2,246
Views
65
CrossRef citations to date
0
Altmetric
Reviews

Fiber from fruit pomace: A review of applications in cereal-based products

, , , &

References

  • Cauvain, S.P.; Young, L.S. Technology of breadmaking. Chapman and Hall: London, UK, 2008.
  • Figuerola, F.; Hurtado, M.L., Estévez, A.M.; Chiffelle, I.; Asenjo, F. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 2005, 91, 395–401.
  • Rohm, H.; Brennan, C.; Turner, C.; Günther, E.; Campbell, G.; Hernando, I.; Struck, S.; Kontogiorgos, V. Adding value to fruit processing waste: Innovative ways to incorporate fibers from berry pomace in baked and extruded cereal-based foods—A SUSFOOD Project. Foods 2015, 4, 690–697.
  • Sudha, M.L. Apple pomace (by-product of fruit juice industry) as a flour fortification strategy. In Flour and breads and their fortification in health and disease prevention; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Elsevier: Amsterdam, 2011; pp 395–405.
  • Saura-Calixto, F. Antioxidant dietary fiber product: A new concept and a potential food ingredient. J. Agric. Food Chem. 1998, 46, 4303–4306.
  • Viebke, C.; Al-Assaf, S.; Phillips, G.O. Food hydrocolloids and health claims. Bioactive Carbohyd Dietary Fibre 2014, 4, 101–114.
  • Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289.
  • Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435.
  • Struck, S.; Gundel, L.; Zahn, S.; Rohm, H. Fiber enriched reduced sugar muffins made from iso-viscous batters. LWT - Food Sci. Technol. 2016, 65, 32–38.
  • Grigelmo-Miguel, N.; Martín-Belloso, O. Comparison of dietary fibre from by-products of processing fruits and greens and from cereals. LWT - Food Sci. Technol. 1999, 32, 503–508.
  • Wang, L.; Xu, H.; Yuan, F.; Pan, Q.; Fan, R.; Gao, Y. Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotechnol. 2015, 4, 250–258.
  • Martí, N.; Saura, D.; Fuentes, E.; Lizama, V.; García, E.; Mico-Ballester, M.J.; Lorente, J. Fiber from tangerine juice industry. Ind. Crops Prod. 2011, 33, 94–98.
  • Iora, S.R.F.; Maciel, G.M.; Zielinski, A.A.F.; da Silva, M.V.; Pontes, P.V.A.; Haminiuk, C.W.I.; Granato, D. Evaluation of the bioactive compounds and the antioxidant capacity of grape pomace. Int. J. Food Sci. Technol. 2015, 50, 62–69.
  • Bravo, L.; Saura-Calixto, F. Characterization of dietary fiber and the in vitro indigestible fraction of grape pomace. Am. J. Enol. Viticult. 1998, 49, 135–141.
  • Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237.
  • Milala, J.; Kosmala, M.; Sójka, M.; Kołodziejczyk, K.; Zbrzeåniak, M.; Markowski, J. Plum pomaces as a potential source of dietary fibre: Composition and antioxidant properties. J. Food Sci. Technol. 2013, 50, 1012–1017.
  • Matias, M.D.F.O.; De Oliveira, E.L.; Gertrudes, E.; Dos Anjos Magalhães, M.M. Use of fibres obtained from the cashew (Anacardium ocidentale, L) and guava (Psidium guayava) fruits for enrichment of food products. Braz. Arch. Biol. Technol. 2005, 48, 143–150.
  • Larrauri, J.A.; Rupérez, P.; Borroto, B.; Saura-Calixto, F. Mango peels as a new tropical fibre: Preparation and characterization. LWT - Food Sci. Technol. 1996, 29, 729–733.
  • Martín-Cabrejas, M.A.; Esteban, R.M.; López-Andreu, F.J.; Waldron, K.; Selvendran, R.R. Dietary fiber content of pear and kiwi pomaces. J. Agric. Food Chem. 1995, 43, 662–666.
  • Struck, S.; Plaza, M.; Turner, C.; Rohm, H. Berry pomace: A review of processing and chemical analysis of its polyphenols. Int. J. Food Sci. Technol. 2016, 51, 1305–1318.
  • Campbell, G.M. A history of aerated foods. Cereal Foods World 2009, 54, 8–14.
  • Campbell, G.; Ross, M.; Motoi, L. Expansion capacity of bran-enriched doughs in different scales of laboratory mixers. In Bubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 323–336.
  • Van der Kamp, J.W. New perspectives for dietary fibre research and development with novel research tools. Cereal Foods World 2003, 48, 257–259.
  • Cauvain, S.; Chamberlain, N.; Collins, T.; Davies, J. The distribution of dietary fibre and baking quality among mill fractions of CBP flour. FMBRA Report No, 1983, 5.
