2,127
Views
103
CrossRef citations to date
0
Altmetric
Articles

Bioactive protein hydrolysates in the functional food ingredient industry: Overcoming current challenges

&

References

  • Cohen, J.E. Human population: The next half century. Science 2003, 302(5648), 1172–1175.
  • Escudero, E.; Toldrá, F.; Sentandreu, M.A.; Nishimura, H.; Arihara, K. Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat. Sci. 2012, 91(3), 382–384.
  • Hyun, C.K.; Shin, H.K. Utilization of bovine blood plasma proteins for the production of angiotensin I converting enzyme inhibitory peptides. Process Biochem. 2000, 36(1–2), 65–71.
  • Jamdar, S.N.; Rajalakshmi, V.; Pednekar, M.D.; Juan, F.; Yardi, V.; Sharma, A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 2010, 121(1), 178–184.
  • Katayama, K.; Anggraeni, H.E.; Mori, T.; Ahhmed, A.M.; Kawahara, S.; Sugiyama, M.; Nakayama, T.; Maruyama, M.; Muguruma, M. Porcine skeletal muscle troponin is a good source of peptides with angiotensin-I converting enzyme inhibitory activity and antihypertensive effects in spontaneously hypertensive rats. J. Agric. Food Chem. 2008, 56(2), 355–360.
  • Mundi, S.; Aluko, R.E. Inhibitory properties of kidney bean protein hydrolysate and its membrane fractions against renin, angiotensin converting enzyme, and free radicals. Austin J. Nutr. Food Sci 2014, 2(1), 1008–1018.
  • Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16(9), 945–960.
  • Alashi, A.M.; Blanchard, C.L.; Mailer, R.J.; Agboola, S.O.; Mawson, A.J.; He, R.; Malomo, S.A.; Girgih, A.T.; Aluko, R.E. Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Res. Int. 2014, 55, 281–287.
  • He, R.; Alashi, A.; Malomo, S.A.; Girgih, A.T.; Chao, D.; Ju, X.; Aluko, R.E. Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chem. 2013, 141(1), 153–159.
  • Li-Chan, E.C.Y.; Hunag, S.L.; Jao, C.L.; Ho, K.P.; Hsu, K.C. Peptides derived from Atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J. Agric. Food Chem. 2012, 60(4), 973–978.
  • Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Lara-González, S.; Montero-Morán, G.M.; Díaz-Gois, A.; E. González de Mejia; A.P. Barba de la Rosa, In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chem. 2013, 136(2), 758–764.
  • Dicker, D. DPP-4 Inhibitors Impact on glycemic control and cardiovascular risk factors. Diabetes Care 2011, 34(2), S276–S278.
  • Juillerat-Jeanneret, L. Dipeptidyl peptidase IV and its inhibitors: Therapeutics for type 2 diabetes and what else? J. Med. Chem. 2014, 57(6), 2197–2212.
  • Mizuno, S.; Matsuura, K.; Gotou, T.; Nishimura, S.; Kajimoto, O.; Yabune, M.; Kajimoto, Y.; Yamamoto, N. Antihypertensive effect of casein hydrolysate in a placebo-controlled study in subjects with high-normal blood pressure and mild hypertension. Br. J. Nutr. 2005, 94(1), 84–91.
  • Nakamura, Y.; Kajimoto, O.; Kaneko, K.; Aihara, K.; Mizutani, J.; Ikeda, N.; Nishimura, A.; Kajimoto, Y. Effects of the liquid yogurts containing “lactotripeptide (VPP, IPP)” on high-normal blood pressure. J. Nutr. Food 2004, 7(1), 123–137.
  • Seppo, L.; Jauhiainen, T.; Poussa, T.; Korpela, R. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 2003, 77(2), 326–330.
  • European Food Safety Authority (EFSA). Scientific opinion on the substantiation of a health claim related to isoleucyl-prolyl-proline (IPP) and valyl-prolyl-proline (VPP) and maintenance of normal blood pressure pursuant to Article 13 (5) of Regulation (EC) No 1924/2006. EFSA J 2011, 9(9), 18.
  • Maehashi, K.; Huang, L. Bitter peptides and bitter taste receptors. Cell Mol. Life Sci. 2009, 66(10), 1661–1671.
  • Grasso, S.; Brunton, N.P.; Lyng, J.G.; Lalor, F.; Monahan, F.J. Healthy processed meat products – Regulatory, reformulation and consumer challenges. Trends Food Sci. Technol. 2014, 39(1), 4–17.
