2,025
Views
96
CrossRef citations to date
0
Altmetric
Articles

Phytochemical characteristics of citrus peel and effect of conventional and nonconventional processing on phenolic compounds: A review

, , &

References

  • United Sates Department of Agriculture (USDA). Citrus: World markets and trade July 2014.https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf
  • Bocco, A.; Cuvelier, M.E., Richard, H.; Berset, C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agric. Food Chem. 1998, 46(6), 2123–2129.
  • Marin, F.A.; Soler-Rivas, C.; Benavente-Garcio.; Castillo, J.; Perez-Alvarez, J.E. By-products from different citrus processes as a source of customized functional fibres. Food Chem. 2007, 100, 736–741.
  • Huet R. Les huiles essentielles d’agrumes. Fruits. 1991, 4, 551–576.
  • Espiard, E. Introduction à la transformation industrielle des fruits. ( Ed) TEC &DOC. France, 2002; pp 259–265.
  • Ramful, D.; Bahorunb, T.; Bourdonc, E.; Tarnusc, E.; Aruoma, O.I. Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: potential prophylactic ingredients for functional foods application. Toxicol. 2010, 278, 75–87.
  • Kammoun Bejar, A.; Ghanem, N.; Mihoubi, D.; Kechaou, N.; Boudhrioua Mihoubi, N. Effect of infrared drying on drying kinetics, color, total phenols and water and oil holding capacities of orange (Citrus sinensis) peel and leaves. J. Food Eng. 2011, 7(5), 1–25. doi: 10.2202/1556-3758.2222
  • Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. J. Clin. Nutr. 2004, 79(5), 727–747.
  • Popa, V.I.; Dumitru, M.; Volf, I.; Anghel, N. Lignin and polyphenols asallelochemicals. Ind Crops Prod. 2008, 27, 144–149.
  • Moure, A.; Cruz, J.M.; Franco, D.; Dominguez, J.M.; Sineiro, J.; Dominguez, H.; Nunez, M.J.; Parajo, J.C. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171.
  • Djilas, S.; Canadanovic-Brunet, J.; Cetkovic, G. By-products of fruits processing as a source of phytochemicals. Chem. Ind. Chem. Eng. Q. 2009, 15, 191−202.
  • Ghasemi, K.; Ghasemi, Y.; EbrahimZadeh, M.A. Antioxidant activity, phenol and flavonoid contents of 13 Citrus species peels and tissues. Pak J Pharm Sci. 2009, 22(3), 277–281.
  • Cheynier, V.; Sarni-Manchado, P. Les polyphénols en agroalimentaire. Lavoisier- Tec & Doc: Paris, 2006; pp 50–59
  • Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M. Effect of citrus flavonoids on HL-60 cell differentiation. Anticancer Res. 1999, 19, 1261–1269.
  • Abd El-aal, H.A.; Halaweish, F.T. Food preservative activity of phenolic compounds in orange peel extracts (Citrus sinensis L.). Lucrări Ştiinţifice 2009, 53, 457–464.
  • Tumbas, V.T.; Ćetkovic, G.S.; Djilas, S.M.; Canadanovic-Brunet, J.M.; Vulic, J.J.; Knez, Z. Antioxidant activity of mandarin (Citrus reticulata) peel. Biblid. 2010, 40, 195–203.
  • Ortuno, A.; Garcia-Puig, D.; Fuster, M.D.; Perez, M.L.; Sabater, F.; Porras, I.; Garcia-Lindon, A.; Del Rio, J.A. Flavanone and nootkanone levels in different varieties of grapefruit and pummelo. J. Agr. Food Chem. 1995, 43, 1–5.
  • Frydman, A.; Weisshaus, O.; Huhman, D.V.; Sumner, L.; Bar-Peled, M.; Lewinsohn, E.; Fluhr, R.; Gressel, J.; Eyal, Y. Metabolic engineering of plant cells for biotransformation of hesperedin into neohesperidin, a substrate for production of the low-calorie sweetener and flavor enhancer NHDC. J. Agric. Food Chem. 2005, 53, 9708–9712.
  • Ghanem, N.; Mihoubi, D.; Kechaoua, N.; Boudhrioua Mihoubi, N. Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage and total phenols content. Ind Crops Prod. 2012, 40, 167–177.
  • Ioannou, I.; Hafsa, I.; Hamdi, S.; Charbonnel, C.; Ghoul, M. Review of the effects of food processing and formulation on flavonol and anthocyanin behavior. J. Food Eng. 2012, 111, 208–217.
  • Nayak, B.; Liu, R.H.; Tang, J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains-A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918.
