2,154
Views
65
CrossRef citations to date
0
Altmetric
Articles

Nutritional and potential health benefits of konjac glucomannan, a promising polysaccharide of elephant foot yam, Amorphophallus konjac K. Koch: A review

&

References

  • Hetterscheid, W.L.A. Notes on the genus Amorphophallus (Araceae): 2. New species from tropical Asia. Blumea 1994, 39, 237–281.
  • Ray, R.C.; Behera, S.S. Amorphophallus: Technological interventions. In Tropical Roots and Tubers: Processing and Technology; Sharma, H.K., Ed.; John Wiley: New York, in press.
  • Ansil, P.N.; Nitha, A.; Prabha, S.P.; Wills, P.J.; Jazaira, V.; Latha, M.S. Protective effect of Amorphophallus campanulatus (Roxb.) Blume tuber against thioacetamide induced oxidative stress in rats. Asian Pac. J. Trop. Med. 2011, 4, 870–877.
  • Nedunchezhiyan, M.; Misra, R.S.; Shivalingaswamy, T.M. Elephant foot yam (Amorphophallus paeoniifolius (D.) Nicolson) as an intercrop in banana and papaya. Orissa J. Hortic. 2002, 30, 80–82.
  • Ravi, V.; Ravindran, C.S.; Suja, G.; George, J.; Nedunzhiyan, M.; Byju, G.; Naskar, S.K. Crop physiology of elephant foot yam (Amorphophallus paeoniifolius (Dennst. Nicolson). Adv. Hortic. Sci. 2011, 25, 51–63.
  • Sreerag, R.S.; Jayaprakas, C.A.; Sajeev, M.S. (2014). Physico-chemical and textural changes in elephant foot yam (Amorphophallus paeoniifolius) tubers infested by the mealy bug, Rhizoecus amorphophalli Betrem during storage. J. Postharvest Technol. 2014, 2, 177–187.
  • Tester, R.F.; Al-Ghazzewi, F.H. Mannans and health, with a special focus on glucomannans. Food Res. Int. 2013, 50, 384–391.
  • Xu, W.; Wang, S.; Ye, T.; Jin, W.; Liu, J.; Lei, J.; Bin, L.; Wang, C. A simple and feasible approach to purify konjac glucomannan from konjac flour—Temperature effect. Food Chem. 2014, 158, 171–176.
  • Yao-ling, L.; Rong-hua, D.; Ni, C.; Juan, P.; Jie, P. Review of konjac glucomannan: Isolation, structure, chain conformation and bioactivities. J. Single Mol. Res. 2013, 4, 7–14.
  • Chua, M.; Baldwin, T.C.; Hocking, T.J.; Chan, K. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex NE Br. J. Ethnopharmacol. 2010, 128, 268–278.
  • Li, B.; Xia, J.; Wang, Y.; Xie, B. Grain-size effect on the structure and antiobesity activity of konjac flour. J. Agric. Food Chem. 2005, 53, 7404–7407.
  • Liu, P.Y. Konjac; China Agriculture Press: Beijing, China, 2004.
  • Gille, S.; Cheng, K.; Skinner, M.E.; Liepman, A.H.; Wilkerson, C.G.; Pauly, M. Deep sequencing of voodoo lily (Amorphophallus konjac): An approach to identify relevant genes involved in the synthesis of the hemicellulose glucomannan. Planta 2011, 234, 515–526.
  • Babu, A.S.; Parimalavalli, R. Functional and chemical properties of starch isolated from tubers. Int. J. Agric. Food Sci. 2012, 2, 77–80.
  • Nrsquo Guessan, G. A.; Alphonse, K. A. S. R.; Paul, C. Stability of yam starch gels during processing. Afr. J. Biotechnol. 2005, 4, 94–101.
  • Xia, Y.; Deng, X.L.; Zhou, W.H.; Lin, Q.L. Review on the research of konjac starch. Cereals Oils 2013, 7, 005.
  • Zhai, K.; Qin, H.B.; Hong, Y. Study on physico-chemical properties of konjac starch. Food Sci. 2008, 9, 007.
