655
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Prevention of lipid oxidation in muscle foods by milk proteins and peptides: A review

, &

References

  • Estevez, M.; Ventanas, S.; Cava, R. Protein oxidation in frankfurters with increasing levels of added rosemary essential oil: Effect on color and texture deterioration. J. Food Sci. 2005, 70, C427–C432.
  • Biswas, A.K.; Chatli, M.K.; Sahoo, J.; Singh, J. Storage stability of chicken meat patties, balls and nuggets incorporated with eugenol and chitosan at refrigeration temperature (4 ± 1°C) under aerobic packaging condition. Indian J. Poultry Sci. 2012, 47, 348–356.
  • Frankel, E.N. Lipid oxidation. Oily Press: Dundee, Scotland, 1998.
  • Fernandez, J.; Perez-Alvarez, J.A.; Fernandez-Lopez, J.A. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem. 1997, 59, 345–353.
  • FAO. Manuals of food quality control. 8. Food analysis: Quality, adulteration and tests of identity. FAO food and nutrition paper, 14/8 Rome, Italy, 1986; 1–326.
  • Igene, J.O.; Yamauchi, K.; Pearson, A.M.; Gray, J.I.; Aust, S.D. Mechanisms by which nitrite inhibits the development of warmed-over flavor (WOF) in cured meat. Food Chem. 1985, 18, 1–18.
  • Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan Jr, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48.
  • Watts, B.M. Meat Products. In Symposium on foods: Lipids and their oxidation, Schultz, H.W., Day, E.A., Sinnhuber, R.O., Eds.; AVI Publishing Company: Westport, Connecticut, 1962; pp 202–214.
  • Morrissey, P.A.; Sheehy, P.J.A.; Galvin, K.; Kerry, J.P.; Buckley, D.J. Lipid stability in meat and meat products. Meat Sci. 1998, 49, S73–S86.
  • Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181.
  • Tang, S.; Sheehan, D.; Buckley, D.J.; Morrissey, P.A.; Kerry, J.P. Anti-oxidant activity of added tea catchins on lipid oxidation of raw minced red meat, poultry and fish muscle. Int. J. Food Sci. Technol. 2001, 36, 685–692.
  • Bakhru, H.K. Foods that heal the natural way to good health. Orient Paperbacks: Noida, New Delhi, 2008; p 211.
  • Ensor, S.A.; Mandigo, R.W.; Calkins, C.R.; Quint, L.N. Comparative evaluation of whey protein concentrate, soy protein isolate and calcium-reduced nonfat dry milk as binders in an emulsion-type sausage. J. Food Sci. 1987, 52, 1155–1158.
  • Hung, S.C.; Zayas, J.F. Functionality of milk proteins and corn germ protein flour in comminuted meat products. J. Food Qual. 1992, 15, 139–152.
  • Ries, D.; Ye, A.; Haisman, D.; Singh, H. Antioxidant properties of caseins and whey proteins in model oil-in-water emulsions. Int. Dairy J. 2010, 20, 72–78.
  • Pihlanto, A. Antioxidative peptides derived from milk proteins. Int. Dairy J. 2006, 16, 1306–1314.
  • Korhonen, H. Milk-derived bioactive peptides: From science to applications. J. Funct. Foods 2009, 1, 177–187.
  • Suetsuna, K.; Ukeda, H.; Ochi, H. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 2000, 11, 128–131.
  • Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441.
  • El-Magoli, S.B.; Laroia, S.; Hansen, P.M.T. Flavor and texture characteristics of low fat ground beef patties formulated with whey protein concentrate. Meat Sci. 1996, 42, 179–193.
  • Miller, K.S.; Krochta, J.M. Oxygen and aroma barrier properties of edible films: A review. Trends Food Sci. Technol. 1997, 8, 228–237.
  • Chick, J.; Ustunol, Z. Mechanical and barrier properties of lactic acid and rennet precipitated casein‐based edible films. J. Food Sci. 1998, 63, 1024–1027.
  • Seydim, A.C.; Sarikus, G. Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res. Int. 2006, 39, 639–644.