  • Fulop, T.; Tessier, D.; Carpentier, A. The metabolic syndrome. Pathol. Biol. 2006, 54(7), 375–386.
  • Costante, R.; Stefanucci, A.; Carradori, S.; Novellino, E.; Mollica, A. DPP-4 inhibitors: A patent review (2012–2014). Expert. Opin. Ther. Pat. 2015, 25(2), 209–236.
  • Kalupahana, N.S.; Moustaid-Moussa, N. The renin-angiotensin system: A link between obesity, inflammation and insulin resistance. Obes. Rev. 2012, 13(2), 136–149.
  • Scheen, A.J. Safety of dipeptidyl peptidase-4 inhibitors for treating type 2 diabetes. Expert. Opin. Drug. Saf. 2015, 14(4), 505–524.
  • Shearer, F.; Lang, C.C.; Struthers, A.D. Renin-Angiotensin-aldosterone system inhibitors in heart failure. Clin. Pharmacol. Ther. 2013, 94(4), 459–467.
  • Guang, C.; Phillips, R.D.; Jiang, B.; Milani, F. Three key proteases – angiotensin-I-converting enzyme (ACE), ACE2 and renin – within and beyond the renin-angiotensin system. Arch. Cardiovasc. Dis. 2012, 105(6–7), 373–385.
  • Greenberg, B. An ACE in the hole: Alternative pathways of the renin angiotensin system and their potential role in cardiac remodeling. J. Am. Coll. Cardiol. 2008, 52(9), 755–757.
  • Chakrabarti, S.; Jahandideh, F.; Wu, J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed. Res. Int. 2014, 2014–2025.
  • Wu, J.; Aluko, R.E.; Nakai, S. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of Di- and tripeptides. J. Agric. Food Chem. 2006, 54(3), 732–738.
  • Cheung, H.S.; Wang, F.L.; Ondetti, M.A.; Sabo, E.F.; Cushman, D.W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 1980, 255(2), 401–407.
  • Bah, C.S.F.; Bekhit, A.E.-D.A.; Carne, A.; McConnell, M.A. Slaughterhouse blood: An emerging source of bioactive compounds. Compr. Rev. Food Sci. F. 2013, 12(3), 314–331.
  • Lafarga, T.; Hayes, M. Bioactive peptides from meat muscle and by-products: Generation, functionality and application as functional ingredients. Meat. Sci. 2014, 98(2), 227–239.
  • Mora, L.; Hayes, M. Cardioprotective cryptides derived from fish and other food sources: Generation, application, and future markets. J. Agric. Food Chem. 2015, 63(5), 1319–1331.
  • Jäkälä, P.; Vapaatalo, H. Antihypertensive peptides from milk proteins. Pharmaceuticals 2010, 3(1), 251–272.
  • Ricci-Cabello, I.; Herrera, M.O.; Artacho, R. Possible role of milk-derived bioactive peptides in the treatment and prevention of metabolic syndrome. Nutr. Rev. 2012, 70(4), 241–255.
  • Muguruma, M.; Ahhmed, A.M.; Katayama, K.; Kawahara, S.; Maruyama, M.; Nakamura, T. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: Evaluation of its antihypertensive effects in vivo. Food Chem. 2009, 114(2), 516–522.
  • Atlas, S.A. The renin-angiotensin aldosterone system: Pathophysiological role and pharmacologic inhibition. J. Manage Care Pharm. 2007, 13(8), S9–S20.
  • Duggan, K. Clinical implications of renin inhibitors. Aust. Prescr. 2009, 32, 135–142.
  • Ribeiro-Oliveira, A., Jr.; Nogueira, A.I.; Pereira, R.M.; Boas, W.W.; Dos Santos, R.A.; Simoes e Silva, A.C. The renin-angiotensin system and diabetes: An update. Vasc. Health Risk Manage. 2008, 4(4), 787–803.
  • Angeli, F.; Reboldi, G.; Poltronieri, C.; Angeli, E.; De Filippo, V.; Crocetti, A.; Bartolini, C.; D’Ambrosio, C.; Verdecchia, P. Efficacy and safety profile of aliskiren: Practical implications for clinicians. Curr. Drug. Saf. 2014, 9(2), 106–117.
  • Li, H.; Aluko, R.E. Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. J. Agric. Food Chem. 2010, 58(21), 11471–11476.