  • Tan, B.W.; Xu, H.D.; Mi, L.F. Preparation of konjac fly powder by neutral protease hydrolysis and its properties. Food Sci. 2010, 18, 011.
  • Nishinari, K.; Williams, P.A.; Phillips, G.O. Review of the physico-chemical characteristics and properties of konjac glucomannan. Food Hydrocolloids 1992, 6, 199–222.
  • Takigami, S.; Phillips, G.O.; Williams, P.A. Konjac mannan. In Handbook of Hydrocolloids; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp 889–901.
  • Suzuki, M. 3,4-Dihydroxybenzaldehyde-d-glucoside, the irritant substance of konnyaku. J. Food Sci. 1980, 45, 1075–1075.
  • Chua, M.; Chan, K.; Hocking, T.J.; Williams, P.A.; Perry, C.J.; Baldwin, T.C. Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch. Carbohydr. Polym. 2012, 87, 2202–2210.
  • Fang, W.; Wu, P. Variations of konjac glucomannan from Amorphophallus konjac and its refined powder in China. Food Hydrocolloids 2004, 18, 167–170.
  • Xiao, C.; Gao, S.; Li, G.; Xang, Q. Preparation of konjac glueomannan and acrylamide grafted konjac glucomannan. Wuhan Univ. J. Nat. Sci. 1999, 4, 459–462.
  • Goubet, F.; Barton, C.J.; Mortimer, J.C.; Yu, X.; Zhang, Z.; Miles, G.P.; Richens, J.; Liepman, A.H.; Seffen, K.; Dupree, P. Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant J. 2009, 60, 527–538.
  • Kato, K.; Matsuda, K. Studies on the chemical structure of konjac mannan. Agric. Biol. Chem. 1969, 33, 1446–1453.
  • Jimenez-Colmenero, F.; Cofrades, S.; Herrero, A.M.; Solas, M.T.; Ruiz-Capillas, C. Konjac gel for use as potential fat analogue for healthier meat product development: Effect of chilled and frozen storage. Food Hydrocolloids 2013, 30, 351–357.
  • Tobin, J.T.; Fitzsimons, S.M.; Chaurin, V.; Kelly, A.L.; Fenelon, M.A. Thermodynamic incompatibility between denatured whey protein and konjac glucomannan. Food Hydrocolloids 2012, 27, 201–207.
  • Smith, F.; Srivastava, H.C. Constitutional studies on the glucomannan of konjak flour 1. J. Am. Chem. Soc. 1959, 81, 1715–1718.
  • Parry, J. Konjac glucomannan. In Food Stabilisers, Thickeners and Gelling Agents; Imeson, A., Eds.; Blackwell Publishing: Singapore, 2010; pp 198–215.
  • Koroskenyi, B.; McCarthy, S.P. Synthesis of acetylated konjac glucomannan and effect of degree of acetylation on water absorbency. Biomacromolecules 2001, 2, 824–826.
  • Tatirat, O.; Charoenrein, S. Physicochemical properties of konjac glucomannan extracted from konjac flour by a simple centrifugation process. LWT Food Sci. Technol. 2011, 44, 2059–2063.
  • Takigami, S. Konjac mannan. In Handbook of Hydrocolloids; Phillips, G.O., Williams, P.A., Eds.; CRC Press: Boca Raton, FL, 2000; pp 413–424.
  • Wolf, B. Polysaccharide functionality through extrusion processing. Curr. Opin. Colloid Interface Sci. 2009, 15, 50–54.
  • Tatirat, O.; Charoenrein, S.; Kerr, W.L. Physico-chemical properties of extrusion-modified konjac glucomannan. Carbohydr. Polym. 2012, 87, 1545–1551.
  • Ye, T.; Wang, L.; Xu, W.; Liu, J.; Wang, Y.; Zhu, K.; Li, Bin.; Wang, C. An approach for prominent enhancement of the quality of konjac flour: Dimethyl sulfoxide as medium. Carbohydr. Polym. 2014, 99, 173–179.
  • Meng, F.; Zheng, L.; Wang, Y.; Liang, Y.; Zhong, G. Preparation and properties of konjac glucomannan octenyl succinate modified by microwave method. Food Hydrocolloids 2014, 38, 205–210.