  • Farrell Jr., H.M.; Jimenez-Flores, R.; Bleck, G.T.; Brown, E.M.; Butler, J.E.; Creamer, L.K.; Hicks, C.L.; Hollar, C.M.; Ng-Kwai-Hang, K.F.; Swaisgood, H.E. Nomenclature of the proteins of cows’ milk - sixth revision. J. Dairy Sci. 2004, 87, 1641–1674.
  • Huppertz, T. Chemistry of caseins. In Advanced dairy chemistry: Volume 1A: Proteins: Basic aspects (4th edition). McSweeney, P.L.H., Fox, P.F., Eds.; Springer Science+Business Media: New York, 2013; pp 135–160.
  • Park, Y.W. Overview of bioactive components in milk and dairy products. In Bioactive components in milk and dairy products; Park, Y.W., Ed.; A John Wiley & Sons: Ames, Iowa, USA, 2009; pp 3–12.
  • Urista, C.M.; Fernandez, R.A.; Rodriguez, F.R.; Cuenca, A.A.; Jurado, A.T. Review: Production and functionality of active peptides from milk. Food Sci. Technol. Int. 2011, 17, 293–317.
  • Baumy, J.J.; Brule, G. Effect of pH and ionic strength on the binding of bivalent cations to β-casein. Le lait 1988, 68, 409–417.
  • Singh, H.; Flynn, A.; Fox, P.F. Binding of zinc to bovine and human milk proteins. J. Dairy Res. 1989, 56, 235–248.
  • Gaucheron, F.; Le Graet, Y.; Boyaval, E.; Piot, M. Binding of cations to casein molecules: Importance of physico-chemical conditions. Milchwissenschaft 1997, 52, 322–327.
  • Laakso, S. Inhibition of lipid peroxidation by casein. Evidence of molecular encapsulation of 4,4-pentadiene fatty acids. Biochim. Biophys. Acta, Lipids Lipid Metab. 1984, 792, 11–15.
  • Rival, S.G.; Fornaroli, S.; Boeriu, C.G.; Wichers, H.J. Caseins and casein hydrolysates. 1. Lipoxygenase inhibitory properties. J. Agric. Food Chem. 2001, 49, 287–294.
  • Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956.
  • Rival, S.G.; Boeriu, C.G.; Wichers, H.J. Casein and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition. J. Agric. Food Chem. 2001, 49, 295–302.
  • Rossini, K.; Norena, C.P.; Cladera-Olivera, F.; Brandelli, A. Casein peptides with inhibitory activity on lipid oxidation in beef homogenates and mechanically deboned poultry meat. LWT - Food Sci. Technol. 2009, 42, 862–867.
  • Jung, H.; Min, B.; Kwak, H.S. Physiological effects of casein-derived bioactive peptides. Korean J. Food Sci. Anim. Resour. 2009, 29, 659–667.
  • Sakanaka, S.; Tachibana, Y.; Ishihara, N.; Juneja, L.R. Antioxidant properties of casein calcium peptides and their effects on lipid oxidation in beef homogenates. J. Agric. Food Chem. 2005, 53, 464–468.
  • Prasad, B.; Rashmi, M.D.; Yashoda, K.P.; Modi, V.K. Effect of casein and oat flour on physicochemical and oxidative processes of cooked chicken kofta. J. Food Process. Preserv. 2011, 35, 359–368.
  • Diaz, M.; Dunn, C.M.; Mc Clements, D.J.; Decker, E.A. Use of caseinophosphopeptides as natural antioxidants in oil-in-water emulsions. J. Agric. Food Chem. 2003, 51, 2365–2370.
  • Diaz, M.; Decker, E.A. Antioxidant mechanisms of caseinophosphopeptides and casein hydrolysates and their application in ground beef. J. Agric. Food Chem. 2004, 52, 8208–8213.
  • Kumar, S.; Teotia, U.V.S.; Sanghi, A. Antioxidative property of cow milk caseinates hydrolyzed with different proteases. Int. J. Pharmacy Pharm. Sci. 2013, 5, 418–422.
  • Augustin, M.A.; Oliver, C.M.; Hemar, Y. Casein, caseinates, and milk protein concentrates. In Dairy ingredients for food processing; Chandan, R.C., Kilara, A., Eds.; Wiley-Blackwell Publishing: Ames, Iowa, USA, 2011; pp 161–178.