  • Udenigwe, C.C.; Lin, Y.-S.; Hou, W.-C.; Aluko, R.E. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. J. Funct. Foods 2009, 1(2), 199–207.
  • Avogaro, A.; Dardano, A.; de Kreutzenberg, S.; Del Prato, S. Dipeptidyl peptidase‐4 inhibitors can minimize the hypoglycaemic burden and enhance safety in elderly people with diabetes. Diabetes Obes. Metab. 2015, 17(2), 107–115.
  • Lacroix, I.M.; Li-Chan, E.C. Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Int. Dairy J. 2012, 25(2), 97–102.
  • Capuano, A.; Sportiello, L.; Maiorino, M.I.; Rossi, F.; Giugliano, D.; Esposito, K. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy–focus on alogliptin. Drug Des. Devel. Ther. 2013, 7, 989–1001.
  • Power, O.; Nongonierma, A.; Jakeman, P.; FitzGerald, R. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc. Nutr. Soc. 2014, 73(1), 34–46.
  • Minkiewicz, P.; Dziuba, J.; Michalska, J. Bovine meat proteins as potential precursors of biologically active peptides - a computational study based on the BIOPEP Database. Food Sci. Technol. Int. 2011, 17(1), 39–45.
  • Nongonierma, A.B.; FitzGerald, R.J. Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: Influence of fractionation, stability to simulated gastrointestinal digestion and food–drug interaction. Int. Dairy J. 2013, 32(1), 33–39.
  • Hatanaka, T.; Inoue, Y.; Arima, J.; Kumagai, Y.; Usuki, H.; Kawakami, K.; Kimura, M.; Mukaihara, T. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chem. 2012, 134(2), 797–802.
  • Gallego, M.; Aristoy, M.-C.; Toldrá, F. Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Sci 2014, 96(2), 757–761.
  • Lafarga, T.; O’Connor, P.; Hayes, M. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides 2014, 59, 53–62.
  • Silveira, S.T.; Martínez-Maqueda, D.; Recio, I.; Hernández-Ledesma, B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem. 2013, 141(2), 1072–1077.
  • Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int. Dairy J. 2012, 22(1), 24–30.
  • Lamppa, J.W.; Horn, G.; Edwards, D. Toward the redesign of nutrition delivery. J. Control Release 2014, 190, 201–209.
  • Uhlig, T.; Kyprianou, T.; Martinelli, F.G.; Oppici, C.A.; Heiligers, D.; Hills, D.; Calvo, X.R.; Verhaert, P. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteomics 2014, 4, 58–69.
  • Andersson, L.; Blomberg, L.; Flegel, M.; Lepsa, L.; Nilsson, B.; Verlander, M. Large-scale synthesis of peptides. Pept. Sci. 2000, 55(3), 227–250.
  • Zambrowicz, A.; Timmer, M.; Polanowski, A.; Lubec, G.; Trziszka, T. Manufacturing of peptides exhibiting biological activity. Amino Acids 2013, 44(2), 315–320.
  • Fitzgerald, C.; Aluko, R.E.; Hossain, M.; Rai, D.K.; Hayes, M. Potential of a renin inhibitory peptide from the red seaweed palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats. J. Agric. Food Chem. 2014, 62(33), 8352–8356.
  • Deng, H.; Zheng, J.; Zhang, F.; Wang, Y.; Kan, J. Isolation of angiotensin I-converting enzyme inhibitor from pepsin hydrolysate of porcine hemoglobin. Eur. Food Res. Technol. 2014, 239, 1–8.
  • Ryan, J.T.; Ross, R.P.; Bolton, D.; Fitzgerald, G.F.; Stanton, C. Bioactive Peptides from Muscle Sources: Meat Fish Nutr. 2011, 3(9), 765–791.
  • Swietlow, A.; Lax, R. Quality control in peptide manufacturing: Specifications for GMP peptides. Chimica Oggi 2004, 22(7–8), 22–24.
  • de Hoffmann, E.; Stroobant, V. Mass spectrometry: Principles and applications. Wiley: West Sussex, England, 2013.
  • Aggett, P.J. The process for the assessment of scientific support for claims on food. Eur. J. Nutr. 2009, 48(1), 23–26.
  • Korhonen, H.; Pihlanto-Leppäla, A.; Rantamäki, P.; Tupasela, T. Impact of processing on bioactive proteins and peptides. Trends Food Sci. Technol. 1998, 9(8–9), 307–319.
  • Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of freezing and thawing on the quality of meat: Review. Meat Sci. 2012, 91(2), 93–98.
  • Contador, R.; Delgado, F.; García-Parra, J.; Garrido, M.; Ramírez, R. Volatile profile of breast milk subjected to high-pressure processing or thermal treatment. Food Chem. 2015, 180, 17–24.
  • Garcia-Mora, P.; Peñas, E.; Frias, J.; Gomez, R.; Martinez-Villaluenga, C. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chem. 2015, 171, 224–232.
  • Knudsen, J.C.; Otte, J.; Olsen, K.; Skibsted, L.H. Effect of high hydrostatic pressure on the conformation of β-lactoglobulin A as assessed by proteolytic peptide profiling. Int. Dairy J. 2002, 12(10), 791–803.
  • Wang, W.; Jiang, J.; Ballard, C.; Wang, B. Prodrug approaches to the improved delivery of peptide drugs. Curr. Pharm. Des. 1999, 5(4), 265–287.
  • Sathe, S.K. Protein solubility and functionality. In Food proteins and peptides: Chemistry, functionality, interactions and commercialization; Hettiarachchy, N.S.; Sato, K.; Marshall, M.R.; Kannan, A., Eds.; CRC Press/Taylor & Francis Group: Florida, USA, 2012.
  • Li-Chan, E.C.Y. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37.
  • Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012, 2012, 1–10.
  • Vermeirssen, V.; Camp, J.V.; Verstraete, W. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr. 2004, 92(3), 357–366.
  • Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 2013, 4(11), 1443–1467.
  • Waget, A.; Cabou, C.; Masseboeuf, M.; Cattan, P.; Armanet, M.; Karaca, M.; Castel, J.; Garret, C.; Payros, G.; Maida, A.; Sulpice, T.; Holst, J.J.; Drucker, D.J.; Magnan, C.; Burcelin, R. Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 2011, 152(8), 3018–3029.
  • Segura-Campos, M.; Chel-Guerrero, L.; Betancur-Ancona, D.; Hernandez-Escalante, V.M. Bioavailability of bioactive peptides. Food Rev. Int. 2011, 27(3), 213–226.
  • Shimizu, M. Food-derived peptides and intestinal functions. BioFactors 2004, 21(1–4), 43–47.
  • Satake, M.; Enjoh, M.; Nakamura, Y.; Takano, T.; Kawamura, Y.; Arai, S.; Shimizu, M. Transepithelial Transport of the Bioactive Tripeptide, Val-Pro-Pro, in Human Intestinal Caco-2 Cell Monolayers. Biosci. Biotechnol. Biochem. 2002, 66(2), 378–384.
  • Udenigwe, C.C.; Aluko, R.E. Food protein‐derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci. 2012, 77(1), R11–R24.
  • Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods.
  • Turnbull, J.L.; Adams, H.N.; Gorard, D.A. Review article: The diagnosis and management of food allergy and food intolerances. Aliment Pharmacol. Ther. 2015, 41(1), 3–25.
  • Kim, K.-B.-W.-R.; Lee, S.-Y.; Song, E.-J.; Kim, K.-E.; Ahn, D.-H. Effect of heat and autoclave on allergenicity of porcine serum albumin. Food Sci. Biotechnol. 2011, 20(2), 455–459.
  • Saleh, H.; Embry, S.; Nauli, A.; Atyia, S.; Krishnaswamy, G. Anaphylactic reactions to oligosaccharides in red meat: A syndrome in evolution. Clin. Mol. Allergy 2012, 10.
  • Lifschitz, C.; Szajewska, H. Cow’s milk allergy: Evidence-based diagnosis and management for the practitioner. Eur. J. Pediatr. 2015, 174(2), 141–150.
  • Järvinen, K.M. Food-induced anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 2011, 11(3), 255–261.
  • El Mecherfi, K.-E.; Rouaud, O.; Curet, S.; Negaoui, H.; Chobert, J.-M.; Kheroua, O.; Saidi, D.; Haertlé, T. Peptic hydrolysis of bovine beta-lactoglobulin under microwave treatment reduces its allergenicity in an ex vivo murine allergy model. Int. J. Food Sci. Technol. 2014, 356–364.
  • Pescuma, M.; Hébert, E.M.; Haertlé, T.; Chobert, J.-M.; Mozzi, F.; de Valdez, G.F. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 cleaves allergenic peptides of β-lactoglobulin. Food Chem. 2015, 170, 407–414.
