1,014
Views
28
CrossRef citations to date
0
Altmetric
Articles

Barley: Impact of processing on physicochemical and thermal properties—A review

&

References

  • Badr, A.; Muller, K.; Schafer-Pregl, R.; El Rabey, H.; Effgen, S.; Ibrahim, H.H.; Pozzi, C.; Rohde, W.; Salamini, F. On the origin and domestication history of Barley (Hordeum vulgare). Mol. Biol. Evol. 2000, 17, 499–510.
  • United States Department of Agriculture. Grain: World markets and trade. 2015. http://www.fas.usda.gov/data/grain-world-markets-and-trade
  • Chatterjee, S.R.; Abrol, Y.P. Protein quality evaluation of popped barley grains (Sattu). J. Food Sci. Technol. 1977, 14, 247–250.
  • Ryu, C-H.; Cheigh, H-S.; Kwon, T-W. A note on the preparation and evaluation of ramyon (deep fat fried instant noodle) using barley-wheat composite flours. Korean J. Food Sci. Technol. 1979, 9, 81–83.
  • Sharma, P.; Gujral, H.S. Milling behavior of hulled barley and its thermal and pasting properties. J. Food Eng. 2010, 97, 329–334.
  • Baik, B. K.; Ullrich, S. E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008, 30, 1–10.
  • Bonoli, M.; Verardo, V.; Marconi, E.; Caboni, M.F. Antioxidant phenols in barley (Hordeum vulgare L.) flour: Comparative spectrophotometric study among extraction methods of free and bound phenolic compounds. J. Agric. Food Chem. 2004, 52, 5195–5200.
  • Madhujith, T.; Izydorczyk, M.; Shahidi, F. Antioxidant activity of pearled barley fractions. J. Agric. Food Chem. 2006, 54, 3283–3289.
  • Sharma, P.; Gujral, H.S. Antioxidant and polyphenols oxidase activity of germinated barley and its milling fractions. Food Chem. 2010, 120, 673–678.
  • Sharma, P.; Gujral, H.S. Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Res. Int. 2011, 44, 235–240.
  • Sharma, P.; Gujral, H.S. Anti-staling effects of β-glucan and barley flour in wheat flour chapatti. Food Chem. 2014, 145, 102–108.
  • Sharma, P.; Gujral, H.S. Cookie making behavior of wheat–barley flour blends and effects on antioxidant properties. LWT-Food Sci. Technol. 2014, 55, 301–307.
  • Sharma, P.; Gujral, H.S.; Singh, B. Antioxidant activity of barley as affected by extrusion cooking. Food Chem. 2012, 131, 1406–1413.
  • Quinde, Z.; Ullrich, S.E.; Baik, B.K. Genotypic variation in color and discolouration potential of barley-based food products. Cereal Chem. 2004, 81, 752–758.
  • Saper G.M. Browning of foods: Control by sulfites, antioxidants, and other means. Food Technol. 1993, 47, 75–84.
  • Lagasse, S.L.; Hatcher, D.W.; Dexter, J.E.; Rossnagel, B.G.; Izydorczyk, M.S. Quality characteristics of fresh and dried white salted noodles enriched with flour from hull-less barley genotype of diverse amylose content. Cereal Chem. 2006, 83, 202–210.
  • Izydorczyk, M.S.; Dexter, J.E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products. Food Res. Int. 2008, 41, 850–868.
  • Newman, R.K.; Lewis, S.E.; Newman, C.W.; Boik, R.J.; Ramage, R.T. Hypocholesterolemic effect of barley foods on healthy men. Nutr. Rep. Inter. 1989, 39, 749–760.
  • Behall, K.M.; Scholfield, D.J.; Hallfrisch, J. Diets containing barley significantly reduce lipid in mildly hyper cholesterolemic men and women. Am. J. Clin. Nutr. 2004, 80, 1185–1193.
