666
Views
24
CrossRef citations to date
0
Altmetric
Articles

Can fermentation be used as a sustainable strategy to reduce iron and zinc binders in traditional African fermented cereal porridges or gruels?

, , &

References

  • Graham, R.D.; Humphries, J.M.; Kitchen, J.L. Nutritionally enhanced cereals: A sustainable foundation for a balanced diet. Asia Pac. J. Clin. Nutr. 2000, 9, S91–S96.
  • Gibson, R.S.; Bailey, K.B.; Gibbs, M.; Ferguson, E.L. A review of phytate, iron, zinc and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr. Bull. 2010, 3, S134–S146.
  • Gibson, R.S.; Donovan, U.M.; Heath, A.L.M. Dietary strategies to improve the iron and zinc nutriture of young women following a vegetarian diet. Plant Foods Hum. Nutr. 1997, 51.
  • Graham, R.D.; Welch, R.M.; Bouis, H.E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Adv. Agronomy 2001, 70, 77–142.
  • Bouis, H.E.; Chassy, B.M.; Ochanda, J.O. Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci. Tech. 2003, 14, 191–209.
  • Timmer, C.P. Biotechnology and food systems in developing countries. J. Nutr. 2003, 133, 3319–3322.
  • White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593.
  • Cockell, A. An overview of methods for assessment of iron bioavailability from foods nutritionally enhanced through biotechnology. J. AOAC Int. 2007, 1480–1491, 90.
  • Mannar, M.V. Successful food-based programmes, supplementation and fortification. J. Pediatr. Gastr. Nutr. 2006, 43, S47–S53.
  • Carvalho, S.M.P.; Vasconcelos, M.W. Producing more with less: Strategies and novel technologies for plant based food biofortification. Food Res. Int. 2013, 54, 961–971.
  • Svanberg, U.; Lorri, W.; Sandberg, A.S. Lactic fermentation of non-tannin and high tannin cereals; Effects on in vitro estimation of iron availability and phytate hydrolysis. J. Food Sci. 1993, 58, 408–412.
  • Matuschek, E.; Towo, E.; Svanberg, U. Oxidation of polyphenols in phytate-reduced high tannin cereals: Effect on different phenolic groups and on in Vitro accessible iron. J. Agric. Food. Chem. 2001, 49, 5630–5638.
  • Kayodé, A.P.; Linnemann, A.R.; Nout, M.J.R.; Van Boekel, M.A.J.S. Impact of sorghum processing on phytate, phenolic compounds and in vitro solubility of iron and zinc in thick porridges. J. Sci. Food Agric. 2007, 87, 832–838.
  • Lestienne, I.; Besancon, P.; Caporiccio, B.; Lullien-Pellerin, V.; Treche, S. Iron and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin and fibre contents. J. Agric. Food. Chem. 2005, 53, 3240–3247.
  • Towo, E.; Matuschek, E.; Svanberg, U. Fermentation and enzyme treatment of tannin sorghum gruels: Effects on phenolic compounds, phytate and in vitro accessible iron. Food Chem. 2006, 94, 369–376.
  • Beard, J.L.; Dawson, H.; Pinero, D.J. Iron metabolism: a comprehensive review. Nutr. Rev. 1996, 54, 295–317.
  • Hercberg, S.; Preziosi, P.; Galan, R. Iron deficiency in Europe. Publ. Health Nutr. 2001, 4, 537–545.
  • WHO. The world health report 2002: Reducing risks, promoting healthy life. WHO: Geneva, Switzerland, 2002.
  • WHO. Global database on anaemia. WHO: Geneva, Switzerland, 2006.
  • Allen, L.; De Benoist, B.; Dary, O.; Hurrell, R. Guidelines on food fortification with micronutrients. WHO: Geneva, Switzerland, 2006; pp 1–376.
  • McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Benoist, B. Worldwide prevalence of anaemia. Publ. Health Nutr. 2009, 12, 444–454.
  • Stoltzfus, R.J.; Dreyfuss, M.L.; Organization, W. H. Guidelines for the use of iron supplements to prevent and treat iron deficiency anemia. Ilsi Press: Washington DC, 1998.
  • Hotz, C.; Brown, K.H. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S94–S204.
  • Prasad, A.S. Zinc deficiency in humans: Effect on cell mediated immunity. In Nutrition Goals for Asia - Vision 2020, 1st edn; Seshadri, M., Siddhu, A., Eds.; Nutrition Foundation of India: New Delhi, 2003; pp 349–358.
  • FAO/WHO. Report of a Joint Food and Agriculture Organization/World Health Consulatation. Requirements of vitamin A, iron, folate and vitamin B-12. FAO and Nutrition Series No. 23. Rome. Food and Agriculture Organization of the United Nations, 1988.
  • WHO. Trace elements in human nutrition and health. Geneva: World Health Organization, 1996.