  • Reddy, C.K.; Haripriya, S.; Noor Mohamed, A.; Suriya, M. Preparation and characterization of resistant starch III from elephant foot yam (Amorphophallus paeonifolius) starch. Food Chem. 2014, 155, 38–44.
  • Zhang, Y.Q.; Xie, B.J.; Gan, X. Advance in the applications of konjac glucomannan and its derivatives. Carbohydr. Polym. 2005, 60, 27–31.
  • Kok, M.S.; Abdelhameed, A.S.; Ang, S.; Morris, G.A.; Harding, S.E. A novel global hydrodynamic analysis of the molecular flexibility of the dietary fiber polysaccharide konjac glucomannan. Food Hydrocolloids 2009, 23, 1910–1917.
  • Chen, J.; Liu, D.; Shi, B.; Wang, H.; Cheng, Y.; Zhang, W. Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology. Carbohydr. Polym. 2013, 93, 81–88.
  • Maeda, M.; Shimahara, H.; Sugiyama, N. Detailed examination of the branched structure of konjac glucomannan. Agric. Biol. Chem. 1980, 44, 245–252.
  • Shimahara, H.; Suzuki, H.; Sugiyama, N.; Nisizawa, K. Isolation and characterization of oligosaccharides from an enzymic hydrolysate of konjac glucomannan. Agric. Biol. Chem. 1975, 39, 293–299.
  • Katsuraya, K.; Okuyama, K.; Hatanaka, K.; Oshima, K.; Sato, T.; Matsuzaki, K. Constitution of konjac glucomannan: Chemical analysis and 13C NMR spectroscopy. Carbohydr. Polym. 2003, 53, 183–189.
  • Anil, S.R.; Siril, E.A.; Beevy, S.S. Morphological variability in 17 wild elephant foot yam (Amorphophallus paeoniifolius) collections from southwest India. Genet. Resour. Crop Evol. 2011, 58, 1263–1274.
  • Chatelet, C.; Damour, O.; Domard, A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 2001, 22, 261–268.
  • Alonso-Sande, M.; Teijeiro-Osorio, D.; Remunan-Lopez, C.; Alonso, M.J. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur. J. Pharmaceut. Biopharmaceut. 2009, 72, 453–462.
  • Gao, S.; Nishinari, K. Effect of degree of acetylation on gelation of konjac glucomannan. Biomacromolecules 2004, 5, 175–185.
  • Dave, V.; Sheth, M.; McCarthy, S.P.; Ratto, J.A.; Kaplan, D.L. Liquid crystalline, rheological and thermal properties of konjac glucomannan. Polymer 1998, 39, 1139–1148.
  • Charoenrein, S.; Tatirat, O.; Rengsutthi, K.; Thongngam, M. Effect of konjac glucomannan on syneresis, textural properties and the microstructure of frozen rice starch gels. Carbohydr. Polym. 2011, 83, 291–296.
  • Wang, S.; Zhou, B.; Wang, Y.; Li, B. Preparation and characterization of konjac glucomannan microcrystals through acid hydrolysis. Food Res. Int. 2015, 67, 111–116.
  • Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. 2008, 25, 241–258.
  • Reid, D.S. Dehydration and freezing stress. In Water Management in the Design and Distribution of Quality Foods; Roos, Y.H., Leslie, J.B., Lillford, P.J., Eds.; Technomics Publication: Chicago, IL, 1999; pp 87–105.
  • Rahman, M.S. State diagram of date flesh using differential scanning calorimetry (DSC). Int. J. Food Prop. 2004, 7, 407–428.
  • Xiong, G.; Cheng, W.; Ye, L.; Du, X.; Zhou, M.; Lin, R.; Geng, M.C.; Corke, H.; Cai, Y.Z. Effects of konjac glucomannan on physicochemical properties of myofibrillar protein and surimi gels from grass carp (Ctenopharyngodon idella). Food Chem. 2009, 116, 413–418.
  • Alam, F.; Siddiqui, A.; Lutfi, Z.; Hasnain, A. Effect of different hydrocolloids on gelatinization behaviour of hard wheat flour. Trakia J. Sci. 2009, 7, 1–6.