  • Wood, P.J.; Braaten, J.T.; Scott, F.W.; Riedel, D.; Poste, L.M. Comparisons of viscous properties of oat and guar gum and the effects of these and oat bran on glycemic index. J. Agric. Food Chem. 1990, 38, 753–757.
  • Cavallero, A.; Empilli, S.; Brighenti, F.; Stanco, A.M. High (1→3, 1→4) β-glucan barley fractions in bread making and their effects on human glucemic response. J. Cereal Sci. 2002, 36, 59–56.
  • Pins, J.J.; Kaur, H.A review of the effects of barley β-glucan on cardiovascular and diabetic risk. Cereal Foods World 2006, 51: 8–11.
  • Food and Drug Administration. FDA allows barley products to claim reduction in risk of coronary heart disease. FDA News.: http://www.fda.gov/bbs/topics/news/2005/NEW01287.html (accessed December 23, 2005)
  • Magness, J.R.; Markle, G.M.; Compton, C.C. Food and feed crops of the United States. Interregional research project IR-4, IR, Bulletin 1 & 828. Agricultural Experiment Station: New Jersey, 1971.
  • Gupta, A.K.; NIIR Board of Consultants & Engineers. Barley breeding. In Wheat, rice, corn, oat, barley and sorghum processing handbook; Asia Pacific Business Press Inc.: New Delhi, India, 2006.
  • Evers, A.D.; Blakeney, A.B.; O’Brien, L. Cereal structure and composition. Aust. J. Agric. Res. 1999, 50, 629–650.
  • Bhatty, R.S.; Bardahl, J.D.; Christison, G.I. Chemical composition and digestible energy of barley. Canad. J. Anim. Sci. 1975, 55, 759–764.
  • Zielinski, H.; Kozlowska, H. Antioxidant activity and total phenolics in selected grains and their different morphological fractions. J. Agric. Food Chem. 2000, 48, 2008–2016.
  • Du, L.; Yu, P. Relationship of physicochemical characteristics and hydrolyzed hydroxycinnamic acid profile of barley varieties and nutrient availability in ruminants. J. Cereal Sci. 2011, 53, 178–187.
  • MacGregor, A.W. Barley. In Encyclopaedia of food science, food technology, and nutrition; Macrae, R.; Robinson, R.K.; Sadler, M.J., Eds.; Academic Press; New York, 1993.
  • MacGregor, A.W.; Fincher, G.B. Carbohydrates of the barley grain. In Barley: chemistry and technology; MacGregor, A.W.; Bhatty R.S., Eds.; American Association of Cereal Chemist: St. Paul, MN, 1993; p. 73.
  • Jadhav, S.J.; Lutz, S.E.; Ghorpade, V.M.; Salunkhe, D.K. Barley: Chemistry and value-added processing. Crit. Rev. Food Sci. Nutr. 1998, 38, 123–171.
  • Newman, R.K.; Newman, C.W. Barley as a food grain. Cereal Foods World 1991, 36, 800–805.
  • Zupfer, J.M.; Churchill, K.E.; Rasmusson, D.C.; Fulcher, R.G. Variation in ferulic acid concentration among diverse barley cultivars measured by HPLC and micro spectrophotometry. J. Agric. Food Chem. 1998, 46, 1350–1354.
  • Villacres, E.; Rivadeneira, M. Barley in Ecuador: Production, Grain Quality for Consumption, and Perspectives for Improvement. In Food barley: Importance, uses and local knowledge; Grando, S.; Macpherson, H.G., Eds.; International Center for Agricultural Research in the Dry Areas, ICARA: Beirut, Lebanon, 2005; pp 127–137
  • Bhatty, R.S.; Rossnagel, B.G. Comparison of pearled and unpearled Canadian and Japanese barleys. Cereal Chem. 1998, 75, 5–21.