  • Collins, T.H. Making the best of brown bread. FMBRA Bull. 1983, 1, 3–13.
  • Collins, T.; Young, L.S. Gluten fortification of brown flours used in the Chorleywood Bread Process. FMBRA Bull. 1986, 3, 95–101.
  • Collins, T.H.; Fearn, T.; Ford, W. The effect of gluten, fungal alpha-amylase and DATA ester in wholemeal bread made by CBP. FMBRA Bull. 1985, 5, 194–201.
  • Dubois, D. The practical application of fiber materials in bread production. Bakers Digest 1978, 5, 30–33.
  • Galliard, T.; Collins, A. Effects of oxidising improvers, an emulsifier, fat and mixer atmosphere on the performance of wholemeal flour in the chorleywood bread process. J. Cereal Sci. 1988, 8, 139–146.
  • Lai, C.; Davis, A.; Hoseney, R. Production of whole wheat bread with good loaf volume. Cereal Chem. 1989, 66, 224–227.
  • Lai, C.; Hoseney, R.; Davis, A. Effects of wheat bran in breadmaking. Cereal Chem. 1989, 66, 217–219.
  • Lai, C.; Hoseney, R.; Davis, A. Functional effects of shorts in breadmaking. Cereal Chem. 1989, 66, 220–223.
  • Pomeranz, Y. Fiber in breadmaking: A review of recent studies. Bakers Digest 1977, 51.
  • Rogers, D.; Hoseney, R. Problems associated with producing whole wheat bread. Cereal Foods World 1982, 27, 451–454.
  • Shogren, M.; Pomeranz, Y.; Finney, K. Counteracting the deleterious effects of fiber in breadmaking. Cereal Chem. 1981, 58, 142–144.
  • Shetlar, M.; Lyman, J. Effect of bran on bread baking. Cereal Chem. 1944, 21, 295–304.
  • Dreese, P.; Hoseney, R. Baking properties of the bran fraction from brewer’s spent grains. Cereal Chem. 1982, 59, 89–91.
  • Galliard, T.; Gallagher, D. The effects of wheat bran particle size and storage period on bran flavour and baking quality of bran/flour blends. J. Cereal Sci. 1988, 8, 147–154.
  • Gan, Z.; Ellis, P.; Vaughan, J.; Galliard, T. Some effects of non-endosperm components of wheat and of added gluten on wholemeal bread microstructure. J. Cereal Sci. 1989, 10, 81–91.
  • Pomeranz, Y.; Shogren, M.; Finney, K.; Bechtel, D. Fiber in breadmaking: Effects on functional properties. Cereal Chem. 1977, 54, 25–41.
  • Gan, Z.; Galliard, T.; Ellis, P.; Angold, R.; Vaughan, J. Effect of the outer bran layers on the loaf volume of wheat bread. J. Cereal Sci. 1992, 15, 151–163.
  • Wootton, M.; Shams‐Ud‐Din, M. The effects of aqueous extraction on the performance of wheat bran in bread. J. Sci. Food Agric. 1986, 37, 387–390.
  • Zhang, D.; Moore, W.R. Effect of wheat bran particle size on dough rheological properties. J. Sci. Food Agric. 1997, 74, 490–496.
  • Sosulski, F.; Wu, K. High-fiber breads containing field pea hulls, wheat, corn, and wild oat brans. Cereal Chem. 1988, 65, 186–191.
  • Chen, H.; Rubenthaler, G.; Leung, H.; Baranowski, J. Chemical, physical, and baking properties of apple fiber compared with wheat and oat bran. Cereal Chem. 1988, 65, 244–247.
  • D’appolonia, B.; Youngs, V. Effect of bran and high-protein concentrate from oats on dough properties and bread quality. Cereal Chem. 1978, 55, 636–644.
  • Gan, Z.; Ellis, P.; Schofield, J. Gas cell stabilisation and gas retention in wheat bread dough. J. Cereal Sci. 1995, 21, 215–230.
  • Zhang, D.; Moore, W. Wheat bran particle size effects on bread baking performance and quality. J. Sci. Food Agric. 1999, 79, 805–809.
  • Cadden, A.-M. Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J. Food Sci. 1987, 52, 1595–1599.
  • Cadden, A.-M. Moisture sorption characteristics of several food fibers. J. Food Sci. 1988, 53, 1150–1155.
  • Haseborg, E.t.; Himmelstein, A. Quality problems with high-fiber breads solved by use of hemicellulase enzymes. Cereal Foods World 1988, 33, 419–422.
  • Krishnan, P.; Chang, K.; Brown, G. Effect of commercial oat bran on the characteristics and composition of bread. Cereal Chem. 1987, 64, 55–58.
  • Laurikainen, T.; Härkönen, H.; Autio, K.; Poutanen, K. Effects of enzymes in fibre-enriched baking. J. Sci. Food Agric. 1998, 76, 239–249.