  • Lafarge, C.; Cayot, N.; Hory, C.; Goncalves, L.; Chassemont, C.; Le Bail, P. Effect of konjac glucomannan addition on aroma release in gels containing potato starch. Food Res. Int. 2014, 64, 412–419.
  • Schwartz, J.M.; Le Bail, K.; Garnier, C.; Llamas, G.; Queveau, D.; Pontoire, B.; Srzednicki, G.; Le Bail, P. Available water in konjac glucomannan–starch mixtures. Influence on the gelatinization, retrogradation and complexation properties of two starches. Food Hydrocolloids 2014, 41, 71–78.
  • Zhou, Y.; Zhao, D.; Winkworth-Smith, C.G.; Foster, T.J.; Nirasawa, S.; Tatsumi, E.; Cheng, Y. Effect of a small amount of sodium carbonate on konjac glucomannan-induced changes in wheat starch gel. Carbohydr. Polym. 2015, 116, 182–188.
  • Xiao, C.; Gao, S.; Wang, H.; Zhang, L. Blend films from chitosan and konjac glucomannan solutions. J. Appl. Polym. Sci. 2000, 76, 509–515.
  • Shenouda, S.Y.K. Protein denaturation in frozen fish. Adv. Food Res. 1980, 26, 275–311.
  • Chou, Y.T.; Lin, K.W. Effects of xylooligosaccharides and sugars on the functionality of porcine myofibrillar proteins during heating and frozen storage. Food Chem. 2010, 121, 127–131.
  • Wang, L.; Xiong, G.; Peng, Y.B.; Wu, W.; Li, X.; Wang, J.; Qiao, Y.; Liao, L.; Ding, A. The cryoprotective effect of different konjac glucomannan (kgm) hydrolysates on the glass carp (Ctenopharyngodon idella) myofibrillar during frozen storage. Food Bioprocess Technol. 2014, 7, 3398–3406.
  • Zhou, A.M.; Benjakul, S.; Pan, K.; Gong, J.; Liu, X. Cryoprotective effects of trehalose and sodium lactate on tilapia (Sarotherodon nilotica) surimi during frozen storage. Food Chem. 2006, 96, 96–103.
  • Liu, J.; Wang, X.; Ding, Y. Optimization of adding konjac glucomannan to improve gel properties of low-quality surimi. Carbohydr. Polym. 2013, 92, 484–489.
  • Herranz, B.; Solo-De-Zaldivar, B.; Borderias, A.J. Obtaining a restructured seafood product from non-functional fish muscle by glucomannan addition: First steps. J. Aquat. Food Prod. Technol. 2013, 22, 201–208.
  • Iglesias-Otero, M.A.; Borderías, J.; Tovar, C.A. Use of konjac glucomannan as additive to reinforce the gels from low-quality squid surimi. J. Food Eng. 2010, 101, 281–288.
  • Solo-de-Zaldivar, B.; Herranz, B.; Borderías, A.J.; Tovar, C.A. Effect of freezing and frozen storage on restructured FISH prototypes made with glucomannan and FISH mince. Food Hydrocolloids 2014, 41, 233–240.
  • Thomas, W.R. (1997). Konjac gum. In Thickening and Gelling Agents for Food; Imeson, A., Ed.; Blackie Academic & Professional: London, 1997; pp 169–179.
  • Huang, H.Y.; Lin, K.W. Influence of pH and added gums on the properties of konjac flour gels. Int. J. Food Sci. Technol. 2004, 39, 1009–1016.
  • Akesowan, A. Optimization of textural properties of konjac gels formed with κ-carrageenan or xanthan and xylitol as ingredients in jelly drink processing. J. Food Process. Preserv. 2014, 38, 1–9.
  • Case, S.E.; Knopp, J.A.; Hamann, D.D.; Schwartz, S.J. Characterisation of gelation of konjac mannan using lyotropic salts and rheological measurements. In Gums and Stabilisers for the Food Industry 6; Phillips, G.O., Willliams, P.A., Wedlock, D.J., Eds.; IRL Press: Oxford, England, 1992; pp. 489–500.
  • Du, X.; Li, J.; Chen, J.; Li, B. Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Res. Int. 2012, 46, 270–278.