  • Jawad, A.; Langrish, T.A.G. Optimisation of total phenolic acids extraction from mandarin peels using microwave energy: The importance of the Maillard reaction. J Food Eng. 2012, 109, 162–174.
  • Wagner, K.H.; Derkits, S.; Herr, M.; Schuh, W.; Elmadfa, I. Antioxidative potential of melanoidins isolated from a oasted glucose–glycine model. Food Chem. 2002, 78(3), 375–382.
  • Knol, J.J.; Van Loon, W.A.M.; Linssen, J.P.H.; Ruck, A.L.; Van Boekel, M.; Voragen, A.G.J. Toward a kinetic model for acrylamide formation in a glucose-asparagine reaction system. J Agric Food Chem. 2005, 53(15), 6133–6139.
  • Liu, S.C.; Yang, D.J.; Jin, S.Y., Hsu, C.H.; Chen, S.L. Kinetics of color development, pH decreasing, and anti-oxidative activity reduction of Maillard reaction in galactose/glycine model systems. Food Chem. 2008, 108(2) 533–541.
  • Martins, S.; Van Boekel, M. A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem. 2005, 90, 1(2), 257–269.
  • Amarowicz, R.; Reinhold, C.; Dongowski, G.; Durazzo, A.; Galensa, R.; Kammerer, D.; Maiani, G.; Piskula, M.K. Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Mol. Nutr. Food Res. 2009, i123–154.
  • Rawson, A.; Patras, A.; Tiwari, B.K.; Noci, F.; Koutchma, T.; Brunton, N. Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Res Int. 2011, 44(7), 1875–1887. doi:10.1016/j.foodres.2011.02.053
  • Oms-Oliu, G.; Odriozola-Serrano, I.; Soliva-Fortuny, R.; Elez-Martinez, P.; Martin-Belloso O. Stability of health-related compounds in plant foods through the application of non thermal processes. Trends in Food Sci Tech. 2012, 23, 111–123.
  • Rothwell, J.A.; Pérez-Jiménez, J; Neveu, V.; Medina-Ramon, A.; M’Hiri, N.; Garcia Lobato, P.; Manach, C.; Knox, K.; Eisner, R. Wishart, D.; Scalbert, A. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database. 2013. doi: 10.1093/database/bat070
  • Farhat A.; Fabiano-Tixier A.S.; El Maataoui M.; Maingonnat J.F.; Romdhane M.; Chemat F. Microwave steam diffusion for extraction of essential oil from orange peel: Kinetic data, extract’s global yield and mechanism. Food Chem. 2011, 125, 255–261.
  • Oreopoulou, V.; Tzia, C. Chapitre 11: Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants and colorants. In Utilization of by-products and treatment of waste in the food; Springer: New York, USA, 2007; pp 209–232.
  • Yeoh, S.; Shi J.; Langrish, T.A.G. Comparisons between different techniques for water based extraction of pectin from orange peels. Desalination 2008, 218, 229–237.
  • Hosni, K.; Zhaed, N.; Chrif, R.; Abid, I.; Medfei, W.; Sebei H. Composition of peel essential oils from four selected Tunisian citrus species: Evidence for the genotypic influence. Food Chem. 2010, 123, 1098–1104.
  • Wang, A.Y., Zhou, M.Y., Lin, W.C. Antioxidative and anti-inflammatory properties of Citrus sulcata extracts. Food Chem. 2011, 124, 958–963.
  • Zhang J. Flavonoids in Grapefruit and commercial grapefruit juices: concentration, distribution and potential health benefits. Proc. Fla. State Hort. Soc. 2007, 120, 288–294.
  • Gorinstein S.; Martin-Belloso O.; Park Y.; Haruenkit R.; Lojek A.; Caspi A.; Libman I.; Trakhtenberg S. Comparison of some biochemical characteristics of different citrus fruits. Food Chem. 2001, 74, 309–315.
  • Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: a review. Anim Feed Sci. Technol. 2006, 128, 175–217.
  • Duoss-Jennings, H.A.; Schmidt, T.B.; Callaway, T.R.; Carroll, J.A.; Martin, J.M.; Shields-Menard, S.A. Effect of citrus byproducts on survival of O157: H7and non-O157 Escherichia coli serogroups within in vitro bovine ruminal microbial fermentations. Int. J. Microbiol. 2013, 5.
  • Goulas V.; Manganaris, G.A. Exploring the phytochemical content and the antioxidant potential of citrus fruits grown in Cyprus. Food Chem. 2012, 131, 39–47.
  • Barros, H.; Ferreira, R.D.M.; Genovese, M.I. Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chem. 2012, 134, 1892–1898.
  • Magda, R.A.; Awad, A.M.; Selim, K.A. Evaluation of mandarin and orange peels as natural sources of antioxidant in biscuits. J. Food Sci. Technol. 2008, 75–82.