  • Kumar, S.; Zanzad, P.N.; Ambadkar, R.K.; Rindhe, S.N.; Kumar, P.; Karle, S.D. Storage stability of chicken sausage incorporated with selected levels of sodium caseinate. J. Vet. Public Health 2011, 9, 33–37.
  • Correa, A.P.F.; Daroit, D.J.; Coelho, J.; Meira, S.M.M.; Lopes, F.C.; Segalin, J.; Risso, P.H.; Brandelli, A. Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. J. Sci. Food Agric. 2011, 91, 2247–2254.
  • Wittaya, T. Protein-based edible films: Characteristics and improvement of properties. In Structure and function of food engineering; Eissa, A.A., Ed.; InTech Publishers: Rijeka, Croatia, 2012; pp 43–70.
  • Schou, M.; Longares, A.; Montesinos-Herrero, C.; Monahan, F.J.; O’Riordan, D.; O’sullivan, M. Properties of edible sodium caseinate films and their application as food wrapping. LWT - Food Sci. Technol. 2005, 38, 605–610.
  • Motoki, M.; Aso, H.; Seguro, K.; Nio, N. αs1-casein film prepared using transglutaminase. Agric. Biol. Chem. 1987, 51, 993–996.
  • Motoki, M.; Aso, H.; Seguro, K.; Nio, N. Immobilization of enzymes in protein films prepared using transglutaminase. Agric. Biol. Chem. 1987, 51, 997–1002.
  • Ho, B. Water vapor permeabilities and structural characteristics of casein films and casein-lipid emulsion films. MS thesis, University of California, Davis, USA, 1992.
  • Tomasula, P.M. Edible, water-solubility resistant casein masses. US Patent 2002, 6379726.
  • Kilincceker, O.; Dogan, I.S.; Kucukoner, E. Effect of edible coatings on the quality of frozen fish fillets. LWT - Food Sci. Technol. 2009, 42, 868–873.
  • Hirasa, K. Moisture loss and lipid oxidation in frozen fish: Effect of a casein-acetylated monoglyceride edible coating. M.S. thesis. University of California, Davis, USA, 1991.
  • Swaisgood, H.E. Characteristics of milk. In Food chemistry (3rd edition); Fennema, O.R., Ed.; Marcel Dekker: New York, 1996; p 878.
  • Karakaya, M.; Bayrak, E.; Ulusoy, K. Use of natural antioxidants in meat and meat products. J. Food Sci. Eng. 2011, 1, 1–10.
  • Tong, L.M.; Sasaki, S.; McClements, D.J.; Decker, E.A. Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agric. Food Chem. 2000, 48, 1473–1478.
  • Elias, R.J.; Mc Clements, D.J.; Decker, E.A. Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase β-lactoglobulin in oil-in-water emulsions. J. Agric. Food Chem. 2005, 53, 10248–10253.
  • Faraji, H.; McClements, D.J.; Decker, E.A. Role of continuous phase protein on the oxidative stability of fish oil-in-water emulsions. J. Agric. Food Chem. 2004, 52, 4558–4564.
  • Peng, X.; Xiong, Y.L.; Kong, B. Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chem. 2009, 113, 196–201.
  • Regalado, C.; Perez-Perez, C.; Lara-Cortes, E.; Garcia-Almendarez, B. Whey protein based edible food packaging films and coatings. In Advances in agricultural and food biotechnology; Guevara-Gonzalez, R.G., Torres-Pacheco, I., Eds.; Research Signpost Publishers: Trivandrum, India, 2006; pp 237–261.
  • Phoon, P.Y.; Narsimhan, G.; San Martin-Gonzalez, M.F. Effect of thermal behavior of β-Lactoglobulin on the oxidative stability of Menhaden oil-in-water emulsions. J. Agric. Food Chem. 2013, 61, 1954–1967.
  • Hu, M.; Mc Clements, D.J.; Decker, E.A. Impact of whey protein emulsifiers on the oxidative stability of salmon oil-in-water emulsions. J. Agric. Food Chem. 2003, 51, 1435–1439.
  • Hernandez-Ledesma, B.; Davalos, A.; Bartolome, B.; Amigo, L. Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J. Agric. Food Chem. 2005, 53, 588–593.