  • Penroj, P.; Hill, S.E.; Mitchell, J.R.; Garnjanagoonchorn, W. Effect of kappa carrageenan on konjac glucomannan gelation. In Gums and Stabilisers for the Food Industry; Williams, P.A., Phillips, G.O., Eds.; Royal Society of Chemistry: Cambridge, UK, 2006; pp 211–226.
  • Nishinari, K. Konjac glucomannan. Dev. Food Sci. 2000, 41, 309–330.
  • Enomoto-Rogers, Y.; Ohmomo, Y.; Iwata, T. Synthesis and characterization of konjac glucomannan acetate and their thermal and mechanical properties. Carbohydr. Polym. 2013, 92, 1827–1834.
  • Herranz, B.; Borderias, A.J.; Solas, M.T.; Tovar, C.A. Influence of measurement temperature on the rheological and microstructural properties of glucomannan gels with different thermal histories. Food Res. Int. 2012, 48, 885–892.
  • Salcedo-Sandoval, L.; Cofrades, S.; Ruiz-Capillas, C.; Jiménez-Colmenero, F. Effect of cooking method on the fatty acid content of reduced-fat and PUFA-enriched pork patties formulated with a konjac-based oil bulking system. Meat Sci. 2014, 98, 795–803.
  • Jimenez-Colmenero, F.; Cofrades, S.; Lopez-Lopez, I.; Ruiz-Capillas, C.; Pintado, T.; Solas, M.T. Technological and sensory characteristics of reduced/low-fat, low-salt frankfurters as affected by the addition of konjac and seaweed. Meat Sci. 2010, 84, 356–363.
  • Colmenero, F.J. Technologies for developing low-fat meat products. Trends Food Sci. Technol. 1996, 7, 41–48.
  • Herranz, B.; Tovar, C.A.; Solo-de-Saldivar, B.; Borderias, A.J. Effect of alkalis on konjac glucomannan gels for use as potential gelling agents in restructured seafood products. Food Hydrocolloids 2012, 27, 145–153.
  • Ruiz-Capillas, C.; Triki, M.; Herrero, A.M.; Rodriguez-Salas, L.; Jimenez-Colmenero, F. Konjac gel as pork backfat replacer in dry fermented sausages: Processing and quality characteristics. Meat Sci. 2012, 92, 144–150.
  • Delgado-Pando, G.; Cofrades, S.; Rodriguez-Salas, L.; Jimenez-Colmenero, F. A healthier oil combination and konjac gel as functional ingredients in low-fat pork liver pate. Meat Sci. 2011, 88, 241–248.
  • Lin, K.W.; Huang, H.Y. Konjac/gellan gum mixed gels improve the quality of reduced-fat frankfurters. Meat Sci. 2003, 65, 749–755.
  • Triki, M.; Herrero, A.M.; Jimenez-Colmenero, F.; Ruiz-Capillas, C. Effect of preformed konjac gels, with and without olive oil, on the technological attributes and storage stability of merguez sausage. Meat Sci. 2013, 93, 351–360.
  • Li, J.; Wang, Y.; Jin, W.; Zhou, B.; Li, B. Application of micronized konjac gel for fat analogue in mayonnaise. Food Hydrocolloids 2014, 35, 375–382.
  • Wang, Y.; Liu, J.; Li, Q.; Wang, Y.; Wang, C. Two natural glucomannan polymers, from konjac and bletilla, as bioactive materials for pharmaceutical applications. Biotechnol. Lett. 2015, 37, 1–8.
  • Galic, K.; Curic, D.; Gabric, D. Shelf life of packaged bakery goods—A review. Crit. Rev. Food Sci. Nutr. 2009, 49, 405–426.
  • Yoshida, M.; Vanstone, C.A.; Parsons, W.D.; Zawistowski, J.; Jones, P.J.H. Effect of plant sterols and glucomannan on lipids in individuals with and without type II diabetes. Eur. J. Clin. Nutr. 2006, 60, 529–537.
  • Wu, J.; Peng, S.S. Effects of refined konjac meal on calcium and phosphorus metabolism and bone in rats. Biomed. Environ. Sci. 1997, 10, 27–35.
