.P. Application of proteomics to understand meat quality. In Handbook of Meat and Meat Processing, 2nd ed., Hui, Y.H., Ed.; CRC Press: Boca Raton, FL, 2012; pp 287 –300.
  • Laville, E.; Sayd, T.; Terlouw, C.; Chambon, C.; Damon, M.; Larzul, C.; Glenisson J.; Chérel, P. Comparison of sarcoplasmic proteomes between two groups of pig muscles selected for shear force of cooked meat. J. Agric. Food Chem. 2007, 55, 5834 –5841.
  • Jia, X.; Veiseth-Kent, E.; Grove, H.; Kuziora, P.; Aass, L.; Hildrum, K.I.; Hollung, K. Peroxiredoxin-6—A potential protein marker for meat tenderness in bovine longissimus thoracis muscle. J. Anim. Sci. 2009, 87, 2391 –2399.
  • Feder, M.E.; Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61, 243 –282.
  • Morzel, M.; Terlouw, C.; Chambon, C.; Micol, D.; Picard, B. Muscle proteome and meat eating qualities of Longissimus thoracis of “Blonde d’Aquitaine” young bulls: A central role of HSP27 isoforms. Meat Sci. 2008, 78, 297 –304.
  • Kim, N.K.; Cho, S.; Lee, S.H.; Park, H.R.; Lee, C.S.; Cho, Y.M.; Choy, Y.H.; Yoon, D.I.; Seok, K.; Park, E.W. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Sci. 2008, 80, 1068 –1073.
  • Guillemin, N.; Bonnet, M.; Jurie, C.; Picard, B. Functional analysis of beef tenderness. J. Proteomics 2011, 75, 352 –365.
  • Lametsch, R.; Karlsson, A.; Rosenvold, K.; Andersen, H.J.; Roepstorff, P.; Bendixen, E. Postmortem proteome changes of porcine muscle related to tenderness. J. Agric. Food Chem. 2003, 51, 6992 –6997.
  • Lametsch, R.; Roepstorff, P.; Møller, H.S.; Bendixen, E. Identification of myofibrillar substrates for μ-calpain. Meat Sci. 2004, 68, 515 –521.
  • Bouley, J.; Chambon, C.; Picard, B. Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2004, 4, 1811 –1824.
  • Picard, B.; Berri, C.; Lefaucheur, L.; Molette, C.; Sayd, T.; Terlouw, C. Skeletal muscle proteomics in livestock production. Brief Funct. Genomics 2010, 9, 259 –278.
  • Muroya, S.; Ohnishi-kameyama, M; Oe, M.; Nakajima, I.; Chikuni, K. Postmortem changes in bovine troponin T isoforms on two-dimensional electrophoretic gel analyzed using mass spectrometry and Western blotting: The limited fragmentation into basic polypeptides. Meat Sci. 2007, 75, 506 –514.
  • Lametsch, R.; Bendixen, E. Proteome analysis applied to meat science: Characterizing post mortem changes in porcine muscle. J. Agric. Food Chem. 2001, 49, 4531 –4537.
  • Jia, X.; Ekman, M.; Grove, H.; Færgestad, E. M.; Aass, L.; Hildrum, K. I.; Hollung, K. Proteome changes in bovine longissimus thoracis muscle during the early postmortem storage period. J. Proteome Res. 2007, 6, 2720 –2731.
  • Laville, E.; Sayd, T.; Terlouw, C.; Blinet, S.; Pinguet, J.; Fillaut, M.; Glénisson, J.; Chérel, P. Differences in pig muscle proteome according to HAL genotype: Implications for meat quality defects. J. Agric. Food Chem. 2009, 57, 4913 –4923.
  • te Pas, M.F.; Jansen, J.; Broekman, K.C.; Reimert, H.; Heuven, H. Postmortem proteome degradation profiles of longissimus muscle in Yorkshire and Duroc pigs and their relationship with pork quality traits. Meat Sci. 2009, 83, 744 –751.