  • Andersson, A.A.M.; Andersson, R.; Autio, K.; Aman, P. Chemical composition and microstructure of two naked waxy barleys. J. Cereal Sci. 1999, 30, 183–191.
  • Yalcın, E.; Celik, S.; Akar, T.; Sayim, I.; Koksel, H. Effects of genotype and environment on β-glucan and dietary fiber contents of hull-less barleys grown in Turkey. Food Chem. 2007, 101, 171–176
  • Steele, K.; Dickin, E.; Keerio, M.D.; Samad, S.; Kambona, C.; Brook, R.; Thomus, W.; Frost, G. Breeding low-glycemic index barley for functional food. Field Crops Res. 2013, 154, 31–39.
  • Tsochatzis, E.D.; Bladenopoulos, K.; Papageorgiou, M. Determination of tocopherol and tocotrienol content of Greek barley varieties under conventional and organic cultivation techniques using validated reverse phase high-performance liquid chromatography method. J. Sci. Food Agric. 2012, 92, 1732–1739.
  • Sologubika, C.A.; Campanonec, L.A.; Paganob, A.M.; Gelyb, M.C. Effect of moisture content on some physical properties of barley. Ind. Crops Res. 2013, 43, 762–767.
  • Yamazaki, W.T.; Briggle, L.W. Component of test weight in wheat. Crop Sci. 1969, 9, 457–459.
  • Mariotti, M.; Alamprese, C.; Pagani, M.A.; Lucisano, M. Effect of puffing on ultrastructure and physical characteristics of cereal grains and flours. J. Cereal Sci. 2006, 43, 47–56.
  • Morrison, W.R.; Scott, D.C.; Karkalas, J. Variation in the composition and physical properties of barley starches. Starch/Starke 1986, 38, 374–379.
  • Henry, R.J. The carbohydrates of barley grains-a review. J. Inst. Brew. 1988, 94, 71–78.
  • Torp, J.; Doll, H.; Haahr, V. Genotypic and environmental influence upon the nutritional composition of barley grain. Euphytica 1981, 30, 719.
  • Friedman, M.; Atsmon, D. Comparison of grain composition and nutritional quality in wild barley (Hordeum spontaneum) and in a standard cultivar. J. Agric. Food Chem. 1988, 36, 1167–1172.
  • Newman, R.K.; McGuire, C.F. Nutritional quality of barley. In Barley; Rasmusson, D.C., Ed.; American Society of Agronomy: Madison, WI, 1985; p 403.
  • Morrison, W.R.; Scott, D.C.; Karkalas, J. Variation in the composition and physical properties of barley starches. Starch/Starke 1986, 38, 374–379.
  • Bhatty, R.S. Physicochemical properties of roller milled barley flour and bran. Cereal Chem. 1993, 70, 397–402
  • Briggs, D.C. Barley; Chapman and Hall: New York, 1978.
  • Price, P.B.; Parsons, J.G. Distribution of lipids in embryonic axis, bran-endosperm and hull fractions of hull-less barley and hull-less oat grain. J. Agric. Food Chem. 1979, 27, 813–815.
  • Mahdi, G.S.; Abdal, M.; Behera, B.C.; Verma, N.; Sonone, A.; Makhija U. Barley is a healthful food: A review. Electron. J. Environ. Agric. Food Chem. 2008, 7, 2686–2694.
  • Sullivan, P.; O’Flaherty, J.; Brunton, N.; Gee, V.L.; Arendt, E.; Gallagher, E. Chemical composition and microstructure of milled barley fractions. Eur. Food Res. Technol. 2010, 230, 579–595.
  • Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S. Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterization, technological functionality and commercial applications. Food Chem. 2011, 124, 411–421.
  • Bhatty, R.S. Milling of regular and waxy starch hullless barleys for the production of bran and flour. Cereal Chem. 1997, 74, 693–699.