  • Lohrasbi, M.; Pourbafrani, M.; Niklasson, C.; Taherzadeh, M.J. Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresour Technol. 2010, 101, 7382–7388.
  • Byrne, C.M; Allen, S.D.; Lobkovsky, E.B.; Coates, G.W. Alternating copolymerization of limonene oxide and carbon dioxide. J. Am. Chem. Soc. 2004, 126, 11404–11405.
  • Tian, Q.; Miller, E.G.; Ahmad, H.; Tang, L.; Patil, B.S. Differential inhibition of human cancer cell proliferation by citrus limonoids. Nutr. Cancer 2001, 40, 180–184.
  • Fisher K.; Phillips C. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J. Appl. Microbiol. 2006, 101, 1232–1240.
  • Fisher K.; Phillips C. Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci Technol. 2008, 19, 156–164.
  • Virot, M.; Tomao, V.; Ginies, G.; Visinoni, F.; Chemat, F. Green procedure with a green solvent for fats and oils’ determination. Microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation. J. Chromatogr. A 2008, 1196, 147–152.
  • Chutia, M.; Deka Bhuyan P.; Pathak, M.G.; Sarma, T.C.; Boruah P. Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. Food Sci. Technol. 2009, 42, 777–780.
  • Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Kumar, P. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem. Toxicol. 2010, 48, 1734–1740.
  • Tyagi, A. K.; Gottardi, D.; Malik, A.; Guerzoni, M.A. Chemical composition, in vitro anti-yeast activity and fruit juice preservation potential of lemon grass oil. Food Sci. Technol. 2014, 57, 731–737.
  • Fernandez-Lopez, J.; Fernandez-Gines, J.M., Aleson-Carbonell, L.; Sendra, E.; Sayas-Barber, E.; Perez-Alvarez, J.A. Application of functional citrus by-products to meat products Trends Food Sci. Tech. 2004, 15, 176–185.
  • Bicu, I.; Mustata, F. Cellulose extraction from orange peel using sulfite digestion reagents. Bioresour. Technol. 2011, 102, 10013–10019.
  • Wang, X.; Chen, Q.; Lu, X. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll. 2014, 38, 129–137.
  • Wang, Y.C.; Chuang, Y.C.; Hsu, H.W. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem. 2008, 106(1), 277–284.
  • Kratchanova, M.,; Pavlova, E.; Panchev, I. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr Polym. 2004, 56, 181–185.
  • Liu, Y.; Shi, J.; Langrish, T.A.G. Water-based extraction of pectin from flavedo and albedo of orange peels. J. Chem. Eng. 2006, 120, 203–209
  • Hawthorne, S.B.; Grabanski, C.B.; Martin, E.; Miller, D.J. Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix, J. Chromatogr. A 2000, 892, 421–433.
  • Liu, L.; Fishman, M.L.; Kost, J.; Hicks, K.B. Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials. 2003, 24, 3333–3343.
  • Piriyaprasarth, S.; Sriamornsak, P. Flocculating and suspending properties of commercial citrus pectin and pectin extracted from pomelo (Citrus maxima) peel. Carbohydr Polym. 2011, 83, 2, 561–568.
  • Maxwell, E.G.; Belshaw, N.J.; Waldron, K.W.; Morris, V.J. Pectin an emerging new bioactive food polysaccharide. Trends Food Sci. Technol. 2012, 24, 2, 64–73.
  • Kang, H.J.; Chawla, S.P.; Jo C.; Kwon, J.H.; Byun, M.W. Studies on the development of functional powder from citrus peel. Bioresour. Technol. 2006, 97, 614–620.
  • Ververis, C.; Georghiou, K.; Danielidis, D.; Hatzinikolaou, D.G.; Santas, P.; Santas, R. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol. 2007, 98(2), 296–301.
  • Wilkins, M. R.; Widmer, W.; Grohmann, K. Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem. 2007, 42(12), 1614–1619.
  • Pourbafrani, M.; Forgacs, G.; Horváth, I.S.; Niklasson, C. Production of biofuels, limonene and pectin from citrus wastes Bioresour. Technol. 2010, 101, 4246–4250.
  • Erdman J.; Balentine D.; Arab L.; Beecher G.; Hollman P.; Keen C.L.; Mazza G.; Messina M.; Scalbert A.; Vita J.; Williamson G.; Burrowes J. Flavonoids and Heart Health: Proceedings of the ILSI North America Flavonoids Workshop, May 31–June 1, 2005, Washington, DC, 1–4. J Nutr. 2007, 137, 718–737.
  • Balasundram, N.; Sundram, K.; Samman, S. Analytical, nutritional and clinical methods phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–20.