  • Schaafsma, G. Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur. J. Clin. Nutr. 2009, 63(10), 1161–1168.
  • Larché, M. Immunotherapy with allergen peptides. Allergy Asthma Clin. Immunol. 2007, 3(2), 53–59.
  • Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS One 2013, 8(9), e73957.
  • Morón, B.; Bethune, M.T.; Comino, I.; Manyani, H.; Ferragud, M.; López, M.C.; Cebolla, Á.; Khosla, C.; Sousa, C. Toward the assessment of food toxicity for celiac patients: Characterization of monoclonal antibodies to a main immunogenic gluten peptide. PLoS One 2008, 3(5), e2294.
  • Jamasbi, E.; Batinovic, S.; Sharples, R.; Sani, M.-A.; Robins-Browne, R.; Wade, J.; Separovic, F.; Hossain, M. Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids 2014, 46(12), 2759–2766.
  • Yilmaz, I.; Kaya, E.; Sinirlioglu, Z.A.; Bayram, R.; Surmen, M.G.; Colakoglu, S. Clinical importance of toxin concentration in Amanita verna mushroom. Toxicon 2014, 87, 68–75.
  • Arai, S. In Functional food science in Japan: State of the art, Food Factors: Proceedings of the 2nd International Conference on Food Factors (ICoFF), 2000; IOS Press: 2000; p 13.
  • Hobbs, J.E.; Malla, S.; Sogah, E.K. Regulatory frameworks for functional food and supplements. Can J. Agr. Econ. 2014, 569–594.
  • Yamada, K.; Sato-Mito, N.; Nagata, J.; Umegaki, K. Health claim evidence requirements in Japan. J. Nutr. 2008, 138(6), 1192S–1198S.
  • Shimizu, M. Future strategies for the development of functional foods in Japan (813.12). FASEB J. 2014, 28(1), 813–812.
  • Asp, N.-G.; Bryngelsson, S. Health claims in Europe: New legislation and PASSCLAIM for substantiation. J. Nutr. 2008, 138(6), 1210S–1215S.
  • Lalor, F.; Wall, P.G. Health claims regulations. Br. Food J. 2011, 113(2), 298–313.
  • Temussi, P.A. The good taste of peptides. J. Pept. Sci. 2012, 18(2), 73–82.
  • Karametsi, K.; Kokkinidou, S.; Ronningen, I.; Peterson, D.G. Identification of bitter peptides in aged cheddar cheese. J. Agric. Food Chem. 2014, 62(32), 8034–8041.
  • Adler, E.; Hoon, M.A.; Mueller, K.L.; Chandrashekar, J.; Ryba, N.J.P.; Zuker, C.S. A novel family of mammalian taste receptors. Cell 2000, 100(6), 693–702.
  • Chandrashekar, J.; Mueller, K.L.; Hoon, M.A.; Adler, E.; Feng, L.; Guo, W.; Zuker, C.S.; Ryba, N.J.P. T2Rs function as bitter taste receptors. Cell 2000, 100(6), 703–711.
  • Chandrashekar, J.; Hoon, M.A.; Ryba, N.J.P.; Zuker, C.S. The receptors and cells for mammalian taste. Nature 2006, 444(7117), 288–294.
  • Leksrisompong, P.; Gerard, P.; Lopetcharat, K.; Drake, M. Bitter taste inhibiting agents for whey protein hydrolysate and whey protein hydrolysate beverages. J. Food Sci. 2012, 77(8), S282–S287.
  • Ney, K.H. Voraussage der Bitterkeit von Peptiden aus deren Aminosäurezu-sammensetzung. Z Lebensm Unters Forch 1971, 147(2), 64–68.
  • Cho, M.J.; Unklesbay, N.; Hsieh, F.-H.; Clarke, A.D. Hydrophobicity of bitter peptides from soy protein hydrolysates. J. Agric. Food Chem. 2004, 52(19), 5895–5901.
  • Kim, H.-O.; Li-Chan, E.C.Y. Application of fourier transform raman spectroscopy for prediction of bitterness of peptides. Appl. Spectrosc. 2006, 60(11), 1297–1306.
  • Spellman, D.; O’Cuinn, G.; FitzGerald, R.J. Physicochemical and sensory characteristics of whey protein hydrolysates generated at different total solids levels. J. Dairy Res. 2005, 72(2), 138–143.