  • Al-Rabadi, G.J.; Torley, P.J.; Williams, B.A.; Bryden, W.L.; Gidley, M.J. Particle size of milled barley and sorghum and physico-chemical properties of grain following extrusion. J. Food Eng. 2011, 103, 464–472.
  • Jacobs, M.S.; Izydorczyk, M.S.; Preston, K.R.; Dexter, J.E. Evaluation of baking procedures and wheat flours for incorporation of high dietary fibre barley fractions into bread. J. Sci. Food Agric. 2008, 88, 558–568.
  • Inglett, G.E.; Chen, D.; Lee, S. Rheological properties of barley and flaxseed composites. Food Nutri. Sci. 2013, 4, 41–48.
  • Skendi, A.; Biliaderis, C.G.; Papageorgiou, M.; Izydorczyk, M.S. Effects of two barley β-glucan isolates on wheat flour dough and bread properties. Food Chem. 2010, 119, 1159–1167.
  • Izydorczyk, M. S.; Lagasse, S.L.; Hatcher, D.W.; Dexter, J.E.; Rossnagel, B.G. The enrichment of Asian noodles with a fiber-rich fraction derived from roller milling of hull-less barley. J. Sci. Food Agric. 2005, 85: 2094–2104.
  • Izydorczyk, M.S.; Dexter, J.E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products. Food Res. Int. 2008, 41, 850–868.
  • Skendi, A.; Papageorgiou, M.; Biliaderis, C.G. Effect of barley β-glucan molecular size and level on wheat dough rheological properties. J. Food Eng. 2009, 91, 594–601.
  • Lin, S.-Y.; Chen, H.-H.; Lu, S.; Wang, P.-C. Effects of blending of wheat flour with barley flour on dough and steamed bread properties. J. Texture Stud. 2012, 43, 438–444.
  • Sharma, P.; Gujral, H.S.; Rosell, C.M. Effects of roasting on barley β-glucan, thermal, textural and pasting properties. J. Cereal Sci. 2011, 53, 25–30.
  • Sharma, P.; Gujral, H.S. Extrusion of hulled barley affecting β-glucan and properties of extrudates. Food Bioprocess Technol. 2013, 6, 1374–1389.
  • Fasina, O.O.; Tyler, R.T.; Pickard, M.D.; Zheng. G.H. Infrared heating of hull-less and pearled barley. J. Food Process Preserv. 1999, 23, 135–151.
  • Ainsworth, P.; Ibanoglu, S.; Plunkett, A.; Ibanoglu, E.; Stojceska, V. Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. J. Food Eng. 2007, 81, 702–709.
  • Altan, A.; McCarthy, K.L.; Maskan, M. Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. J. Food Eng. 2008, 84, 231–242.
  • Filli, K.B.; Nkama, I.; Abubakar, U.M.; Jideani, V.A. Influence of extrusion variables on some functional properties of extruded millet-soybean for the manufacture of ‘fura’: A Nigerian traditional food. Afr. J. Food Sci. 2010, 4, 342–353.
  • Collar C.; Angioloni A. Nutritional and functional performance of high β-glucan barley flours in bread making: Mixed breads versus wheat breads. Eur. Food Res. Technol. 2014, 3, 2128–2131.
  • Kirby, A.R.; Ollett, A.L.; Parker, R.; Smith, A.C. An experimental study of screw configuration effects in the twin-screw extrusion-cooking of maize grits. J. Food Eng. 1988, 8, 247–272.
  • Jones, D.; Chinnaswamy, R.; Tan, Y.; Hanna, M. Physicochemical properties of ready-to-eat breakfast cereals. Cereal Food World 2000, 45, 164–168.
  • Ding, Q.B.; Ainsworth, P.; Tucker, G.; Marson, H. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. J. Food Eng. 2005, 66, 283–289.
  • Ding, Q.B.; Ainsworth, P.; Plunkett, A.; Tucker, G.; Marson, H. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. J. Food Eng. 2006, 73, 142–148.