  • Ignat I.; Volf I.; Popa V. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835.
  • Gattuso, G.; Barreca, D.; Gargiulli, C.; Leuzzi, U.; Caristi, C. Flavonoid composition of Citrus juices. Molecules. 2007, 12, 1641–1673.
  • Thomas-Barberan, F.A.; Clifford, M.N. Dietary hydroxybenzoic acid derivatives –nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80(7), 1024–1052.
  • Sawalha, S.M.S.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Quantification of main phenolic compounds in sweet and bitter orange peel using CE–MS/MS. Food Chem. 2009, 116, 567–574.
  • Russo, M.; Bonaccorsi, I.; Torre, G.; Sarò, M; Dugo, P.; Mondello, L. Underestimated sources of flavonoids, limonoids and dietary fibre: Availability in lemon’s by-products. J. Funct foods. 2014, 9, 18–26.
  • Del Rio, J.A.; Fustera, M.D.; Gomeza, P.; Porras, I.; Garcia-Lidon, A.; Ortun, A. Citrus limon: A source of flavonoids of pharmaceutical interest. Food Chem. 2004, 84, 457–461.
  • Hayat, K.; Zhang, X.; Chen, H.; Xi, S.; Jia, C.; Zhong, F. Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Sep. Purif. Technol. 2010, 73, 371–376.
  • Xu, G.H.; Chen, J.C.; Zhang, Y.H.; Iang, P.J.; Ye, X.Q. Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. J Food Chem. 2008, 73, 1, 11–17.
  • Cheigh, C.I.; Chung, E.Y.; Chung, M.S. Enhanced extraction of flavanon es hesperidin and narirutin from Citrus unshiu peel using subcritical water. J. Food Eng. 2012, 110, 472–477.
  • Giannuzzo, A.N.; Boggetti, H.J.; Nazareno, M.A.; Mishima, H.T. Supercritical fluid extraction of naringin from the peel of citrus paradise. Phytochemic. Anal. 2003, 14, 221–223.
  • Toledo-Guillén, A.R.; Higuera-Ciapara, I.; García-Navarrete, G.; De la Fuente, J.C. Extraction of bioactive flavonoid compounds from orange (Citrus sinensis) peel using supercritical CO2. J. Biotechnol. 2010, 150–576.
  • Lin, C.M.; Sheu, S.R.; Hsu, S.C.; Tsai, Y.H. Determination of bactericidal efficacy of essential oil extracted from orange peel on the food contact surfaces. Food Control. 2010, 2, 1710–1715.
  • Lee, Y.H.; Charles, A.L.; Kung, H.F.; Ho, H.F.; Huang, T.C. Extraction of nobiletin and tangeretin from Citrus depressa Hayata by supercritical carbon dioxide with ethanol as modifier. Ind. Crop Prod. 2010, 31, 59–64.
  • Ma, Y.; Chen, J.; Liu, D.; Ye, X. Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrason. Sonochem. 2009, 16, 57–62.
  • Hayat, K.; Hussain, S.; Abbas, S.; Farooq, U.; Ding, B.; Xia, S.; Ji, C.; Zhang, X.; Xia, W. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep. Purif. Technol. 2009, 70, 63–70.
  • Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002, 113(9), 71–88.
  • Ledesma-Escobar, C.A.; Luque de Castro, M.D. Towards a comprehensive exploitation of citrus. Trends Food Sci. Technol. 2014, 39, 63–75.
  • Macheix J.J.; Fleuriet A.; Sarni-Manchado P. Composés phénoliques dans la plante-Structure, biosynthèse, répartition et rôles. In Les polyphénols en agroalimentaire; Sarni-Manchado, P.; Cheynier, V., Eds.; Lavoisier: Paris, France, 2006; pp 1–28.
  • Abiola, O.K.; James, A.O. Gossipium hirsutum L. extracts as green corrosion inhibitor for aluminum in NaOH solution. Corros. Sci. 2010, 52, 661–664.
  • Hussin, M.H.; Kassim, M.J. The corrosion inhibition and adsorption behavior of Uncaria Gambir extract on mild steel in 1M HCl. Mater. Chem. Phys. 2011, 125, 461–468.
  • Saleh, R.M.; Ismail, A.A.; EI Hosary, A.A. Corrosion inhibition by naturally occurring substances. Bri Corros J. 1982, 17(3), 130–135
  • Da Rocha, Da Cunha Ponciano Gomes, J.C.; D’Elia, E. Corrosion inhibition of carbon steel in hydrochloric acid solution by fruit peel aqueous extracts. Corros Sci. 2010, 52, 2341–2348.