  • Gibson, R.S.; Ferguson, E.L.; Lehrfeld, J. Complementary foods for infant feeding in developing countries: Their nutrition adequacy and improvement. Eur. J. Clin. Nutr. 1998, 52, 764–770.
  • Gibbs, M.; Bailey, K.B.; Lander, R.D.; Fahmida, U.; Perlas, L.; Hess, S.Y.; Loechl, C.U.; Winichagoon, P.; Gibson, R.S. The adequacy of micronutrient concentrations in manufactured complementary foods from low-income countries. J. Food Compos. Anal. 2011, 24, 418–426.
  • Greiner, R.; Konietzny, U.; Jany, K.D. Phytate: An undesirable constituent of plant-based foods? J. fur Ernahrungsmedizin. 2006, 8, 18–28.
  • Coulibaly, A.; Kouakou, B.; Chen, J. Phytic acid in cereal grains: Structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality. Am. J. Plant Nutr. Fertil. Technol. 2011, 1, 1–22.
  • Sandstrom, B. Bioavailability of zinc. Eur. J. Clin. Nutr. 1997, 51, S17–S19.
  • Hurrell, R.; Reddy, M.B.; Juillerat, M.A.; Cook, J.D. Degradation of phytic acid in cereal porridges improves iron absorption by human studies. Am. J. Clin. Nutr. 2003, 77, 1213–1219.
  • Egli, I.; Davidson, P.M.; Zeder, C.; Walczyk, T.; Hurrell, R. Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. J. Nutr. 2004, 134, 1077–1080.
  • Hambidge, K.M.; Krebs, K.M.; Westcott, J.L.; Sian, L.; Miller, L.V.; Peterson, K.L.; Raboy, V. Absorption of calcium from tortilla meals prepared from low-phytate maize. Am. J. Clin. Nutr. 2005, 82, 84–87.
  • Brnić, M.; Wegmüller, R.; Zeder, C.; Senti, G.; Hurrell, R.F. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide. J. Nutr. 2014, 144, 1467–1473.
  • Cercamondi, C.I.; Egli, I.M.; Zeder, C.; Hurrell, R. F. Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women. Br. J. Nutr. 2014, 111, 481–489.
  • Engle-Stone, R.; Yeung, A.; Welch, R.; Glahn, R. Meat and ascorbic acid can promote Fe availability from Fe-phytate but not from Fe-tannic acid complexes. J. Agric. Food. Chem. 2005, 53, 10276–10284.
  • Torres, J.; Veiga, N.; Gancheff, J.S.; Domınguez, S.; Mederos, A.; Sundberg, M.; Sanchez, A.; Castiglioni, J.; Dıaz, A.; Kreme, C. Interaction of myo-inositol hexakisphosphate with alkali and alkaline earth metal ions: Spectroscopic, potentiometric and theoretical studies. J. Mol. Struct. 2008, 874, 77–88.
  • Bretti, C.; Cigala, R.S.; Lando, G.; Milea, D.; Sammartano, S. Sequestering ability of phytate towards biologically and environmentally relevant trivalent metal cations. J. Agric. Food. Chem. 2012, 60, 8075–8082.
  • Nävert, B.; Sandström, B. Reduction of the phytate content of bran by leavening in bread and its effect on zinc absoprtion in man. Br. J. Nutr. 1985, 53, 47–53.
  • Hallberg, L.; Brune, M.; Rossander, L. Iron absorption in man: Ascorbic acid and dose dependent inhibition by phytate. Am. J. Clin. Nutr. 1989, 49, 140–144.
  • Lönnerdal, B. Phytic acid-trace element interaction. Int. J. Food Sci. Technol. 2002, 37, 749–758.
  • Hurrell, R. Phytic acid degradation as a means of improving iron absorption. Int. J. Vitam Nutr. Res. 2004, 74, 445–452.
  • Sandstrom, B.; Keen, C.L.; Lonnerdal, B. An experimental model for studies of zinc bioavailability from milk and infant formulas using extrinsic labeling. Am. J. Clin. Nutr. 1983, 38, 420–428.
  • Cercamondi, C.I.; Icard-Vernière, C.; Egli, I.M.; Vernay, M.; Hama, F.; Brouwer, I.D.; Zeder, C.; Berger, J.; Hurrell, R.F.; Mouquet-Rivier, C. A higher proportion of iron-rich leafy vegetables in a typical Burkinabe maize meal does not increase the amount of iron absorbed in young women. J. Nutr. 2014, 144, 1394–1400.
  • Lönnerdal, B.; Sandberg, A.; Sandström, B.; Kunz, C. Inhibitory effect of phytic acid and other inositol phosphates on zinc and calcium in suckling rats. J. Nutr. 1989, 119, 211–214.
  • Sandberg, A.S.; Brune, M.; Carlsson, N.G.; Hallberg, L.; Skoglund, E.; Rossander, L. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am. J. Clin. Nutr. 1999, 70, 240–246.