  • Lee, S.; Inglett, G.E. Functional characterization of steam jet-cooked β glucan rich barley flour as an oil barrier in frying batters. J. Food Sci. 2006, 71, 308–313.
  • Oikonomou, N.A.; Krokida, M.K. Literature data of WAI and WSI of extrudate food products. Int. J. Food Prop. 2011, 14, 199–240.
  • Zhang, M.; Bai, X.; Zhang, Z. Extrusion process improves the functionality of soluble dietary fiber in oat bran. J. Cereal Sci. 2011, 54, 98–103.
  • Lin, M.J.Y.; Humbert, E.S.; Sosulski, F.W. Certain functional properties of sunflower meal products. J. Food Sci. 1974, 39, 368–370
  • Fleury, N.; Lahaye, M. Chemical and physico-chemical characterisation of fibres from Lamiaria digitata (Kombu Breton): A physiological approach. J. Sci. Food Agric. 1991, 55, 389–400.
  • Osman, M.G.; Sahai, D.; Jakson, D.S. Oil absorption characteristics of a multigrain extrudate during frying: Effect of extrusion temperature and screw speed. Cereal Chem. 2000, 77, 101–104.
  • Lee, K-M.; Bean, S.R.; Alavi, S.; Herrman, T.J.; Waniska, R.D. Physical and biochemical properties of maize hardness and extrudates of selected hybrids. J. Agric. Food Chem. 2006, 54, 4260–4269.
  • Akinyede, A.I.; Amoo, I.A. Chemical and functional properties of full fat and defatted Cassia fistula seed flours. Pak. J. Nutr. 2009, 8, 765–769.
  • Chndra, S.; Samsher. Assessment of functional properties of different flours. Afr. J. Agric. Res. 2013, 8, 4849–4852.
  • Cespedes, M.A.L.; Bustos, F.M.; Chang, Y.K. The effect of extruded orange pulp on enzymatic hydrolysis of starch and glucose retardation index. Food Bio. Technol. 2010, 3, 684–692.
  • Gujska, E.; Khan, K. Functional properties of extrudates from high starch fractions of navy and pinto beans and corn meal blended with legume high protein fractions. J. Food Sci. 1991, 56, 431–435.
  • Drago, S.R.; Velasco-Gonzalez, O.H.; Torres, R.L.; Gonzalez, R.J.; Valencia M.E. Effect of the extrusion on functional properties and mineral dialyzability from Phaseolus vulgaris bean flour. Plant Foods Hum. Nutr. 2007, 62, 43–48.
  • Clydesdale, F.M. Color as a factor in food choice. Crit. Rev. Food Sci. Nutr. 1993, 331, 83–101.
  • Bhatty, R.S. Milling of regular and waxy starch hullless barleys for the production of bran and flour. Cereal Chem. 1997, 74, 693–699.
  • Yeung, J.; Vasanthan, T. Pearling of hull-less barley: Product composition and gel color of pearled barley flours as affected by the degree of pearling. J. Agric. Food Chem. 2001, 49, 331–335.
  • Bellido, G.G.; Beta, T. Anthocyanin composition and oxygen radical scavenging capacity (ORAC) of milled and pearled purple, black, and common barley. J. Agric. Food Chem. 2009, 57, 1022–1028.
  • Gahalawat, P.; Sehagal, S. Phytic acid, saponin and polyphenol in weaning foods prepared from oven heated green gram and cereals. Cereal Chem. 1992, 69, 463–464.
  • Hoke, K.; Houska, M.; Pruchova, J.; Gabrovska, D.; Vaculova, K.; Paulickova, I. Optimization of puffing of naked barley. J. Food Eng. 2007, 80, 1016–1022.
  • Hofmann, T. Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose amino acid and glucose/protein solutions by using ultracentrifugation and colour dilution technique. J. Agric. Food Chem. 1998, 46, 3891–3895.