  • M’hiri, N.; Veys-Renaux, D.; Rocca, E.; Ioannou, I.; Mihoubi Boudhrioua, N.; Ghoul, M. Corrosion inhibition of carbon steel in acidic medium by orange peelextract and its main antioxidant compounds. Corros Sci. 2016, 102, 55–62.
  • Fiori-Bimbi, P.E; Alvarez, H.; Vaca, C.A; Gervasi. Corrosion inhibition of mild steel in HCl solution by pectin. Corros. Sci. 2015, 92, 192–199.
  • Solomon, M.M.; Umoren, S.A.; Udosoro, I.I.; Udoh, A.P. Inhibitive and adsorptionbehavior of carboxymethyl cellulose on mild steel corrosion in sulphuric acidsolution. Corros. Sci. 2010, 52, 1317–1325.
  • Rice-Evans C.; Miller, N.; Paganga, G. Structure-antioxidant activity relationships between flavonoids and phenolic acids. Free Radic Biol Med. 1996, 20, 933–956.
  • Van Acker, S.A.B.E.; Van Den Berg, D.J.; Tromp, M.N.J.L.; Griffioen, D.H.; Van Bennekom, W. P.; Van Der Vijgh, W.J.F.; Bast, A. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol. 1996, 20, 331–342.
  • Ruiz-Rodriguez, A.; Marin, F.; Ocana, A.; Soler-Rivas, C. Effect of domestic processing on bioactive compounds. Phytochem Rev. 2008, 7(2), 345–384.
  • Nicoli, M.C.; Anese, M.; Severini, C. Combined effects in preventing enzymatic browning reactions in minimally processed fruit. J Food Qual. 1994, 17, 221–229
  • Cheriot, S.C.; Billaud, C.; Nicolas, J. Use of experimental design methodology to prepare Maillard reaction products from glucose and cysteine inhibitors of polyphenol oxidase from eggplant (Solanum melongena). J. Agric. Food Chem. 2006, 54, 5120–5126.
  • Hodge, J.E. Dehydrated foods-chemistry of browning reactions in model systems. J Agric Food Chem. 1953, 1(15), 928–943.
  • Yaylayan, V.A.; Haffenden, L.J.W. Mechanism of imidazole and oxazole formation in c-13-2-labelled glycine and alanine model systems. Food Chem. 2003, 81(3), 403–409.
  • Chen, S.L; Jin, S.Y.; Chen, C.S. Relative reactivities of glucose and galactose in browning and pyruvaldehyde formation in sugar/glycine model systems. Food Chem. 2005, 92(4), 597–605.
  • Gil-Izquierdo, A.; GIL, M.I.; Ferreres, F. Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds. J. Agric. Food Chem. 2002. 50, 5107–5114.
  • Anagnostopoulou, M.A.; Kefalas, P.; Kokkalou, E.; Assimopoulou, A.N.; Papageorgiou, F.P. Analysis of antioxidant compounds in sweet orange peel by HPLC–diode array detection–electrospray ionization mass spectrometry. Biomed Chromatogr. 2005, 19, 138–148.
  • Sentandreu, E.; Navarro, J.; Sendra, J.M. Effect of technological processes and storage on flavonoids content and total, cumulative fast-kinetics and cumulative slow-kinetics antiradical activities of citrus juices. Eur Food Res Technol. 2007, 225, 905–912.
  • Igual, M.; García-Martínez, E.; Camacho, M.M.; Martínez-Navarrete, N. Changes in flavonoid content of grapefruit juice caused by thermal treatment and storage. Innov. Food Sci. Emerg. Technol. 2011, 12, 153–162.
  • Salazar-Gonzalez, C.; Fernanda, M.; Martín-González, S.; López-Malo, A.; Sosa-Morales, M.E. Recent studies related to microwave processing of fluid foods. Food Bioprocess Technol. 2012, 5, 31–46.
  • Inoue, T.; Tsubaki, S.; Ogawa, B.; Onishi, K.; Azuma, J.I. Isolation of hesperidin from peels of thinned Citrus unshiu fruits by microwave-assisted extraction. Food Chem. 2010, 123, 542–547.
  • Scalzo, R.L; Iannoccari, T.; Summa C.; Morelli, R.; Rapisard, P. Effect of thermal treatments on antioxidant and antiradical activity of blood orange juice. Food Chem. 2004, 85, 41–47.
  • Arena, E.; Fallico, B.; Maccarone, E. Evaluation of the antioxidant capacity of blood orange juices as influenced by constituents, concentration process and storage. Food Chem. 2001, 74, 423–427.
  • Klimczak, I.; Malecka, M.; Szlachta, L.; Gliszczynska-Swiglo, A. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J. Food Compos. Anal. 2007, 20, 313–22.