  • Ishibashi, N.; Arita, Y.; Kanehisa, H.; Kouge, K.; Okai, H.; Fukui, S. Bitterness of leucine-containing peptides. Agric. Biol. Chem. 1987, 51(9), 2389–2394.
  • Ishibashi, N.; Sadamori, K.; Yamamoto, O.; Kanehisa, H.; Kouge, K.; Kikuchi, E.; Okai, H.; Fukui, S. Bitterness of phenylalanine-and tyrosine-containing peptides (Food & Nutrition). Agric. Biol. Chem. 1987, 51(12), 3309–3313.
  • Kim, H.O.; Li-Chan, E.C.Y. Quantitative structure-activity relationship study of bitter peptides. J. Agric. Food Chem. 2006, 54(26), 10102–10111.
  • Shinoda, I.; Nosho, Y.; Otagiri, K.; Okai, H.; Fukui, S. Bitterness of diastereomers of a hexapeptide (Arg-Arg-Pro-Pro-Phe-Phe) containing D-phenylalanine in place of L-Phenylalanine (Food & Nutrition). Agric. Biol. Chem. 1986, 50(7), 1785–1790.
  • Wu, J.; Aluko, R.E. Quantitative structure‐activity relationship study of bitter di‐and tri‐peptides including relationship with angiotensin I‐converting enzyme inhibitory activity. J. Pept. Sci. 2007, 13(1), 63–69.
  • Aubes-Dufau, I.; Seris, J.-L.; Combes, D. Production of peptic hemoglobin hydrolyzates: Bitterness demonstration and characterization. J. Agric. Food Chem. 1995, 43(8), 1982–1988.
  • Hansen-Møller, J.; Hinrichsen, L.; Jacobsen, T. Evaluation of peptides generated in Italian-Style Dry-Cured ham during processing. J. Agric. Food Chem. 1997, 45(8), 3123–3128.
  • Liu, X.; Jiang, D.; Peterson, D.G. Identification of bitter peptides in whey protein hydrolysate. J. Agric. Food Chem. 2013, 62(25), 5719–5725.
  • Spellman, D.; O’Cuinn, G.; FitzGerald, R.J. Bitterness in Bacillus proteinase hydrolysates of whey proteins. Food Chem. 2009, 114(2), 440–446.
  • European Food Safety Authority (EFSA). Scientific opinion on the safety of ‘Sardine Peptide Product’. EFSA J. 2010, 8(7), 18.
  • Kawasaki, T.; Seki, E.; Osajima, K.; Yoshida, M.; Asada, K.; Matsui, T.; Osajima, Y. Antihypertensive effect of valyl-tyrosine, a short chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive subjects. J. Hum. Hypertens. 2000, 14(8), 519–523.
  • Fujita, H.; Yamagami, T.; Ohshima, K. Effects of an ace-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects. Nutr. Res. 2001, 21(8), 1149–1158.
  • Jang, A.; Jo, C.; Lee, M. Storage stability of the synthetic angiotensin converting enzyme (ACE) inhibitory peptides separated from beef sarcoplasmic protein extracts at different pH, temperature, and gastric digestion. Food Sci. Biotechnol. 2007, 16(4), 572–575.
  • Reunanen, J.; Saris, P.E.J. Bioassay for nisin in sausage; a shelf life study of nisin in cooked sausage. Meat Sci. 2004, 66(3), 515–518.
  • Davies, E.A.; Bevis, H.E.; Potter, R.; Harris, J.; Williams, G.C.; Delves-Broughton, J. Research note: The effect of pH on the stability of nisin solution during autoclaving. Lett. Appl. Microbiol. 1998, 27(3), 186–187.
  • Contreras, M.d.M.; Sevilla, M.A.; Monroy-Ruiz, J.; Amigo, L.; Gómez-Sala, B.; Molina, E.; Ramos, M.; Recio, I. Food-grade production of an antihypertensive casein hydrolysate and resistance of active peptides to drying and storage. Int. Dairy J. 2011, 21(7), 470–476.
  • Fitzgerald, C.; Gallagher, E.; Doran, L.; Auty, M.; Prieto, J.; Hayes, M. Increasing the health benefits of bread: Assessment of the physical and sensory qualities of bread formulated using a renin inhibitory Palmaria palmata protein hydrolysate. LWT - Food Sci. Technol. 2014, 56(2), 398–405.
  • Lafarga, T.; Gallagher, E.; Walsh, D.; Valverde, J.; Hayes, M. Chitosan-containing bread made using marine shellfishery byproducts: Functional, bioactive, and quality assessment of the end product. J. Agric. Food Chem. 2013, 61(37), 8790–8796.