  • Skogland, E.; Lönnerdal, B.; Sandberg, A.S. Inositol phosphates influence iron uptake in Caco-2-cells. J. Agric. Food. Chem. 1999, 47, 1109–1113.
  • Kayodé, A.P.; Nout, M.J.R.; Bakker, E.J.; Van Boekel, M.A.J.S. Evaluation of the simultaneous effects of processing parameters on the iron and zinc solubility of infant sorghum porridge by response surface methodology. J. Agric. Food. Chem. 2006, 54, 4253–4259.
  • Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333.
  • Khokhar, S.; Owusu Apenten, R.K. Iron binind ing characteristics of phenolic compounds: Some tentative structure-activity relations. Food Chem. 2003, 81, 133–140.
  • Andjelkovic´, M.; Van Camp, J.; De Meulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006, 98, 23–31.
  • Chvatalova, K.; Slaninova, I.; Brezinova, L.; Slanina, J. Influence of dietary phenolic acids on redox staturs of iron: Ferrous iron autooxidation and ferric iron reduction. Food Chem. 2008, 106, 650–660.
  • Macakova, K.; Mladenka, P.; Filipsky, T.; Riha, M.; Jahodar, L.; Trejtnar, F.; Bovicelli, P.; Silvestri, I.P.; Hrdina, R.; Saso, L. Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chem. 2012, 135, 2584–2592.
  • Knockaert, D.; Raes, K.; Struijs, K.; Wille, C.; Van Camp, J. Influence of microbial conversion and changing in pH on iron-gallic acid complexation during lactobacillus fermentation. LWT - Food Sci. Technol. 2014, 55, 335–340.
  • Brune, M.; Hallberg, L.; Skanberg, A.B. Determination of iron-binding phenolic groups in foods. J. Food Sci. 1991, 56, 128–131.
  • Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. The Am. J. Clin. Nutr. 2004, 79, 727–747.
  • Mira, L.; Tereza Fernandez, M.; Santos, M.; Rocha, R.; Helena Florêncio, M.; Jennings, K.R. Interactions of flavonoids with iron and copper ions: A mechanism of their antioxidant activity. Free Radical Res. 2002, 36, 1199–1208.
  • Mladenka, P.; Macakova, K.; Filipsky, T.; Zatloukalova, L.; Jahodar, L.; Bovicelli, P.; Silvestri, I.P.; Hrdina, R.; Saso, L. In vitro analysis of iron chelating activity of flavonoids. J. Inorg. Biochem. 2011, 105, 693–701.
  • Mila, I.; Scalbert, A.; Expert, D. Iron withholding by plant polyphenols and resistance to pathogens and rots. Phytochemistry 1996, 42, 1551–1555.
  • South, P.K.; Miller, D.D. Iron binding by tannic acid: Effects of selected ligands. Food Chem. 1998, 63, 167–172.
  • Lopes, G.K.B.; Schulman, H.M.; Hermes-Lima, M. Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. BBA-Gen Subjects. 1999, 1472, 142–152.
  • Glahn, R.P.; Wortley, G.M. Inhibition of iron uptake by phytic acid, tannic acid and ZnCl2: Studies using an in vitro digestion/Caco-2 cell model. J. Agric. Food. Chem. 2002, 50, 390–395.
  • Afsana, K.; Shiga, K.; Ishizuka, S.; Hara, H. Reducing effect of ingesting tannic acid on the absorption of iron, but not of zinc, copper and manganese by rats. Biosci. Biotechnol. Biochem. 2004, 68, 584–592.
  • Coudray, C.; Bousset, C.; Pépin, D.; Tressol, J.C.; Belanger, L.F.; Rayssiguier, Y. Effect of acute ingestion of polyphenol compounds on zinc and copper absorption in the rat: Utilisation of stable isotopes and ICP/MS technique. In Polyphenols in food; Amadó, R., Andersson, H., Bardòcz, S., Serra, F., Eds.; Office for Official Publications of the European Communities: Luxembourg, 1998; pp 173–177.
  • Flanagan, P.R.; Cluett, J.; Chamberlain, M.J.; Valberg, L.S. Dual isotope method for determination of human zinc absorption: The use of a test meal of turkey meat. J. Nutr. 1985, 115, 111–122.
  • Santos-Buelga, C.; Augustin Scalbert, A. Review: Proanthocyanidins and tannin-like compounds - nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000, 80, 1094–1117.
  • Thebaudin, J.; Lefebvre, A.; Harrington, M.; Bourgeois, C. Dietary fibres: Nutritional and technological interest. Trends Food Sci. Technol. 1997, 41–48, 8.
  • Ha, M.; Jarvis, M.; Mann, J. A definition for dietary fibre. Eur. J. Clin. Nutr. 2000, 54, 861–864.