  • Sanchez-Moreno, C.; Plaza, L.; De Ancos, B.; Cano, M.P. Vitamin C, provitamin A, carotenoids, and other carotenoids in high-pressurized orange juice during refrigerated storage. J. Agric. Food Chem. 2003, 51, 647–53.
  • Lin, N.; Sato, T.; Takayama, Y. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol. 2003, 65, 2065–2071
  • Kuljarachanan, T.; Devahastin, S.; Chiewchan, N. Evolution of antioxidant compounds in lime residues during drying. Food Chem. 2009, 113, 944–949.
  • Joubert, E. Effect of batch extraction conditions on extraction of polyphenols from Rooibos tea (Aspalathus linearis). Int. J. Food Sci. Technol. 1990, 25, 339–343.
  • Li, B.B.; Smith, B.; Hossain, M.M. Extraction of phenolics from citrus peels. I. Solvent extraction method. Sep. Purif. Technol. 2006, 48, 182–188.
  • Garau, M.C.; Simal, S.; Rossello, C.; Femenia, A. Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of orange (Citrus aurantium v. Canoneta) by-products. Food Chem. 2007, 104, 1014–1024.
  • Chen, M.L.; Yang, D.J.; Liu, S.C. Effects of drying temperature on the flavonoid, phenolic acid and antioxidative capacities of the methanol extract of citrus fruit (Citrus sinensis (L.) Osbeck) peels. Int. J. Food Sci Technol. 2011, 46, 1179–1185.
  • Que, F.; Mao, L.; Fang, X.; Wu, T. Comparison of hot airdrying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours. International J. Food Sci. Technol. 2008, 43, 1195–1201.
  • Ho S.C.; Lin C.C. Investigation of heat treating conditions for enhancing the anti-inflammatory of citrus fruit (Citrus reticulata) peels. J. Agric. Food Chem. 2008, 56, 7976–7982.
  • Senevirathne, M.; Jeon, Y.J.; Ha, J.H.; Kim, S.H. Effect of far-infrared radiation for dying citrus by-products and their radical scavenging activities and protective effects against H2O2-induced DNA damage. J Food Sci Nutr. 2008, 13, 313–320.
  • Senevirathne, M.; Kim, S.H.; Kim, Y.D.; Oh, C.K.; Oh, M.C.; Ahn, C.B.; Je, J.Y.; Lee, W.W.; Jeon, Y.J. Effect of far-infrared radiation drying of citrus press-cakes on free radical scavenging and antioxidant activities. J. Food Eng. 2010, 97, 168–176.
  • Senevirathne, M.; Jeon, Y.J.; Ha, J.H.; Kim, S.H. Effective drying of citrus by-product by high speed drying: A novel drying technique and their antioxidant activity. J. Food Eng. 2009, 92, 157–163.
  • Samarakoon, K.; Senevirathne, M.; Lee, W.W.; Kim, Y.T.; Kim, J.I.; Oh, M.C.; Jeon, Y.J. Antibacterial effect of citrus press-cakes dried by high speed and far-infrared radiation drying methods. Nutr. Res. Pract. 2012, 6(3), 187–194.
  • Elez-Martinez, P.; Martin-Belloso, O. Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chem. 2007, 102, 201–209.
  • Plaza, L.; Sanchez-Moreno, C.; De Ancos, B.; Elez-Martínez, P.; Martín-Belloso, O.; Pilar Cano, M. Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. Food Sci. Technol. 2011, 44, 834–839.
  • Morales-de la Pen, M.; Salvia-Trujillo, L.; Rojas-Grau, M.A.; Martin-Belloso, O. Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice–soymilk beverage in chilled storage. Food Sci. Technol. 2010, 43, 872–881.
  • Morales-de la Pena, M.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice–soymilk beverages during refrigerated storage. Food Chem. 2011, 129(3), 982–990. doi:10.1016/j.foodchem.2011.05.058
  • Tiwari, B.K.; Brunton, N.P.; Brennan, C.S. Handbook of plant food phytochemicals: Sources, stability, and extraction; Chichester, UK: John Wiley and Sons, 2013.
  • Esteve, M.J.; Frigola, A. The effects of thermal and nonthermal processing on vitamin C, carotenoids, phenolic compounds and total antioxidant capacity in orange juice. In Citrus I. Tree and foresting science and biotechnology; Benkeblia, N.; Tennant, P. Eds.; GSB Publisher: Isleworth, 2008; pp 128–134.
  • Sanchez-Moreno, C.; Plaza, L.; De, Ancos.; B, Cano, M.P. Effect of high-pressure processing on health-promoting attributes of freshly squeezed orange juice (Citrus sinensis L.) during chilled storage. Eur. Food Res. Technol. 2003, 216(1), 18–22.