  • Elias, R.J.; Bridgewater, J.D.; Vachet, R.W.; Waraho, T.; McClements, D.J.; Decker, E.A. Antioxidant mechanisms of enzymatic hydrolysates of β-lactoglobulin in food lipid dispersions. J. Agric. Food Chem. 2006, 54, 9565–9572.
  • Perez-Gago, M.B.; Krochta, J.M. Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films. J. Food Sci. 2001, 66, 705–710.
  • Ozdemir, M.; Floros, J.D. Optimization of edible whey protein films containing preservatives for mechanical and optical properties. J. Food Eng. 2008, 84, 116–123.
  • Khwaldia, K.; Perez, C.; Banon, S.; Desobry, S.; Hardy, J. Milk proteins for edible films and coatings. Crit. Rev. Food Sci. Nutr. 2004, 44, 239–251.
  • Rezaei, M.; Sahari, M.; Moeeni, Q. Quality assessment of Kilka fish fat during storage in different freezing temperatures. J. Sci. Technol. Agric. Nat. Resour. 2006, 10, 35–45.
  • Shon, J.; Chin, K.B. Effect of whey protein coating on quality attributes of low fat, aerobically packaged sausage during refrigerated storage. J. Food Sci. 2008, 73, 469–475.
  • Perez-Gago, M.B.; Serra, M.; Alonso, M.; Mateos, M.; Del Rio, M.A. Effect of whey protein- and hydroxypropyl methylcellulose-based edible composite coatings on color change of fresh-cut apples. Postharvest Biol. Technol. 2005, 36, 77–85.
  • Walstra, P.; Wouters, J.T.M.; Geurts, T.J. Dairy science and technology (2nd edition); CRC Press: Boca Raton, FL, 2006; pp 537–550.
  • Mc Carthy, T.L.; Kerry, J.P.; Kerry, J.F.; Lynch, P.B.; Buckley, D.J. Assessment of the antioxidant potential of natural food and plant extracts in fresh and previously frozen pork patties. Meat Sci. 2001, 57, 177–184.
  • Wu, T.C.; Sheldon, B.W. Flavour components and flavour associated with the development of off-flavours in cooked turkey rolls. J. Food Sci. 1988, 53, 49–54.
  • Pennisi Forell, S.C.; Ranalli, N.; Zaritzky, N.E.; Andres, S.C.; Califano, A.N. Effect of type of emulsifiers and antioxidants on oxidative stability, colour and fatty acid profile of low-fat beef burgers enriched with unsaturated fatty acids and phytosterols. Meat Sci. 2010, 86, 364–370.
  • Shantha, N.C.; Decker, E.A. Conjugated linoleic acid concentrations in cooked beef containing antioxidants and hydrogen donors. J. Food Lipids 1995, 2, 57–64.
  • O’Shea, V.M.; O’Sullivan, C.M.; Kerry, J.P.; O’Connor, T.P.; Morrissey, P.A.; Buckley, D.J. Assessment of plant extracts and miscellaneous food ingredients as antioxidants in red (beef) and white (chicken) meat systems. In Meat Consumption and Culture: Congress Proceedings, 44th International Congress of Meat Science and Technology, Barcelona, Spain, August 30–September 4, 1998; 676–677.
  • O’Sullivan, C.M.; Lynch, A.M.; Lynch, P.B.; Buckley, D.J.; Kerry, J.P. Assessment of the antioxidant potential of food ingredients in fresh, previously frozen and cooked chicken patties. Int. J. Poult. Sci. 2004, 3, 337–344.
  • Chatli, M.K.; Joseph, S. Augmentation of shelf life of meat with natural antioxidants: An overview. J. Meat Sci. Technol. 2014, 2, 16–30.
  • McCarthy, T.L.; Kerry, J.P.; Kerry, J.F.; Lynch, P.B.; Buckley, D.J. Evaluation of the antioxidant potential of natural food/plant extracts as compared with synthetic antioxidants and vitamin E in raw and cooked pork patties. Meat Sci. 2001, 58, 45–52.
  • Ulu, H. Effect of wheat flour, whey protein concentrate and soya protein isolate on oxidative processes and textural properties of cooked meatballs. Food Chem. 2004, 87, 523–529.