  • Gujral, H.S.; Sharma, P.; Singh, R. Effect of sand roasting on β-glucan extractability, physicochemical and antioxidant properties of oats. LWT- Food Sci. Technol. 2011, 44, 2223–2230.
  • Duh, P.D; Yen, G.C.; Yen, W.J.; Chang, L.W. Antioxidant effects of water extracts from barley (Hordeum vulgare L.) prepared under different roasting temperatures. J. Agric. Food Chem. 2001, 50, 1455–1463.
  • Manzocco, L.S.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2000, 11, 340–346.
  • Rufian-Henares, J.A.; Delgado-Andrade, C. Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Res. Int. 2009, 42, 394–400.
  • Altan, A.; McCarthy, K.L.; Maskan, M. Effects of screw configuration and raw material on some properties of barley extrudates. J. Food Eng. 2009, 92, 377–382
  • Stojceska, V.; Ainsworth, P.; Plunkett, A.; Ibanoglu, S. The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products. Food Chem. 2009, 114, 226–232.
  • Gujral, H.S.; Haros, M.; Rosell, C.M. Starch hydrolysing enzymes for retarding the staling of rice bread. Cereal Chem. 2003, 80, 750–754.
  • Trogh, I.; Courtin, C.M.; Andersson, A.A.M.; Aman, P.; Sorenson, J.F.; Delcour, J.A. The combined use of hull-less barley flour and xylanase as a strategy for wheat/hull-less barley flour breads with increased arabinoxylan and (1-3) (1-4)-β-D-glucan levels. J. Cereal Sci. 2004, 40, 257–267.
  • Gujral, H.S.; Gaur, S. Instrumental texture of chapatti as affected by Barley flour, glycerol monostearate and sodium chloride. Int. J. Food Prop. 2005, 8, 1–9.
  • Sudha, M.L., Vetrimani, R., Leelavathi, K. Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chem. 2007, 100, 1365–1370.
  • Skrbic, B.; Milovac, S.; Dodig, D.; Filipcev, B. Effects of hull-less barley flour and flakes on bread nutritional composition and sensory properties. Food Chem. 2009, 115, 982–988.
  • Tiwari, U.; Cummins, E.; Sullivan, P.; Flaherty, J.O.; Brunton, N.; Gallagher, E. Probabilistic methodology for assessing changes in the level and molecular weight of barley β-glucan during bread baking. Food Chem. 2011, 124, 1567–1576.
  • Yadav, D.N.; Patki, P.E.; Khan, M.A.; Sharma, G.K.; Bawa, A.S. Effect of freeze-thaw cycles and additives on rheological and sensory properties of ready to bake frozen chapattis. Int. J. Food Sci. Technol. 2008, 43, 1714–1720.
  • Sabanis, D.; Lebesi, D.; Tzia, C. Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT-Food Sci. Technol. 2009, 42, 1380–1389.
  • Kinner, M.; Nitschko, S.; Sommeregger, J.; Petrasch, A.; Linsberger-Martin, G.; Grausgruber, H.; Berghofer, E.; Siebenhandl-Ehn, S. Naked barley-Optimized recipe for pure barley bread with sufficient β-glucan according to the EFSA health claims. J. Cereal Sci. 2011, 53, 225–230.
  • Bressa, F.; Tesson, N.; Dalla Rosa, M.; Sensidoni, A.; Yubaro, F. Antioxidant effect of Maillard reaction products: Application to butter cookie of a competition kinetic analysis. J. Agric. Food Chem. 1996, 44, 692–695.
  • Summa, S.; Wenzl, T.; Brohee, M.; Mast, J.; De La Calle, B.; Anklam, E. Investigation of the correlation of the acrylamide content and the antioxidant activity of model cookies. J. Agric. Food Chem. 2006, 54, 853–859.
  • Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 2005, 53, 2297–2306.