  • Dhingra, D.; Michael, M.; Rajput, H.; Patil, R. Dietary fibre in foods: A review. J. Food Sci. Tech. 2012, 49, 255–266.
  • Debon, S.J.; Tester, R.F. In vitro binding of calcium, iron and zinc by non-starch polysaccharides. Food Chem. 2001, 73, 401–410.
  • Torre, M.; Rodriguez, A.R.; Saura-Calixto, F. Interactions of Fe (II), Ca (II) and Fe (III) with high dietary fibre materials: A physicochemical approach. Food Chem. 1995, 54, 23–31.
  • Lakshmi, R.M.; Sumathi, S. Binding of iron, calcium and zinc by fibre of sorghum and ragi. Food Chem. 1997, 60, 213–217.
  • Nair, B.M.; Asp, N.-G.; Nyman, M.; Persson, H. Binding of mineral elements by some dietary fibre components—in vitro (I). Food Chem. 1987, 23, 295–303.
  • Persson, H.; Nair, B.M.; Frølich, W.; Nyman, M.; Asp, N.-G. Binding of mineral elements by some dietary fibre components—in vitro (II). Food Chem. 1987, 26, 139–148.
  • Persson, H.; Nyman, M.; Liljeberg, H.; Önning, G.; Frølich, W. Binding of mineral elements by dietary fibre components in cereals—in vitro (III). Food Chem. 1991, 40, 169–183.
  • Matin, H.H.; Shariatmadari, F.; Torshizi, M.K. In vitro mineral-binding capacity of various fibre sources: The monogastric sequential simulated physiological conditions. Adv. Stud. Biol. 2013, 5, 235–249.
  • Baye, K.; Guyot, J.-P.; Mouquet-Rivier, C. The unresolved role of dietary fibers on mineral absorption. Crit. Rev. Food Sci. Nutr. 2015, 00–00.
  • Coudray, C.; Demigné, C.; Rayssiguier, Y. Effects of dietary fibers on magnesium absorption in animals and humans. J. Nutr. 2003, 133, 1–4.
  • Greger, J. Nondigestible carbohydrates and mineral bioavailability. J. Nutr. 1999, 129, 1434S–1435S.
  • Blandino, A.; Al-Aseeri, M.; Pandiella, S.; Cantero, D.; Webb, C. Cereal-based fermented foods and beverages. Food Res. Int. 2003, 36, 527–543.
  • Franz, C.M.; Huch, M.; Mathara, J.M.; Abriouel, H.; Benomar, N.; Reid, G.; Galvez, A.; Holzapfel, W.H. African fermented foods and probiotics. Int. J. Food Microbiol. 2014, 190, 84–96.
  • Guyot, J. Fermented cereal products. Fermented foods and beverages of the world. London: CRC Press (Taylor and Francis Group), 2010; pp 247–261.
  • Guyot, J.P. Cereal‐based fermented foods in developing countries: Ancient foods for modern research. Int. J. Food Sci. Tech. 2012, 47, 1109–1114.
  • Hammes, W.P.; Brandt, M.J.; Francis, K.L.; Rosenheim, J.S., M.F.H; Vogelmann, S.A. Microbial ecology of cereal fermentations. Trends Food Sci. Tech. 2005, 16, 4–11.
  • Nout, M.R. Rich nutrition from the poorest–Cereal fermentations in Africa and Asia. Food Microbiol. 2009, 26, 685–692.
  • Soro-Yao A.A.; Kouakou, B.; Amani, G.; Thonart, P.; Dje, K., M. The use of lactic acid bacteria starter cultures during the processing of fermented cereal-based foods in West Africa: A review. Trop. Life Sci. Res. 2014, 25, 81–100.
  • Nout, M.J.R. Fermented foods and food safety. Food Res. Int. 1994, 291–298, 27.
  • FAO. Fermented cereals. A global perspective (FAO agricultural services bulletin No. 138). 1999. http://www.fao.org/docrep/x2184E/x2184E00.htm.
  • Svanberg, U.; Lorri, W. Fermentation and nutrient availability. Food Control 1997, 8, 319–327.
  • Anastasio, M.; Pepe, O.; Cirillo, T.; Palomba, S.; Blaiotta, G.; Villani, F. Selection and use of phytate degrading LAB to improve cereal based products by mineral solubilization during dough fermentation. J. Food Microbiol. Safety 2010, 75, M28–M35.
  • Brinch-Pedersen, H.; Madsen, C.K.; Holme, I.B.; Dionisio, G. Increased understanding of the cereal phytase complement for better mineral bio-availability and resource management. J. Cereal Sci. 2014, 59, 373–381.
  • Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2013, 1–9.
  • Jorquera, M.; Martinez, O.; Maruyama, F.; Marschner, P.; De La Luz Mora, M. Current and future biotechnological applications of bacterial phytases and Phytate-producing bacteria. Microbes Environ. 2008, 23, 182–191.