  • Taylor, M.J.; Richardson, T. Antioxidant activity of skim milk: Effect of heat and resultant sulfhydryl-groups. J. Dairy Sci. 1980, 63, 1783–1795.
  • Hasanzati Rostami, A.; Motallebi, A.A.; Khanipour, A.A.; Soltani M.; Khanedan, N. Effect of whey protein coating on physico-chemical properties of gutted Kilka during frozen storage. Iran. J. Fish. Sci. 2010, 9, 412–421.
  • Motallebi, A.A.; Seyfzadeh, M. Effects of whey protein edible coating on bacterial, chemical and sensory characteristics of frozen common Kilka (Clupeonellia delitula). Iran. J. Fish. Sci. 2011, 11, 132–144.
  • Motallebi, A.A.; Hasanzati Rostami, A.; Khanipour, A.A.; Soltani, M. The effect of whey protein edible coating on the moisture and organoleptic properties of gutted Kilka fish. J. Food Technol. Nutr. 2012, 4, 39–48.
  • Seyfzadeh, M.; Motalebi, A.A.; Kakoolaki, S.; Gholipour, H. Chemical, microbiological and sensory evaluation of gutted Kilka coated with whey protein based edible film incorporated with sodium alginate during frozen storage. Iran. J. Fish. Sci. 2013, 12, 140–153.
  • Khan, M.I.; Adrees, M.N.; Arshad, M.S.; Anjum, F.M.; Jo, C.; Sameen, A. Oxidative stability and quality characteristics of whey protein coated rohu (Labeo rohita) fillets. Lipids Health Dis. 2015, 14, 58(1–9).
  • Rodriguez-Turienzo, L.; Cobos, A.; Moreno, V.; Caride, A.; Vieites, J.M.; Diaz, O. Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chem. 2011, 128, 187–194.
  • Weerasinghe, S.; Williams, J.B.; Mukherjee, D.; Tidwell, D.K.; Chang, S.; Haque, Z.U. Quality and sensory characteristics of cubed beef steak dipped in edible protective solutions of thermized Cheddar whey. J. Food Qual. 2013, 36, 77–90.
  • Yildiz, P.O.; Yangilar, F. Effects of different whey protein concentrate coating on selected properties of rainbow trout (Oncorhynchus mykiss) during cold storage (4°C). International J. Food Prop. 2016, 19, 2007–2015.
  • Khwaldia, K.; Perez, C.; Banon, S.; Desobry, S.; Hardy, J. Milk proteins for edible films and coatings. Crit. Rev. Food Sci. Nutr. 2004, 44, 239–251.
  • Pena-Ramos, E.A.; Xiong, Y.L. Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Sci. 2003, 64, 259–263.
  • Pena-Ramos, E.A.; Xiong, Y.L. Antioxidative activity of whey protein hydrolysates in a liposomal system. J. Dairy Sci. 2001, 84, 2577–2583.
  • Zhidong, L.; Benheng, G.; Xuezhong, C.; Zhenmin, L.; Yun, D.; Hongliang, H.; Wen, R. Optimisation of hydrolysis conditions for antioxidant hydrolysate production from whey protein isolates using response surface methodology. Irish J. Agric. Food Res. 2013, 52, 53–65.
  • Lee, S.; Faustman, C.; Djordjevic, D.; Faraji, H.; Decker, E.A. Effect of antioxidants on stabilization of meat products fortified with n-3 fatty acids. Meat Sci. 2006, 72, 18–24.
  • Banerjee, R.; Chen, H. Functional properties of edible films using whey protein concentrates. J. Dairy Sci. 1995, 78, 1673–1683.
  • Oses, J.; Fabregat-Vazquez, M.; Pedroza-Islas, R.; Tomas, S.A.; Cruz-Orea, A.; Mate, J.I. Development and characterization of composite edible films based on whey protein isolate and mesquite gum. J. Food Eng. 2009, 92, 56–62.
  • McHugh, T.H.; Aujard, J.F.; Krochta, J.M. Plasticized whey protein edible films: Water vapor permeability properties. J. Food Sci. 1994, 59, 416–419, 423.