  • Read, A.; Wright, A.; Abdel-Aal, E.-S.M. In vitro bioaccessibility and monolayer uptake of lutein from wholegrain baked foods. Food Chem. 2015, 174, 263–269.
  • Hassan, F.A.; El-Gawad, M.A.A.; Enab, A. Flavour compounds in cheese (review). J. Acad Res. Part. A 2012, 4(5), 169–181.
  • Xiao, J.; Burn, A.; Tolbert, T.J. Increasing solubility of proteins and peptides by site-specific modification with betaine. Bioconjug. Chem. 2008, 19(6), 1113–1118.
  • Vo, C.L.-N.; Park, C.; Lee, B.-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2013, 85(3B), 799–813.
  • Ibraheem, D.; Elaissari, A.; Fessi, H. Administration strategies for proteins and peptides. Int. J. Pharm. 2014, 477(1–2), 578–589.
  • Goto, T.; Morishita, M.; Nishimura, K.; Nakanishi, M.; Kato, A.; Ehara, J.; Takayama, K. Novel mucosal insulin delivery systems based on fusogenic liposomes. Pharm. Res. 2006, 23(2), 384–391.
  • Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm. 2006, 327(1–2), 153–159.
  • Iwai, K.; Hasegawa, T.; Taguchi, Y.; Morimatsu, F.; Sato, K.; Nakamura, Y.; Higashi, A.; Kido, Y.; Nakabo, Y.; Ohtsuki, K. Identification of food-derived collagen peptides in human blood after oral ingestion of gelatin hydrolysates. J. Agric. Food Chem. 2005, 53(16), 6531–6536.
  • Foltz, M.; Meynen, E.E.; Bianco, V.; Van Platerink, C.; Koning, T.M.M.G.; Kloek, J. Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr. 2007, 137(4), 953–958.
  • Quirós, A.; Dávalos, A.; Lasunción, M.A.; Ramos, M.; Recio, I. Bioavailability of the antihypertensive peptide LHLPLP: Transepithelial flux of HLPLP. Int. Dairy J. 2008, 18(3), 279–286.
  • Van Platerink, C.J.; Janssen, H.G.M.; Horsten, R.; Haverkamp, J. Quantification of ACE inhibiting peptides in human plasma using high performance liquid chromatography-mass spectrometry. J. Chromatog. B Analyt. Technol. Biomed. Life Sci. 2006, 830(1), 151–157.
  • Dia, V.P.; Torres, S.; De Lumen, B.O.; Erdman Jr, J.W.; De Mejia, E.G. Presence of lunasin in plasma of men after soy protein consumption. J. Agric. Food Chem. 2009, 57(4), 1260–1266.
  • Agyei, D.; Danquah, M.K. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv. 2011, 29(3), 272–277.
  • Cheung, I.W.Y.; Nakayama, S.; Hsu, M.N.K.; Samaranayaka, A.G.P.; Li-Chan, E.C.Y. Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. J. Agric. Food Chem. 2009, 57(19), 9234–9242.
  • Nongonierma, A.B.; Mooney, C.; Shields, D.C.; Fitzgerald, R.J. In silico approaches to predict the potential of milk protein-derived peptides as dipeptidyl peptidase IV (DPP-IV) inhibitors. Peptides 2014, 57, 43–51.
  • Rodríguez, V.; Asenjo, J.A.; Andrews, B.A. Design and implementation of a high yield production system for recombinant expression of peptides. Microb. Cell Fact. 2014, 13(1), 1–10.
  • Alvarez, C.; Rendueles, M.; Diaz, M. Production of porcine hemoglobin peptides at moderate temperature and medium pressure under a nitrogen stream. Functional and antioxidant properties. J. Agric. Food Chem. 2012, 60(22), 5636–5643.
  • Wu, S.; Qi, W.; Li, T.; Lu, D.; Su, R.; He, Z. Simultaneous production of multi-functional peptides by pancreatic hydrolysis of bovine casein in an enzymatic membrane reactor via combinational chromatography. Food Chem. 2013, 141(3), 2944–2951.
  • Bargeman, G.; Houwing, J.; Recio, I.; Koops, G.H.; van der Horst, C. Electro‐membrane filtration for the selective isolation of bioactive peptides from an αs2‐casein hydrolysate. Biotechnol. Bioeng. 2002, 80(6), 599–609.