  • EFSA, J. Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). 2013, 11, 3449.
  • Kim, Y.; Kim, H.K.; Bae, K.S.; Yu, J.H.; Oh, T.K. Purificantion and properties of thermostable phytase from Bacillus sp. DS11. Enzyme Microb. Technol. 1998, 22, 2–7.
  • Choi, Y.M.; Suh, H. J.; M.K.J. Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J. Protein Chem. 2001, 20, 287–292.
  • Yoon, S.J.; Choi, Y.J.; Min, H.K.; Cho, K.K.; Kim, J.W.; Lee, S.C.; Jung, Y.H. Isolation and identification of phytase producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme Microb. Technol. 1996, 18, 449–454.
  • Zamudio, M.; Gonzalez, A.; Medina, J.A. Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Lett. Appl. Microbiol. 2001, 32, 181–184.
  • De Angelis, M.; Gallo, G.; Corbo, M.R.; McSweeney, P.L.H.; Faccia, M.; Giovine, M.; Gobbeti, M. Phytase activity in sourdough lactic acid bacteria: Purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int. J. Microbiol. 2003, 87, 259–270.
  • Fischer, M.M.; Egli, I.M.; Aeberli, I.; Hurrell, R.F.; Meile, L. Phytic acid degrading lactic acid bacteria in tef-injera fermentation. Int. J. Food Microbiol. 2014, 190, 54–60.
  • Kaur, P.; Kunze, G.; Satyanarayana, T. Yeast phytases: Present scenario and future perspectives. Crit. Rev. Biotechnol. 2007, 27, 93–109.
  • Nuobariene, L.; Hansen, Å.S; Arneborg, N. Isolation and identification of phytase-active yeasts from sourdoughs. LWT - Food Sci. Technol. 2012, 48, 190–196.
  • Magala, M.; Kohajdová, Z.; Karovičová, J. Degradation of phytic acid during fermentation of cereal substrates. J. Cereal Sci. 2015, 61, 94–96.
  • Rodriquez, H.; Landete, J.M.; de las Rivas, B.; Munoz, R. Metabolism of food phenolic acids by Lactobacillus plantarum CECT748T. Food Chem. 2008, 107, 1393–1398.
  • Rodriguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; Lopez de Felipe, F.; Gomez-Cordoves, C.; Mancheno, J.M.; Munoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90.
  • Tabasco, R.; Sanchez-Ptan, F.; Monagas, M.; Bartolomé, B.; Moreno-Arribas, M.V.; Pelaez, C.; Requena, T. Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: Resistance and metabolism. Food Microbiol. 2011, 28, 1345–1352.
  • Knockaert, D.; Raes, K.; Wille, C.; Struijs, K.; Van Camp, J. Metabolism of ferulic acid during growth of Lactobacillus plantarum and Lactobacillus collinoides. J. Sci. Food Agric. 2012, 92, 2291–2296.
  • Sanchez-Patan, F.; Tabasco, R.; Monagas, M.; Requena, T.; Pelaez, C.; Moreno-Arribas, M.V.; Bartolomé, B. Capability of Lactobacillus plantarum IFPL935 to catabolize flavan-3-ol compounds and complex phenolic extracts. J. Agric. Food. Chem. 2012, 60, 7142–7151.
  • Taylor, J.; Duodu, K.G. Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health‐enhancing properties of sorghum and millet food and beverage products. J. Sci. Food Agric. 2015, 95, 225–237.
  • Svensson, L.; Sekwati-Monang, B.; Lutz, D.L.; Schieber, A.; Ganzle, M. Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L) Moench). J. Agric. Food. Chem. 2010, 58, 9214–9220.
  • Kayodé, A.P.; Mertz, C.; Guyot, J.-P.; Brat, P.; Mouquet-Rivier, C. Fate of phytochemicals during malting and fermentation of type III tannin sorghum and impact on product biofunctionality. J. Agric. Food. Chem. 2013, 61, 1935–1942.
  • Kruger, J.; Taylor, J.R.N.; Oelofse, A. Effects of reducing phytate content in sorghum through genetic modification and fermentation on in vitro iron availability in whole grain porridges. Food Chem. 2012, 131, 220–224.
  • Dykes, L.; Rooney, L.W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 2006, 44, 236–251.
  • Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry. 2004, 65, 1199–1221.
  • Abdalla, A.; El Tinay, A.; Mohamed, B.; Abdalla, A. Proximate composition, starch, phytate and mineral contents of 10 pearl millet genotypes. Food Chem. 1998, 63, 243–246.
  • Dicko, M.H.; Gruppen, H.; Traore, A.S.; Voragen, A.G.J.; Van Berkel, W.J.H. Sorghum grain as human food in Africa: Relevance of content of starch and amylase activities. Afr. J. Biotechnol. 2006, 5, 384–395.