  • Rodriguez-Turienzo, L.; Cobos, A.; Diaz, O. Effects of edible coatings based on ultrasound-treated whey proteins in quality attributes of frozen Atlantic salmon (Salmo salar). Innovative Food Sci. Emerging Technol. 2012, 14, 92–98.
  • Krochta, J.M. Control of mass transfer in foods with edible-coatings and films. In Advances in food engineering; Singh, R.P., Wirakarstakusumah, M.A., Eds.; CRC Press: Boca Raton, FL, 1992; pp 517–538.
  • Karakaya Tokur, B.; Sert, F.; Aksun, E.T.; Ozogul, F. The effect of whey protein isolate coating enriched with thyme essential oils on trout quality at refrigerated storage (4 ± 2°C). J. Aquatic Food Product Technol. 2016, 25, 585–596.
  • Stuchell, Y.M.; Krochta, J.M. Edible coatings on frozen king salmon: Effect of whey protein isolate and acetylated monoglycerides on moisture loss and lipid oxidation. J. Food Sci. 1995, 60, 28–31.
  • Chandan, R.C.; Uebersax, M.A.; Saylock, M.J. Utilization of cheese whey permeate in canned beans and plums. J. Food Sci. 1982, 47, 1649–1653.
  • Lee, A.; Cannon, R.Y.; Huffman, D.L. Whey protein concentrates in a processed meat loaf. J. Food Sci. 1980, 45, 1278–1279.
  • Kumar, B.R.; Kalaikannan, A.; Radhakrishnan, K.T. Studies on processing and shelf-life of pork nuggets with liquid whey as a replacer for added water. Am. J. Food Technol. 2007, 2, 38–43.
  • Wojciak, K.M.; Krajmas, P.; Solska, E.; Dolatowski, Z.J. Application of acid whey and set milk to marinate beef with reference to quality parameters and product safety. Acta Scientiarum Polonorum Technologia Alimentaria 2015, 14, 293–302.
  • Huffman, L.M.; Ferreira, L.D.B. Whey-based ingredients. In Dairy ingredients for food processing; Chandan, R.C.; Kilara, A., Eds.; Wiley-Blackwell Publishing: Ames, Iowa, USA, 2011; pp 179–198.
  • Coronado, S.A.; Trout, G.R.; Dunshea, F.R.; Shah, N.P. Antioxidant effects of rosemary extract and whey powder on the oxidative stability of wiener sausages during 10 months frozen storage. Meat Sci. 2002, 62, 217–224.
  • Haque, Z.U.; Shon, J.; Williams, J.B. Efficacy of sour whey as a shelf‐life enhancer: Use in antioxidative edible coatings of beef steak. J. Food Qual. 2009, 32, 381–397.
  • Colbert, L.B.; Decker, E.A. Antioxidant activity of an ultrafiltration permeate from acid whey. J. Food Sci. 1991, 56, 1248–1250.
  • Oussalah, M.; Caillet, S.; Salmieri, S.; Saucier, L.; Lacroix, M. Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. J. Agric. Food Chem. 2004, 52, 5598–5605.
  • Hogan, S.; Zhang, L.; Li, J.; Wang, H.; Zhou, K. Development of antioxidant rich peptides from milk protein by microbial proteases and analysis of their effects on lipid peroxidation in cooked beef. Food Chem. 2009, 117, 438–443.
  • Mulvihill, D.M. Production, functional properties and utilization of milk protein products. In Advanced dairy chemistry: Proteins; Fox, P.F., Ed.; Elsevier Applied Sciences: London, 1992; pp 369–404.
  • Joaquin, H.J.F.; Tolasa, S.; Oliveira, A.C.M.; Lee, C.M.; Lee, K.H. Effect of milk protein concentrate on lipid oxidation and formation of fishy volatiles in herring mince (Clupea harengus) during frozen storage. J. Agric. Food Chem. 2008, 56, 166–172.
  • Gordon, J. Dairy products. In Food industries manual (24th edition), Ranken, M.D., Kill, R.C., Baker, C., Eds.; Blackie Academic and Professional: UK, 1997; pp 75–138.
  • Vattula, T.; Heikonen, M.; Kreula, M.; Linko, P. On the effects of processing conditions on milk protein co-precipitates. Milchwissenschaft 1979, 34, 139–142.