  • Rasco, B.; Borhan, M.; Yegge, J.; Lee, M.; Siffring, K.; Bruinsma, B. Evaluation of enzyme and chemically treated wheat bran ingredients in yeast-raised breads. Cereal Chem. 1991, 68, 295–299.
  • Campbell, G.; Ross, M.; Motoi, L. Bran in bread: Effects of particle size and level of wheat and oat bran on mixing, proving and baking. In Bubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 337–354.
  • Haridas Rao, P.; Rao, H.M. Effect of incorporating wheat bran on the rheological characteristics and bread making quality of flour. J. Food Sci. Technol. 1991, 28, 92–97.
  • Sivam, A.S.; Sun-Waterhouse, D.; Quek, S.; Perera, C.O. Properties of bread dough with added fiber polysaccharides and phenolic antioxidants: A review. J. Food Sci. 2010, 75, R163–R174.
  • Anil, M. Using of hazelnut testa as a source of dietary fiber in breadmaking. J. Food Eng. 2007, 80, 61–67.
  • Chang, R.C.; Li, C.Y.; Shiau, S.Y. Physico-chemical and sensory properties of bread enriched with lemon pomace fiber. Czech J. Food Sci. 2015, 33, 180–185.
  • Katina, K. High-fibre baking. In Bread making: Improving quality; Cauvain, S.P., Ed.; CRC Press: Boca Raton, FL, 2003; pp 487–499.
  • Lorenz, K. Triticale bran in fiber breads. Bakers Digest 1976, 50, 27–30.
  • Masoodi, F.A.; Chauhan, G.S. Use of apple pomace as a source of dietary fiber in wheat bread. J. Food Process. Preserv. 1998, 22, 255–263.
  • O’Shea, N.; Doran, L.; Auty, M.; Arendt, E.; Gallagher, E. The rheology, microstructure and sensory characteristics of a gluten-free bread formulation enhanced with orange pomace. Food Funct. 2013, 4, 1856–1863.
  • O’Shea, N.; Rößle, C.; Arendt, E.; Gallagher, E. Modelling the effects of orange pomace using response surface design for gluten-free bread baking. Food Chem. 2015, 166, 223–230.
  • Prentice, N.; D’appolonia, B. High-fiber bread containing brewer’s spent grain. Cereal Chem. 1977, 54, 1084–1095.
  • Rosell, C.M.; Santos, E.; Collar, C. Mixing properties of fibre-enriched wheat bread doughs: A response surface methodology study. Eur. Food Res. Technol. 2006, 223, 333–340.
  • Walker, R.; Tseng, A.; Cavender, G.; Ross, A.; Zhao, Y. Physicochemical, nutritional, and sensory qualities of wine grape pomace fortified baked goods. J. Food Sci. 2014, 79, S1811–S1822.
  • Başman, A.; Köksel, H. Properties and composition of Turkish flat bread (Bazlama) supplemented with barley flour and wheat bran. Cereal Chem. 1999, 76, 506–511.
  • Waghmare, A.G.; Arya, S.S. Use of fruit by‐products in the preparation of hypoglycemic thepla: Indian unleavened vegetable flat bread. J. Food Process. Preserv. 2014, 38, 1198–1206.
  • Barnes, P.J.; Lowy, G.D.A. The effect on baking quality of interaction between milling fractions during the storage of wholemeal flour. J. Cereal Sci. 1986, 4, 225–232.
  • Campbell, G.; Koh, K.C.; Keung, Y.M.; Morgenstern, M. Effect of wheat bran particle size on aeration of bread dough during mixing. In Bubbles in food 2; Campbell, G.M., Scanlon, M.G., Pyle, D.L., Eds.; Eagan Press: St. Paul, MN, 2008; pp 355–368.
  • De Kock, S.; Taylor, J.; Taylor, J.R.N. Effect of heat treatment and particle size of different brans on loaf volume of brown bread. LWT - Food Sci. Technol. 1999, 32, 349–356.
  • Moder, G.; Finney, K.; Bruinsma, B.; Ponte, J.; Bolte, L. Bread-making potential of straight-grade and whole-wheat flours of Triumph and Eagle-Plainsman V hard red winter wheats. Cereal Chem. 1984, 61, 269–273.
  • Nelles, E.M.; Randall, P.G.; Taylor, J.R.N. Improvement of brown bread quality by prehydration treatment and cultivar selection of bran. Cereal Chem. 1998, 75, 536–540.
  • Doehlert, D.C.; Moore, W.R. Composition of oat bran and flour prepared by three different mechanisms of dry milling. Cereal Chem. 1997, 74, 403–406.
  • Rocha Parra, A.F.; Ribotta, P.D.; Ferrero, C. Apple pomace in gluten-free formulations: Effect on rheology and product quality. Int. J. Food Sci. Technol. 2015, 50, 682–690.