  • Dicko, M.H.; Hilhorst, R.; Gruppen, H.; Traore, A.S.; Laane, C.; Van Berkel, W.J.H.; Voragen, A.G.J. Comparison of content in phenolic compounds, polyphenol oxidase and peroxidase in grains of fifty sorghum varieties from Burkina Faso. J. Agric. Food. Chem. 2002, 50, 3780–3788.
  • Dykes, L.; Rooney, W.L.; Rooney, L.W. Evaluation of phenolics and antioxidant activity of black sorghum hybrids. J. Cereal Sci. 2013, 58, 278–283.
  • Eyzaguirre, R.Z.; Nienaltowska, K.; Eq de Jong, L.; Hasenack, B.B.E.; Nout, M.J.R. Effect of food processing of pearl millet (Pennisetum glaucum) IKMP-5 on the level of phenolics, phytate, iron and zinc. J. Sci. Food Agric. 2006, 86, 1391–1398.
  • Hama, F.; Icard-Vernière, C.; Guyot, J.-P.; Picq, C.; Diawara, B.; Mouquet-Rivier, C. Changes in micro-and macronutrient composition of pearl millet and white sorghum during in field versus laboratory decortication. J. Cereal Sci. 2011, 54, 425–433.
  • Hemalatha, S.; Platel, K.; Srinivasan, K. Zinc and iron contents and their bioavailability in cereals and pulses consumed in India. Food Chem. 2007, 102, 1328–1336.
  • Jambunathan, R. Improvement of the nutritional quality of sorghum and pearl millet. Food Nutr. Bull. 1980, 2, 11–16.
  • Léder, I. Sorghum and millets, in cultivated plants, primarily as food sources Ed. György Füleky, in Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO. Eolss Publishers: Oxford, UK, 2004.
  • Lestienne, I.; Buisson, M.; Lullien-Pellerin, V.; Picq, C.; Trèche, S. Losses of nutrients and anti-nutritional factors during abrasive decortication of two pearl millet cultivars (Pennisetum glaucum). Food Chem. 2007, 100, 1316–1323.
  • Ravindran, V.; Ravindran, G.; Sivalogan, S. Total and phytate phosphorus contents of various foods and feedstuffs of plant origin. Food Chem. 1994, 50, 133–136.
  • Shawrang, P.; Sadeghi, A.; Behgar, M.; Zareshahi, H.; Shahhoseini, G. Study of chemical compositions, anti-nutritional contents and digestibility of electron beam irradiated sorghum grains. Food Chem. 2011, 125, 376–379.
  • Icard-Vernière, C.L.; Hama, F.; Guyot, J.-P.; Picq, C.; Diawara, B.H.; Mouquet-Rivier, C. Iron contamination during in-field milling of millet and sorghum. J. Agric. Food. Chem. 2013, 61, 10377–10383.
  • Dykes, L.; Peterson, G.C.; Rooney, W.L.; Rooney, L.W. Flavonoid composition of lemon-yellow sorghum genotypes. Food Chem. 2011, 128, 137–173.
  • Dykes, L.; Seitz, L.M.; Rooney, W.L.; Rooney, L.W. Flavonoid composition of red sorghum genotypes. Food Chem. 2009, 116, 313–317.
  • Pradeep, P.M.; Sreerama, Y.N. Impact of processing on the phenolic profiles of small millets: Evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chem. 2015, 455–463, 169.
  • Shahidi, F.; Chandrasekara, A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. J. Funct. Foods. 2013, 5, 570–581.
  • Shen, Y.; Zhang, X.; Prinyawiwatkul, W.; Xu, Z. Phytochemicals in sweet sorghum (Dura) and their antioxidant capabilities against lipid oxidation. J. Agric. Food. Chem. 2013, 61, 12620–12624.
  • Abriouel, H.; Omar, N.B.; Lopez, R.L.; Martinez-Canamero, M.; Keleke, S.; Galvez, A. Culture-independent analysis of the microbial composition of the African tradtional fermented foods poto poto and dedue by using three different DNA extraction methods. Int. J. Food Microbiol. 2006, 111, 228–233.
  • Greppi, A.; Krych, Ł.; Costantini, A.; Rantsiou, K.; Hounhouigan, D.J.; Arneborg, N.; Cocolin, L.; Jespersen, L. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains. Int. J. Food Microbiol. 2015, 205, 81–89.
  • Hellström, A.; Qvirist, L.; Svanberg, U.; Veide Vilg, J.; Andlid, T. Secretion of non‐cell‐bound phytase by the yeast Pichia kudriavzevii TY13. J. Appl. Microbiol. 2015, 118, 1126–1136.
  • Hellström, A.M.; Vazques-Juarez, R.; Svanberg, U.; Andlid, T.A. Biodiversity and phytase capacity of yeasts isolated from Tanzanian togwa Int. J. Food Microbiol. 2010, 136, 352–358.