  • Polati, R.; Menini, M.; Robotti, E.; Millioni, R.; Marengo, E.; Novelli, E.; Balzan, S.; Cecconi, D. Proteomic changes involved in tenderization of bovine longissimus dorsi muscle during prolonged ageing. Food Chem. 2012, 135, 2052 –2069.
  • Bjarnadóttir, S.G.; Hollung, K.; Høy, M.; Bendixen, E.; Codrea, M.C.; Veiseth-Kent, E. Changes in protein abundance between tender and tough meat from bovine Longissimus thoracis muscle assessed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and 2-dimensional gel electrophoresis analysis. J. Anim. Sci. 2012, 90, 2035 –2043.
  • D’Alessandro, A.; Rinalducci, S.; Marrocco, C.; Zolla, V.; Napolitano, F.; Zolla, L. Love me tender: An Omics window on the bovine meat tenderness network. J. Proteomics 2012, 75, 4360 –4380.
  • D’Alessandro, A.; Marrocco, C.; Rinalducci, S.; Mirasole, C.; Failla, S.; Zolla, L. Chianina beef tenderness investigated through integrated omics. J. Proteomics 2012, 75, 4381 –4398.
  • Zapata, I.; Zerby, H. N.; Wick, M. Functional proteomic analysis predicts beef tenderness and the tenderness differential. J. Agric. Food Chem. 2009, 57, 4956 –4963.
  • D’Alessandro, A.; Zolla, L. Meat science: From proteomics to integrated omics towards system biology. J. Proteomics 2013, 78, 558 –577.
  • Gallien, S.; Duriez, E.; Domon, B. Selected reaction monitoring applied to proteomics. J. Mass Spectrom. 2011, 46, 298 –312.
  • Hocquette, J. F.; Cassar-Malek, I.; Bernard-Capel, C.; Picard, B. Functional genomics and new markers for beef production—Minireview. Anim. Sci. Pap. Rep. 2009, 27, 273 –279.
  • Guillemin, N.; Meunier, B.; Jurie, C.; Cassar-Malek, I.; Hocquette, J. F.; Leveziel, H.; Picard, B. Validation of a Dot-Blot quantitative technique for large scale analysis of beef tenderness biomarkers. J. Physiol. Pharmacol. 2009. 60, 91 –97.
  • Murgiano, L.; D’Alessandro, A.; Egidi, M. G.; Crisa, A.; Prosperini, G.; Timperio, A. M.; Valentini, A.; Zolla, L. Proteomics and transcriptomics investigation on longissimus muscles in Large White and Casertana pig breeds. J. Proteome Res. 2010, 9, 6450 –6466.
  • Pierzchala, M.; Hoekman, A.J.W.; Urbanski, P.; Kruijt, L.; Kristensen, L.; Young, J.F.; Oksbjerg, N.; Goluch, D.; te Pas, M.F.W. Validation of biomarkers for loin meat quality (M. longissimus) of pigs. J. Anim. Breed Genet. 2014, 131, 258 –270. doi:10.1111/jbg.12081.
  • Mancini, R. A.; Hunt, M. Current research in meat color. Meat Sci. 2005, 71, 100 –121.
  • Suman, S. P.; Rentfrow, G.; Nair, M. N.; Joseph, P. 2013 Early Career Achievement Award—Proteomics of muscle-and species-specificity in meat color stability. J. Anim. Sci. 2014, 92, 875 –882.
  • Yu, Z.; Li, J.; Zhu, J.; Zhu, M.; Jiang, F.; Zhang, J.; Li, Z.; Zhong, M.; Kaye, J. B.; Du, J.; Shen, B. A synthetic transmembrane segment derived from TRPV4 channel self-assembles into potassium-like channels to regulate vascular smooth muscle cell membrane potential. J. Mater. Chem. B 2014, 2, 3809 –3818.
  • Suman, S.P.; Faustman, C.; Stamer, S.L.; Liebler, D.C. Redox instability induced by 4-hydroxy-2-nonenal in porcine and bovine myoglobins at pH 5.6 and 4 C. J. Agric. Food Chem. 2006, 54, 3402 –3408.