  • Torres, B.; Tiwari, B.K.; Patras, A.; Cullen, P.J.; Brunton, N.; Donnel, C.P. Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innov. Food Sci. Emerg. Technol. 2011, 12, 93–97.
  • Barba, F.J.; Esteve, M.J.; Frigola, A. High pressure treatment effect on physicochemical and nutritional properties of fluid foods during storage: A review. Comp. Rev. Food Sci. Food Safe. 2012, 11, 307–322.
  • Barba, F.J; Cortes, C.; Esteve, M.J., Frigola, A. Study of antioxidant capacity and quality parameters in an orange juice–milk beverage after high-pressure processing treatment. Food Bioprocess Technol. 2011, 5(6), 2222–2232. doi: 10.1007/s11947-011-0570-2.
  • Sanchez-Moreno, C.; Plaza, L.; Elez-Martinez, P.; De Ancos, B.; Martin-Belloso, O.; Cano, M.P. Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing. J. Agric. Food Chem. 2005, 53, 4403–4409.
  • Ferrentino, G.; Plaza, M.; Ramirez-Rodrigues, M.; Ferrari, G.; Balaban, M. Effects of dense phase carbon dioxide pasteurization on the physical and quality attributes of a red grapefruit juice. J. Food Sci. 2009, 74(6), 333–341.
  • Fabroni, S.; Amenta, M.; Timpanaro, N.; Rapisard, P. Supercritical carbon dioxide-treated blood orange juice as a new product in the fresh fruit juice market. Innov. Food Sci. Emerg. Technol. 2010, 11, 477–484.
  • Sajilata, M. G.; Singhal, R.S. Effect of irradiation and storage on the antioxidative activity of cashew nuts. Radiat. Phys. Chem. 2006, 75, 297−300.
  • Kataoka, I.; Beppu, K.; Sugiyama, A.; Taira, S. Enhancement of cooration of Satohnishiki sweet cherry fruit by postharvest irradiation with ultraviolet rays. Environ Control Biol. 1996, 34, 313−319
  • Mahrouz, M.; Lacroix, M.; D’aprano, G.; Oufedjikh, H.; Boubekri, C.; Gagnon, M. Effect of ç-irradiation combined with washing and waxing treatment on physicochemical properties, vitamin C, and organoleptic quality of Citrus clementina Hort. Ex. Tanaka. J. Agric. Food Chem. 2002, 50, 7271–7276.
  • Moussaid, M.; Caillet, S.; Nketsia-Tabiri, J.; Boubekri, C.; Lacroix, M. Phenolic compounds and the colour of oranges subjected to a combination treatment of waxing and irradiation. J. Sci. Food Agric. 2004, 84, 1625–1631.
  • Oufedjikh, H.; Mahrouz, M.; Amiot, M.J.; Lacroix, M. Effect of γ-irradiation on phenolic compounds and phenylalanine ammonia-lyase activity during storage in relation to peel injury from peel of Citrus clementina Hort. Ex. Tanaka. J. Agric. Food Chem. 2000, 48, 559–565.
  • Vanamala, J.; Cobb, G.; Loaiza, J.; Yoo, K.; Pike, L.M.; Patil, B.S. Ionizing radiation and marketing simulation on bioactive compounds and quality of grapefruit (Citrus paradisi c.v. Rio Red). Food Chem. 2007, 105, 1404–1411.
  • Patil, B.S.; Vanamal, J.; Hallman, G. Irradiation and storage influence on bioactive components and quality of early and late season ‘Rio Red’ grapefruit (Citrus paradisi Macf). Postharvest Biol. Technology 2004, 34, 53–64.
  • Oufedjikh, H.; Mahrouz, M.; Amiot, M.J.; Lacroix, M. Effect of gamma irradiation on phenylalanine ammonialyase and phenolics compounds in Morrocan Citrus clementina during storage. In 18th International Conference on Polyphenols, Bordeaux, France, Vol. 2; Vercauteren, J.; Cheze, C.; Dumon, M. C.; Weber, J. F., Eds.; 1996 July 15–18; pp 319–320.
  • Kim, J.W.; Lee, B.C.; Lee, J.H.; Nam, K.C.; Lee, S.H. Effect of electron-beam irradiation on the antioxidant activity of extracts from Citrus unshiu pomaces. Radiat. Phys. Chem. 2008, 77, 87–91.
  • Rojas-Argudo, C.; Palou, L.; Bermejo, A.; Cano, A.; Del Río, M.A.; González-Mas, M.C. Effect of X-ray irradiation on nutritional and antifungal bioactive compounds of ‘Clemenules’ clementine mandarins. Postharvest Biol. Technol. 2012, 68, 47–53.