  • Frost, D.J.; Adhikari, K.; Lewis, D.S. Effect of barley flour on the physical and sensory characteristics of chocolate chip cookies. J. Food Sci. Technol. 2011, 48: 569–576.
  • Gray, D.; Abdel-Aal, E.S.M.; Seetharaman, K.; Kakuda, Y. Differences in viscosity and textural properties of selected barley cultivars as influenced by pearling and cooking. Food Chem. 2010, 120: 402–409.
  • Eliasson, A.C. Viscoelastic behavior during the gelatinization of starch. I. Comparison of wheat, maize, potato and waxy-barley starches. J. Texture Stud. 1986, 17, 253–265.
  • Yoshimotoa, Y.; Takenouchib, T.; Takeda, Y. Molecular structure and some physicochemical properties of waxy and low-amylose barley starches. Carbohydr. Polym. 2002, 47, 159–167.
  • Koksel, H.; Ryu, G.H.; Basman, A.; Demiralp, H.; Ng, P.K.W. Effects of extrusion variables on the properties of waxy hull-less barley extrudates. Nahrung/Food 2004, 48, 19–24.
  • Zhou, M.X.; Li, H.B.; Chen, Z.H.; Mendham, N.J. Combining ability of barley flour pasting properties. J. Cereal Sci. 2008, 48, 789–793.
  • Lee, M.J.; Lee, N.-Y.; Kim, Y.-K.; Park, J.-C.; Choi, I.-D.; Cho, S.-G.; Kim, J.G.; Park, H.K.; Park, K.H.; Kim, K.J.; Kim, H.S. Physicochemical properties of pearled hull-less barley cultivars with normal and low amylose content. Food Sci. Biotechnol. 2011, 20, 55–62.
  • Hatcher, D.W.; Lagasse, S.L.; Dexter, J.E.; Rossnagel, B.G.; Izydorczyk, M.S. Quality characteristics of yellow alkaline noodles enriched with hull-less barley flour. Cereal Chem. 2005, 82, 60–69.
  • Zeng, M.; Morris, C.F.; Batey, I.L.; Wrigley, C.W. Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chem. 1997, 74, 63–71.
  • Ragaee, S.; Abdel-Aal, S.M. Pasting properties of starch and in selected cereal quality of their food products. Food Chem. 2006, 95, 9–18.
  • Giroux, M.J.; Morris, C.F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor. Appl Genet. 1997, 95, 857–864.
  • Sullivan, P.; O’Flaherty, J.; Brunton, N.; Arendt, E.; Gallagher, E. The utilization of barley middlings to add value and health beets to white breads. J. Food Eng. 2011, 105, 493–502.
  • Symons, L.J.; Brennan, C.S. The influence of (1-3) (1-4)-β-D-glucan rich fractions from barley on the physicochemical properties and in vitro reducing sugar release of white wheat breads. J. Food Sci. 2004, 69, 463–467.
  • Symons, L.J.; Brennan, C.S. The effect of barley β-glucan fibre fractions on starch gelatinisation and pasting characteristics. J. Food Sci. 2004, 69, 257–261.
  • Brennan, C.S.; Cleary, L.J. Utilisation of Glucagel in the β-glucan enrichment of breads: A physicochemical and nutritional evaluation. Food Res. Int. 2007, 40, 291–296.
  • Becker, A., Hill, S.E.; Mitchell, J.R. Relevance of amylose- lipid complex to the behavior of thermally processed starches. Starch/Starke 2001, 53, 121–130.
  • Altan, A., McCarthy, K.L. Maskan, M. Effect of extrusion cooking on functional properties and in vitro starch digestibility of barley-based extrudates from fruit and vegetable by-products. J. Food Sci. 2009, 74, E77–E86.
  • Emami, S.; Perera, A.; Meda, V.; Tyler, R.T. Effect of microwave treatment on starch digestibility and physico-chemical properties of three barley types. Food Bioprocess Technol. 2012, 5, 2266–2274.