  • Ponstein-Simarro Doorten, A.Y.; vd Wiel, J.A.G.; Jonker, D. Safety evaluation of an IPP tripeptide-containing milk protein hydrolysate. Food Chem. Toxicol. 2009, 47(1), 55–61.
  • Høst, A.; Halken, S. Hypoallergenic formulas–when, to whom and how long: After more than 15 years we know the right indication! Allergy 2004, 59 (s78), 45–52.
  • Marques, A.; Lourenço, H.M.; Nunes, M.L.; Roseiro, C.; Santos, C.; Barranco, A.; Rainieri, S.; Langerholc, T.; Cencic, A. New tools to assess toxicity, bioaccessibility and uptake of chemical contaminants in meat and seafood. Food Res. Int. 2011, 44(2), 510–522.
  • Dent, M.P.; O’Hagan, S.; Braun, W.H.; Schaetti, P.; Marburger, A.; Vogel, O. A 90-day subchronic toxicity study and reproductive toxicity studies on ACE-inhibiting lactotripeptide. Food Chem. Toxicol. 2007, 45(8), 1468–1477.
  • Jauhiainen, T.; Vapaatalo, H.; Poussa, T.; Kyrönpalo, S.; Rasmussen, M.; Korpela, R. Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am. J. Hypertens. 2005, 18(12), 1600–1605.
  • Rubinstein, A.L. Zebrafish assays for drug toxicity screening. Expert. Opin. Drug. Meta. Toxicol. 2006, 2(2), 231–240.
  • Fitzgerald, C.; Gallagher, E.; O’Connor, P.; Prieto, J.; Mora-Soler, L.; Grealy, M.; Hayes, M. Development of a seaweed derived platelet activating factor acetylhydrolase (PAF-AH) inhibitory hydrolysate, synthesis of inhibitory peptides and assessment of their toxicity using the Zebrafish larvae assay. Peptides 2013, 50, 119–124.
  • García-Segovia, P.; Harrington, R.J.; Seo, H.-S. Influences of table setting and eating location on food acceptance and intake. Food Qual. Prefer. 2015, 39, 1–7.
  • Verbeke, W. Functional foods: Consumer willingness to compromise on taste for health? Food Qual. Prefer. 2006, 17(1–2), 126–131.
  • Gilbert, L.C. The functional food trend: What’s next and what Americans think about eggs. J. Am. Coll. Nutr. 2000, 19(5), 507S–512S.
  • Tuorila, H.; Cardello, A.V. Consumer responses to an off-flavor in juice in the presence of specific health claims. Food Quali. Prefer. 2002, 13(7–8), 561–569.
  • FitzGerald, R.J.; O’Cuinn, G. Enzymatic debittering of food protein hydrolysates. Biotechnol. Adv. 2006, 24(2), 234–237.
  • Ogawa, T.; Hoshina, K.; Haginaka, J.; Honda, C.; Tanimoto, T.; Uchida, T. Screening of bitterness-suppressing agents for quinine: The use of molecularly imprinted polymers. J. Pharm. Sci. 2005, 94(2), 353–362.
  • Sharafi, M.; Hayes, J.; Duffy, V. Masking vegetable bitterness to improve palatability depends on vegetable type and taste phenotype. Chem. Percept. 2013, 6(1), 8–19.
  • Wilkie, L.; Capaldi Phillips, E.; Wadhera, D. Sodium chloride suppresses vegetable bitterness only when plain vegetables are perceived as highly bitter. Chem. Percept. 2014, 7(1), 10–22.
  • Coupland, J.; Hayes, J. Physical approaches to masking bitter taste: Lessons from food and pharmaceuticals. Pharm. Res. 2014, 31(11), 2921–2939.
  • Favaro-Trindade, C.S.; Santana, A.S.; Monterrey-Quintero, E.S.; Trindade, M.A.; Netto, F.M. The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocoll. 2010, 24(4), 336–340.
  • Yang, S.; Mao, X.-Y.; Li, F.-F.; Zhang, D.; Leng, X.-J.; Ren, F.-Z.; Teng, G.-X. The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. Eur. Food Res. Technol. 2012, 235(1), 91–97.
  • Tella, S.H.; Rendell, M.S. DPP-4 inhibitors: Focus on safety. Expert. Opinion on Drug. Saf. 2015, 14(1), 127–140.
  • Drucker, D.J. The biology of incretin hormones. Cell Metab. 2006, 3(3), 153–165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.