  • Bhaskar Reddy, G.V.; Moorthy, P.R.S.; Reddy, K.P. Effect of milk co-precipitates on quality characteristics of pork sausages. Tamil Nadu J. Vet. Anim. Sci. 2009, 5, 257–263.
  • Kumar, M.; Sharma, B.D. Quality characteristics of low-fat ground pork patties containing milk co-precipitate. Asian Australas. J. Anim. Sci. 2003, 16, 588–595.
  • Singh, P.; Gandhi, N. Milk preservatives and adulterants: Processing, regulatory and safety issues. Food Rev. Int. 2015, 31, 236–261.
  • Codex Stan. Codex standard for milk powders and cream powder. Codex Stan 207–1999, Codex Alimentarius Commission, Rome, 1999. http://www.codexalimentarius.org
  • Taylor, M.J.; Richardson, T. Antioxidant activity of skim milk: Effect of sonication. J. Dairy Sci. 1980, 63, 1938–1942.
  • Ibeagha-Awemu, E.M.; Liu, J.R.; Zhao, X. Bioactive components in yogurt products. In Bioactive components in milk and dairy products; Park, Y.W., Ed.; A John Wiley & Sons: Ames, Iowa, USA, 2009; pp 235–250.
  • Ahmad, S.; Ahmad, M. Development, quality evaluation and shelf life studies of buffalo meat emulsion sausage as influenced by different levels of fat and skimmed milk powder. MOJ Food Process. Technol. 2015, 1, 1–6.
  • Rao, K.H.; Anjaneyulu, A.S.R.; Singh, R.R.B.; Yadav, P.L. Quality and storage stability of smoked chicken sausages incorporated with milk proteins. Indian J. Poult. Sc. 1999, 34, 373–377.
  • Dobson, B.N.; Cornforth, D.P. Nonfat dry milk inhibits pink discoloration in turkey rolls. Poultry Sci. 1992, 71, 1943–1946.
  • Loukas, S.; Varoucha, D.; Zioudrou, C.; Streaty, R.A.; Klee, W.A. Opioid activities and structures of alpha-casein-derived exorphins. Biochemistry 1983, 22, 4567–4573.
  • Kampa, M.; Loukas, S.; Hatzoglou, A.; Martin, P.; Martin, P.M.; Castanas, E. Identification of a novel opioid peptide (Tyr-Val-Pro-Phe-Pro) derived from human alpha S1 casein (alpha S1-casomorphin, and alpha S1-casomorphin amide). Biochem. J. 1996, 319, 903–908.
  • Maruyama, S.; Mitachi, H.; Tanaka, H.; Tomizuka, N.; Suzuki, H. Studies of the active site and antihypertensive activity of angiotensin I-converting enzyme inhibitors derived from casein. Agric. Biological Chem. 1987, 51, 1581–1586.
  • Maruyama, S.; Mitachi, H.; Awaya, J.; Kurono, M.; Tomizuka, N.; Suzuki, H. Angiotensin I-converting enzyme inhibitor activity of the C-terminal hexapeptide of αs1-casein. Agric. Biol. Chem. 1987, 51, 2557–2561.
  • Birkemo, G.A.; O’Sullivan, O.; Ross, R.P.; Hill, C. Antimicrobial activity of two peptides casecidin 15 and 17, found naturally in bovine colostrum. J. Appl. Microbiol. 2009, 106, 233–240.
  • Maruyama, S.; Nakagomi, K.; Tomizuka, N.; Suzuki, H. Angiotensin I converting enzyme inhibitor derived from and enzymatic hydrolysate of casein. II. Isolation and bradykinin-potentiating activity on the uterus of the ileum of rats. Agric. Biol. Chem. 1985, 49, 1405–1409.
  • Meisel, M.; Schlimme, E. Inhibitors of angiotensin I converting enzyme derived from bovine casein (casokinins). In β-Casomorphins and related peptides: Recent developments; Brantl, V.; Teschemacher, H., Eds.; VCH: Weinheim, Germany, 1994; pp 27–33.
  • EFSA. Review of the potential health impact of β-casomorphins and related peptides. EFSA Scientific Report. Eur. Food Safety Authority J. 2009, 231, 1–107.