  • Carvalho, C.W.P.; Takeiti, C.Y.; Onwulata, C.I.; Pordesimo, L.O. Relative effect of particle size on the physical properties of corn meal extrudates: Effect of particle size on the extrusion of corn meal. J. Food Eng. 2010, 98, 103–109.
  • Sopade, P.A.; Hardin, M.; Fitzpatrick, P.; Desmee, H.; Halley, P. Macromolecular interactions during gelatinisation and retrogradation in starch-whey systems as studied by rapid visco-analyser. Int. J. Food Eng. 2006, 4, 1–15.
  • Ozcan, S.; Jackson, D.S. Functionality behavior of raw and extruded corn starch mixtures. Cereal Chem. 2005, 82, 223–227.
  • Nakazawa, F.; Noguchi, S.; Takahashi, J. Thermal equilibrium of starch-water mixture studied by differential scanning calorimetry. Agric. Biol. Chem. 1984, 48, 2647.
  • Karim, A.; Norziah, M.; Seow, C. Methods for the study of starch retrogradation. Food Chem. 2000, 71, 9–36.
  • Biliaderis, C.G.; Page, C.M.; Maurice, T.J.; Juliano, B.O. Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. J. Agric. Food Chem. 1986, 34, 6–14.
  • Granfeldt, Y.; Eliasson, A.C.; Bjorck, I. An examination of the possibility of lowering the glycemic index of oat and barley flakes by minimal processing. J. Nutr. 2000, 130, 2207–2214.
  • Dandey, D.; Bobraszczyk, B.J. Cereals and cereal products chemistry and technology, Ist edn; Aspen Publication: Maryland, 2001.
  • Shaikh, I.M.; Ghodke, S.K.; Ananthanarayan, L. Inhibition of staling of chapati (Indian unleavened flat bread). J. Food Process Preserv. 2008, 32, 378–403.
  • Klamczynski, A.; Baik, B.-K.; Czuchajowska, Z. Composition, microstructure, water imbibition, and thermal properties of abraded barley. Cereal Chem. 1998, 75, 677–685.
  • Gujral, H.S.; Singh, G.S.; Rosell, C.M. Extending shelf life of chapatti by partial baking and frozen storage. J. Food Eng. 2008, 89, 466–471.
  • Gujral, H.S.; Pathak, A. Effect of composite flours and additives on the texture of chapati. J. Food Eng. 2002, 55, 173–179.
  • Mandala, I.G.; Sotirakoglou, K. Effect of frozen storage and microwave reheating on some physical attributes of fresh bread containing hydrocolloids. Food Hydrocolloids 2005, 19, 709–719.
  • Cleary, L.; Brennan, C. The influence of a (1-3) (1-4)-β-D-glucan rich fraction from barley on the physico-chemical properties and in vitro reducing sugars release of durum wheat pasta. Int. J. Food Sci. Technol. 2006, 41, 910–918.
  • Purhagen, J.K.; Sjoo, M.E.; Eliasson A.-C. The use of normal and heat treated barley flour and waxy barley starch as anti-staling agents in laboratory and industrial baking processes. J. Food Eng. 2011, 104, 414–421.
  • Fredrikssona, H.; Silveriob, J.; Andemon, R.; Eliassonb, A.C.; Aman, P. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr. Poly. 1998, 35, 119–134.
  • Purhagen, J.K.; Sjoo M.E.; Eliasson, A.C. Fibre-rich additives-the effect on staling and their function in free-standing and pan-baked bread. J. Sci. Food. Agric. 2012, 92, 1201–13.
  • Li, W.; Dong, Y.; Zhou, X.; Xiao, X.; Zhao, Y.; Yu, L. Dough properties and bread quality of wheat–barley composite flour as affected by β-glucanase. Cereal Chem. 2014, 91, 631–638.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.