  • Lei, V.; Jakobsen, M. Microbiological characterization and probiotic potential of koko and koko sour water, African spontaneously fermented millet porridge and drink. J. Appl. Microbiol. 2004, 96, 384–397.
  • Madoroba, E.; Steenkamp, E.T.; Therona, J.; Scheirlinck, I.; Cloetea, T.E.; Huys, G. Diversity and dynamics of bacterial populations during spontaneous sorghum fermentations used to produce ting, a South African food. Syst. Appl. Microbiol. 2011, 34, 227–234.
  • Mugula, J.K.; Narvhus, J.A.; Sørhaug, T. Use of starter cultures of lactic acid bacteria and yeasts in the preparation of togwa, a Tanzanian fermented food. Int. J. Food Microbiol. 2003, 83, 307–318.
  • Mukisa, I.M.; Porcellato, D.; Byaruhanga, Y.B.; Muyanja, C.M.B.K.; Rudi, K.; Langsrud, T.; Narvhus, J.A. The dominant microbial community associated with fermentation of Obushera (sorghum and millet beverages) determined by culture-dependent and culture independent methods. Int. J. Food Microbiol. 2012, 160, 1–10.
  • Oguntoyinbo, F.A.; Narbad, A. Molecular characterization of lactic acid bacteria and in situ amylase expression during traditional fermentation of cereal foods. Food Microbiol. 2012, 31, 254–262.
  • Oguntoyinbo, F.A.; Tourlomousis, P.; Gasson, M.J.; Narbad, A. Analysis of bacterial communities of traditional fermented West African cereal foods using culture independent methods. Int. J. Food Microbiol. 2011, 145, 205–210.
  • Omemu, A.M.; Oyewole, O.B.; Bankole, M.O. Significance of yeasts in the fermentation of maize for ogi production. Food Microbiol. 2007, 24, 571–576.
  • Schousta, S.E.; Kasase, C.; Toarta, C.; Kassen, R.; Poulain, A.J. Microbial community structure if three traditional Zambian fermented products: Mabisi, Chibwantu and Munkoyo. Plos ONE 2013, 8, e63948. doi: 63910.61371/journal.pone.0063948.
  • Sekwati-Monang, B.; Gänzle, M.G. Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. Int. J. Food Microbiol. 2011, 150, 115–121.
  • Songre-Ouattara, L.T.; Mouquet-Rivier, C.; Icard-Verniere, C.; Humblot, C.; Diawara, B.; Guyot, J. Enzyme activities of lactic acid bacteria from a pearl millet fermented gruel (ben-saalga) of functional interest in nutrition. Int. J. Microbiol. 2008, 128, 395–400.
  • Turpin, W.; Humblot, C.; Guyot, J. Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl. Environ. Microbiol. 2011, 77.
  • Vieira‐Dalodé, G.; Jespersen, L.; Hounhouigan, J.; Moller, P.; Nago, C.; Jakobsen, M. Lactic acid bacteria and yeasts associated with gowé production from sorghum in Bénin. J. Appl. Microbiol. 2007, 103, 342–349.
  • Onyango, C.; Noetzold, H.; Ziems, A.; Hofmann, T.; Bley, T.; Henle, T. Digestibility and antinutrient properties of acidified and extruded maize–finger millet blend in the production of uji. LWT-Food Sci. Technol. 2005, 38, 697–707.
  • Songre-Ouattara, L.T.; Mouquet-Rivier, C.; Humblot, C.; Rochette, I.; Diawara, B.; Guyot, J. Ability of selected lactic acid bacteria to ferment a pearl-millet -soybean slurry to produce gruels for complementary foods for young children. J. Food Sci. 2010, 75, M261–M263.
  • Proulx, A.K.; Reddy, M.B. Fermentation and lactic acid addition enhance iron bioavailability of maize. J. Agric. Food. Chem. 2007, 55, 2749–2754.
  • Antony, U.; Chandra, T. Antinutrient reduction and enhancement in protein, starch, and mineral availability in fermented flour of finger millet (Eleusine coracana). J. Agric. Food. Chem. 1998, 46, 2578–2582.
  • Mouquet-Rivier, C.; Icard-Vernière, C.; Guyot, J.-P.; Hassane Tou, E.; Rochette, I.; Trèche, S. Consumption pattern, biochemical composition and nutritional value of fermented pearl millet gruels in Burkina Faso. Int. J. Food Sci. Nutr. 2008, 59, 716–729.
  • Tou, E. H.; Mouquet-Rivier, C.; Picq, C.; Traoré, A.; Trèche, S.; Guyot, J.-P. Improving the nutritional quality of ben-saalga, a traditional fermented millet-based gruel, by co-fermenting millet with groundnut and modifying the processing method. LWT-Food Sci Technol. 2007, 40, 1561–1569.