  • Nongonierma, A.B.; O’Keeffe, M.B.; FitzGerald, R.J. Milk protein hydrolysates and bioactive peptides. In Advanced dairy chemistry, Volume 1B: Proteins: Applied aspects (4th edition), McSweeney, P.L.H., O’Mahony, J.A., Eds.; Springer Science: New York, 2016; pp 417–497.
  • Brantl, V.; Teschemacher, H.; Henschen, A.; Lottspeich, F. Novel opioid peptides derived from casein (beta-casomorphins). I. Isolation from bovine casein peptone. Hoppe-Seyler´s Zeitschrift für physiologische Chemie 1979, 360, 1211–1216.
  • Brantl, V.; Teschemacher, H.; Blasig, J.; Henschen, A.; Lottspeich, F. Opioid activities of beta-casomorphins. Life Sci. 1981, 28, 1903–1909.
  • Meisel, H.; Frister, H. Chemical characterization of bioactive peptides from in vivo digests of casein. J. Dairy Res. 1989, 56, 343–349.
  • Kitazawa, H.; Yonezawa, K.; Tohno, M.; Shimosato, T.; Kawai, Y.; Saito, T.; Wang, J.M. Enzymatic digestion of the milk protein beta-casein releases potent chemotactic peptide(s) for monocytes and macrophages. Int. Immunopharmacol. 2007, 7, 1150–1159.
  • Kawahara, T.; Aruga, K.; Otani, H. Characterization of casein phosphopeptides from fermented milk products. J. Nutr. Sci. Vitaminol. 2005, 51, 377–381.
  • Chiba, H.; Tani, F.; Yoshikawa, M. Opioid antagonist peptides derived from κ-casein. J. Dairy Res. 1989, 56, 363–366.
  • Yoshikawa, M.; Tani, F.; Shiota, H.; Suganuma, H.; Usui, H.; Kurahashi, K.; Chiba, H. Casoxin D, an opioid antagonist ileum-contracting/vasorelaxing peptide derived from human αs1-casein. In β-Casomorphins and related peptides: Recent developments; Brantl, V., Teschemacher, H., Eds.; VCH: Weinheim, Germany, 1994, pp 43–48.
  • Jolles, P.; Levy-Toledano, S.; Fiat, A.M.; Soria, C.; Gillesen, D.; Thomaidis, A.; Dunn, F.W.; Caen, J. Analogy between fibrinogen and casein: Effect of an undecapeptide isolated from κ-casein on platelet function. Eur. J. Biochem. 1986, 158, 379–384.
  • Pihlanto-Leppala, A. Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides. Trends Food Sci. Technol. 2000, 11, 347–356.
  • Mullally, M.M.; Meisel, H.; FitzGerald, R.J. Synthetic peptides corresponding to alpha-lactalbumin and beta-lactoglobulin sequences with angiotension-I-converting enzyme inhibitory activity. Biol. Chem. Hoppe Seyler 1996, 377, 259–260.
  • Yamauchi, R.; Usui, H.; Yunden, J.; Takenaka, Y.; Tani, F.; Yoshikawa, M. Characterization of β-lactotensin, a bioactive peptide derived from bovine β-lactoglobulin, as a neurotensin agonist. Biosci. Biotechnol. Biochem. 2003, 67, 940–943.
  • Tani, F.; Shiota, A.; Chiba, H.; Yoshikawa, M. Serophin, an opioid peptide derived from serum albumin. In β-Casomorphins and related peptides: Recent developments; Brantl, V., Teschemacher, H., Eds.; VCH: Weinheim, Germany, 1994, pp 49–53.
  • Yamauchi, K. Biologically functional proteins of milk and peptides derived from milk proteins. Bull. IDF 1992, 272, 51–58.
  • Bellamy, W.; Takase, M.; Wakabayashi, H.; Kawase, K.; Tomita, M. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N‐terminal region of bovine lactoferrin. J. Appl. Bacteriol. 1992, 73, 472–479.
  • Miyauchi, H.; Hashimoto, S.; Nakajima, M.; Shinoda, I.; Fukuwatari, Y.; Hayasawa, H. Bovine lactoferrin stimulates the phagocytic activity of human neutrophils: Identification of its active domain. Cell. Immunol. 1998, 187, 34–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.