  • Walsh, D.E.; Yaghoubian, V.; Behforooz, A. Effect of glucomannan on obese patients: A clinical study. Int. J. Obes. 1984, 8, 289–293.
  • Chen, H.L.; Sheu, W.H.; Tai, T.S.; Liaw, Y.P.; Chen, Y.C. Konjac supplement alleviated hypercholesterolemia and hyperglycemia in Type 2 diabetic subjects: A randomized double-blind trial. J. Am. Coll. Nutr. 2003, 22, 36–42.
  • Jimenez, A.; Fabra, M.J.; Talens, P.; Chiralt, A. Edible and biodegradable starch films: A review. Food Bioprocess Technol. 2012, 5, 2058–2076.
  • Mali, S.; Grossmann, M.V.E.; Garcia, M.A.; Martino, M.N.; Zaritzky, N.E. Microstructural characterization of yam starch films. Carbohydr. Polym. 2002, 50, 379–386.
  • Maran, J.P.; Sivakumar, V.; Thirugnanasambandham, K.; Kandasamy, S. Modeling and analysis of film composition on mechanical properties of maize starch based edible films. Int. J. Biol. Macromol. 2013, 62, 565–573.
  • Yang, D.; Peng, X.; Zhong, L.; Cao, X.; Chen, W.; Zhang, X.; Liu, S.; Sun, R. “Green” films from renewable resources: Properties of epoxidized soybean oil plasticized ethyl cellulose films. Carbohydr. Polym. 2014, 103, 198–206.
  • Falguera, V.; Quintero, J.P.; Jimenez, A.; Munoz, J.A.; Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303.
  • Gonzalez, A.; Igarzabal, C.I.A. Soy protein–Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocolloids 2013, 33, 289–296.
  • Bae, H.J.; Cha, D.S.; Whiteside, W.S.; Park, H.J. Film and pharmaceutical hard capsule formation properties of mungbean, water chestnut, and sweet potato starches. Food Chem. 2008, 106, 96–105.
  • Cheng, L.H.; Abd Karim, A.; Seow, C.C. Characterisation of composite films made of konjac glucomannan, carboxymethyl cellulose and lipid. Food Chem. 2008, 107, 411–418.
  • Li, B.; Peng, J.; Yie,X.; Xie, B. Enhancing physical properties and antimicrobialactivity of konjac gluomannan edible films by incorporating chitosan and nisin. J. Food Sci. 2006, 71, 174–178.
  • Wu, C.; Peng, S.; Wen, C.; Wang, X.; Fan, L.; Deng, R.; Pang, J. Structural characterization and properties of konjac glucomannan/curdlan blend films. Carbohydr. Polym. 2012, 89, 497–503.
  • Jian, W.J.; Wang, M.; Yao, M.N.; Pang, J. Formation sites and microscopic conformation study on the Konjac Glucomannan molecular helices. Chin. J. Struct. Chem. 2010, 29, 1084–1090.
  • Vesel, A. XPS study of surface modification of different polymer materials by oxygen plasma treatment. Inform. MIDEM 2008, 38, 257–265.
  • Bras, J.; Sadocco, P.; Belgacem, M. N.; Dufresne, A.; Thielemans, W. Surface functionalization of cellulose by grafting oligoether chains. Mater. Chem. Phys. 2010, 120, 438–445.
  • Pang, J.; Jian, W.; Wang, L.; Wu, C.; Liu, Y.; He, J.; Tang, X. X-ray photoelectron spectroscopy analysis on surface modification of Konjac glucomannan membrane by nitrogen plasma treatment. Carbohydr. Polym. 2012, 88, 369–372.
  • Wei, X.; Pang, J.; Zhang, C.; Yu, C.; Chen, H.; Xie, B. Structure and properties of moisture-resistant konjac glucomannan films coated with shellac/stearic acid coating. Carbohydr. Polym. 2015, 118, 119–125.
  • Li, X.; Jiang, F.; Ni, X.; Yan, W.; Fang, Y.; Corke, H.; Xiao, M. Preparation and characterization of konjac glucomannan and ethyl cellulose blend films. Food Hydrocolloids 2015, 44, 229–236.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.