  • Proietti, I.; Mantovani, A.; Mouquet-Rivier, C.; Guyot, J. Modulation of chelating factors, trace minerals and their estimated bioavailabillity in Italian and African sorghum (Sorghum bicolor (L) Moench) porridges. Int. J. Food Sci. Technol. 2013, 48, 1526–1532.
  • Gibson, R.S.; Perlas, L.; Hotz, C. Improving the bioavailability of nutrients in plant foods at the household level. P. Nutr. Soc. 2006, 65, 160–168.
  • Agostini, J.D.S.; Nogueira, R.B.; Ida, E.I. Lowering of phytic acid content by enhancement of phytase and acid phosphatase activities during sunflower germination. Braz. Arch. Biol. Technol. 2010, 53, 975–980.
  • Traoré, T.; Mouquet, C.; Icard-Vernière, C.; Traore, A.; Trèche, S. Changes in nutrient composition, phytate and cyanide contents and α-amylase activity during cereal malting in small production units in Ouagadougou (Burkina Faso). Food Chem. 2004, 88, 105–114.
  • Makokha, A.; Oniang’o, R.; Njoroge, S.; Kamar, O. Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya. Food Nutr. Bull. 2002, 23, 241–245.
  • Baye, K.; Mouquet-Rivier, C.; Icard-Vernière, C.; Rochette, I.; Guyot, J.-P. Influence of flour blend composition on fermentation kinetics and phytate hydrolysis of sourdough used to make injera. Food Chem. 2013, 138, 430–436.
  • Antony, U.; Chandra, T. Enzymatic treatment and use of starters for the nutrient enhancement in fermented flour of red and white varieties of finger millet (Eleusine coracana). J. Agric. Food. Chem. 1999, 47, 2016–2019.
  • Baye, K.; Guyot, J.-P.; Icard-Vernière, C.; Rochette, I.; Mouquet-Rivier, C. Enzymatic degradation of phytate, polyphenols and dietary fibers in Ethiopian injera flours: Effect on iron bioaccessibility. Food Chem. 2015, 174, 60–67.
  • Hurrell, R.; Egli, I. Iron bioavailability and dietary reference values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S.
  • Adeyeye, E.; Arogundade, L.; Akintayo, E.; Aisida, O.; Alao, P. Calcium, zinc and phytate interrelationships in some foods of major consumption in Nigeria. Food Chem. 2000, 71, 435–441.
  • Ndabikunze, B.; Sorhaug, T.; Mtebe, K. Proximate composition and mineral content in different, types of traditional TOGWA used in Tanzania as a weaning food. Tanzania J. Agric. Sci. 2001. 4.
  • Olayiwola, I.; Okhiria, A. Evaluation of Iron, Zinc, Sodium and Phytate contents of commonly consumed indigenous foods in Southwest Nigeria. J. Nutr. Food Sci. 2012, 2, 2.
  • Tou, E.H.; Mouquet-Rivier, C.; Rochette, I.; Traore, A.S.; Treche, S.; Guyot, J. Effect of different process combinations on the fermentation kinetics, microflora and energy density of ben-saalga, a fermented gruel from Burkina Faso. Food Chem. 2007, 100, 935–943.
  • Sandstrom, B. Dose dependence of zinc and manganese absorption in man. Proc. Nutr. Soc. 1992, 51, 211–218.
  • Songré-Ouattara, L.; Mouquet-Rivier, C.; Icard-Vernière, C.; Rochette, I.; Diawara, B.; Guyot, J.-P. Potential of amylolytic lactic acid bacteria to replace the use of malt for partial starch hydrolysis to produce African fermented pearl millet gruel fortified with groundnut. Int. J. Food Microbiol. 2009, 130, 258–264.
  • Holzapfel, W.H. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 2002, 75, 197–212.
  • Siegenberg, D.; Baynes, R.D.; Bothwell, T.H.; Macfarlane, B.J.; Lamparelli, R.D.; Car, N.G.; MacPhail, A.P.; Schmidt, U.; Tal, A.; Mayet, F. Ascorbic acid prevents the dose dependent inhibitory effects of poly-phenols and phytates on non heme iron absorption. Am. J. Clin. Nutr. 1991, 53, 537–541.
  • Greffeuille, V.; Kayodé, A.P.; Icard-Vernière, C.; Gnimadi, M.; Rochette, I.; Mouquet-Rivier, C. Changes in iron, zinc and chelating agents during traditional African processing of maize: Effect of iron contamination on bioaccessibility. Food Chem. 2011, 126, 1800–1807.
  • Tako, E.; Reed, S.M.; Budiman, J.; Hart, J.J.; Glahn, R.P. Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. J. Nutr. 2015, 14, 11.
  • Cercamondi, C.I.; Egli, I.M.; Mitchikpe, E.; Tossou, F.; Zeder, C.; Hounhouigan, J.D.; Hurrell, R.F. Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. J. Nutr. 2013, 143, 1376–1382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.