  • Suman, S.P.; Faustman, C.; Stamer, S.L.; Liebler, D.C. Proteomics of lipid oxidation-induced oxidation of porcine and bovine oxymyoglobins. Proteomics 2007, 7, 628 –640.
  • Sayd, T.; Morzel, M.; Chambon, C.; Franck, M.; Figwer, P.; Larzul, C.; Le Roy, P.; Monin, G.; Cherel, P.; Laville, E. Proteome analysis of the sarcoplasmic fraction of pig semimembranosus muscle: Implications on meat color development. J. Agric. Food Chem. 2006, 54, 2732 –2737.
  • Joseph, P.; Suman, S.P.; Rentfrow, G.; Li, S.; Beach, C.M. Proteomics of muscle-specific beef color stability. J. Agric. Food Chem. 2012, 60, 3196 –3203.
  • Gao, X. G. Influencing factors on colour stability of lamb muscle and proteomics analysis related to colour. Doctoral dissertation, Doctor of Engineering, China Agricultural University, Beijing, China, 2013.
  • Cheng, Q.; Sun, D.W. Factors affecting the water holding capacity of red meat products: A review of recent research advances. Crit. Rev. Food Sci. 2008, 48, 137 –159.
  • Melody, J. L.; Lonergan, S. M.; Rowe, L. J.; Huiatt, T. W.; Mayes, M. S.; Huff-Lonergan, E. Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J. Anim. Sci. 2004, 82, 1195 –1205.
  • Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194 –204.
  • Hwang, I. Proteomics approach in meat science: A model study for Hunter L* value and drip loss. Food Sci. Biotechnol. 2004, 13, 208 –214.
  • van de Wiel, D.F.; Zhang, W.L. Identification of pork quality parameters by proteomics. Meat Sci. 2007, 77, 46 –54.
  • Phongpa-Ngan, P.; Grider, A.; Mulligan, J.H.; Aggrey, S.E.; Wicker, L. Proteomic analysis and differential expression in protein extracted from chicken with a varying growth rate and water-holding capacity. J. Agric. Food Chem. 2011, 59, 13181 –13187.
  • Di Luca, A.; Mullen, A.M.; Elia, G.; Davey, G.; Hamill, R.M. Centrifugal drip is an accessible source for protein indicators of pork ageing and water-holding capacity. Meat Sci. 2011, 88, 261 –270.
  • Di Luca, A.; Elia, G.; Hamill, R.; Mullen, A.M. 2D DIGE proteomic analysis of early post mortem muscle exudate highlights the importance of the stress response for improved water-holding capacity of fresh pork meat. Proteomics 2013, 13, 1528 –1544.
  • Scheffler, T.L.; Gerrard, D.E. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci. 2007, 77, 7 –16.
  • Laville, E.; Sayd, T.; Morzel, M.; Blinet, S.; Chambon, C.; Lepetit, J.; Renand, G.; Hocquette, J.F. Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef aging and tenderization. J. Agric. Food Chem. 2009, 57, 10755 –10764.
  • D’Alessandro, A.; Marrocco, C.; Zolla, V.; D’Andrea, M.; Zolla, L. Meat quality of the longissimus lumborum muscle of Casertana and Large White pigs: Metabolomics and proteomics intertwined. J. Proteomics 2011, 75:610 –627.
  • Paredi, G.; Sentandreu, M.A.; Mozzarelli, A.; Fadda, S.; Hollung, K.; de Almeida, A.M. Muscle and meat: New horizons and applications for proteomics on a farm to fork perspective. J. Proteomics 2013, 88, 58 –82.
  • Bernard, C.; Cassar-Malek, I.; Le Cunff, M.; Dubroeucq, H.; Renand, G.; Hocquette, J. F. New indicators of beef sensory quality revealed by expression of specific genes. J. Agric. Food Chem. 2007, 55, 5229 –5237.
  • Guillemin, N.; Jurie, C.; Cassar-Malek, I.; Hocquette, J.F.; Renand, G.; Picard, B. Variations in the abundance of 24 protein biomarkers of beef tenderness according to muscle and animal type. Animal 2011, 5, 885 –894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.