  • Lee, Y.S.; Huh, J.H.; Nam, S.H.; Moon, S.K.; Lee, S.B. Enzymatic bioconversion of citrus hesperidin by Aspergillus sojae naringinase: Enhanced solubility of hesperetin-7-O-glucoside with in vitro inhibition of human intestinal maltase, HMG-CoA reductase, and growth of Helicobacter pylori. Food Chem. 2012, 135, 2253–2259.
  • Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373.
  • Figuerola, F.; Hurtado, M.L.; Estevez, A.M.; Chiffelle, I.; Asenjo, F. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 2005, 91, 395–401.
  • Grigelmo-Miguel, N.; Martin-Belloso, O. Comparison of dietary fibre from by-products of processing fruits and greens and from cereals. Lebensm. Wiss. Technol. 1999, 32, 503–508.
  • Masmoudi, M.; Besbes, S.; Chaabouni, S.; Robert, C.; Paquot, M.; Blecker, C.; 751 Attia, H. Optimization of pectin extraction from lemon by-product with 752 acidified date juice using response surface methodology. Carbohydr. Polym. 2008, 74(754), 185–192.
  • Lagha-Benamrouche, S.; Madani, K. Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Ind. Crop. Prod. 2013, 50, 723–730
  • Meléndez-Martίnez, A.J.; Vicario, I.M.; Heredia, F.J. Critical review: Analysis of carotenoids in orange juice. J. Food Compost. Anal. 2007, 20, 638–649.
  • Bousbia, N.; Vian, M.A.; Ferhat, M. A.; Meklati, B. Y.; Chemat, F. A new process for extraction of essential oil from citrus peels: Microwave hydrodiffusion and gravity. J. Food Eng. 2009, 90, 409–413.
  • Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernandez-Lopez, J.; Perez- Alvarez, J. Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control. 2008, 19(12), 1130–1138.
  • Larrauri, J. A.; Rupbrez, P.; Bravo, L.; Calixto, F. S. High dietary fibre peels: associated powders from orange and lime polyphenols and antioxidant capacity. Food Res. Int. 1996, 29, 751–162.
  • Zia-ur-Rehman. Citrus peel extract – A natural source of antioxidant. Food Chem. 2006, 99, 450–454.
  • Li W.; Wang Z.; Wang Y.P.; Qun Liu C.J.; Sun Y.S.; Zheng Y.N. Pressurised liquid extraction combining LC–DAD–ESI/MS analysis as an alternative method to extract three major flavones in Citrus reticulata ‘Chachi’ (Guangchenpi). Food Chem. 2012, 130, 1044–1049.
  • Asikin, Y.; Taira, I.; Inafuku-Teramoto, S.; Sumi, H.; Ohta, H.; Takara, K.; Wada, K. The composition of volatile aroma components, flavanones, and polymethoxylated flavones in Shiikuwasha (Citrus depressa Hayata) peels of different cultivation lines. J. Agric. Food Chem. 2012, 60, 7973−7980.
  • Kaul, T.N.; Middleton, E.; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol. 1985, 15, 71–79.
  • Kawaguchi, K.; Kikuchi, S.; Hasunuma, R.; Maruyama, H.; Yoshikawa, T.; Kumazawa, Y. A Citrus flavonoid hesperidin suppresses infection-induced endotoxin shock in mice. Biol. Pharm. Bull. 2004, 27, 679–683.
  • Matsuda H.; Yano M.; Kubo M.; Iinuma M.; Oyama M.; Mizuno M. Pharmacological study on citrus fruits. II. Anti-allergic effect of fruit of Citrus unshiu MARKOVICH (2). On flavonoid components. Yakugaku Zasshi. 1991, 111, 193–198
  • Scalbert A.; Manach C.; Morand C.; Rémésy C.; Jiménez L. Dietary polyphénols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 454, 287–306.
  • Shirsatha, S.R; Sonawane, S.H.; Gogate, P.R. Intensification of extraction of natural products using ultrasonic irradiations-A review of current status. Chem. Eng. Process. 2012, 53, 10–23.
  • Choi, M.Y.; Chai, C.; Parka, J.H.; Lim, J.; Leec, J.; Kwon, S.W. Effects of storage period and heat treatment on phenolic compound composition in dried citrus peels (Chenpi) and discrimination of Chenpi with different storage periods through targeted metabolomic study using HPLC-DAD analysis. J. Pharm. Biomed. Anal. 2011, 54, 638–645.
  • Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohto, H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem. 2006, 70, 178–192.
  • Huang, Y.S.; Ho, S.C. Polymethoxyflavones are responsible for the anti-inflammatory activity of citrus fruit peel. Food Chem. 2010, 119, 868–873.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.