  • Anonymous. Zusammensetzung von Brot und anderen Backwaren. DE29812970, 1999.
  • Bielig, H.; Fanghaenel, K.D.I.; Kuettner, D.; Viehweger, T.; Strauss, J.D.I.; Popp, V. Process for the production of bakery and patisserie products. DE3403090 A1, 1984.
  • Holzmüller, J. Verwendung von Aronia. DE102011101512 A1, 2012.
  • John, T. Verfahren zur Herstellung von funktionellen Lebensmitteln. DE10155301 A1, 2003.
  • Pateras, I.M.C.; Howells, K.F.; Rosenthal, A.J. Hot-stage microscopy of cake batter bubbles during simulated baking: Sucrose replacement by polydextrose. J. Food Sci. 1994, 59, 168–170.
  • Cauvain, S.P.; Young, L.S. Baked products: Science, technology and practice. Blackwell Publishing: Oxford, UK, 2007; p 228.
  • Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C.S. The effects of dietary fibre addition on the quality of common cereal products. J. Cereal Sci. 2013, 58, 216–227.
  • Grigor, J.M.; Brennan, C.S.; Hutchings, S.C.; Rowlands, D.S. The sensory acceptance of fibre-enriched cereal foods: A meta-analysis. Int. J. Food Sci. Technol. 2016, 51, 3–13.
  • Wang, H.J.; Thomas, R.L. Direct use of apple pomace in bakery products. J. Food Sci. 1989, 54, 618–620.
  • Masoodi, F.A.; Sharma, B.; Chauhan, G.S. Use of apple pomace as a source of dietary fiber in cakes. Plant Foods Hum. Nutr. 2002, 57, 121–128.
  • Rupasinghe, H.P.V.; Wang, L.; Huber, G.M.; Pitts, N.L. Effect of baking on dietary fibre and phenolics of muffins incorporated with apple skin powder. Food Chem. 2008, 107, 1217–1224.
  • Madhugiri, L.S.; Krishna, R.L.; Vallikannan, B. An improved process for the preparation of fibre rich cake. 268622, 2009.
  • Sudha, M.L.; Indumathi, K.; Sumanth, M.S.; Rajarathnam, S.; Shashirekha, M.N. Mango pulp fibre waste: Characterization and utilization as a bakery product ingredient. J. Food Meas. Charact. 2015, 9, 382–388.
  • Romero-Lopez, M.R.; Osorio-Diaz, P.; Bello-Perez, L.A.; Tovar, J.; Bernardino-Nicanor, A. Fiber concentrate from orange (Citrus sinensis L.) bagase: Characterization and application as bakery product ingredient. Int. J. Mol. Sci. 2011, 12, 2174–2186.
  • Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Bajerska, J. Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chem. 2015, 172, 78–85.
  • Rodríguez-García, J.; Sahi, S.; Hernando, I. Functionality of lipase and emulsifiers in low-fat cakes with inulin. LWT - Food Sci. Technol. 2014, 58, 173–182.
  • Lai, H.M.; Lin, T.C. Bakery products: Science and technology. In Bakery products: Science and technology. Hui, Y.H., Ed.; Blackwell Publishing: Oxford, UK, 2007; pp 3–68.
  • Rodríguez-García, J.; Salvador, A.; Hernando, I. Replacing fat and sugar with inulin in cakes: Bubble size distribution, physical and sensory properties. Food Bioprocess Technol. 2014, 7, 964–974.
  • Khalil, A.H. The influence of carbohydrate-based fat replacers with and without emulsifiers on the quality characteristics of lowfat cake. Plant Foods Hum. Nutr. 1998, 52, 299–313.
  • Matsakidou, A.; Blekas, G.; Paraskevopoulou, A. Aroma and physical characteristics of cakes prepared by replacing margarine with extra virgin olive oil. LWT - Food Sci. Technol. 2010, 43, 949–957.
  • Bennion, E.; Bamford, G. Cake making processes. In The technology of cake making. Bent, A.J.E., Ed.; Blake Academic: London, UK, 1997; pp 252–270.
  • Sikorski, Z.E.; Sikorska-Wiśniewska, G. The role of lipids in food quality. In Improving the fat content of foods. Williams, C., Buttriss, J., Eds.; Woodhead Publishing: Cambridge, UK, 2006; pp 213–235.
  • Barker, P.; Cauvain, S. Fat and calorie-modified bakery products. Int. Food Ingredients 1994, 1, 19–24.
  • Zahn, S.; Pepke, F.; Rohm, H. Effect of inulin as a fat replacer on texture and sensory properties of muffins. Int. J. Food Sci. Technol. 2010, 45, 2531–2537.
  • Grigelmo-Miguel, N.; Carreras-Boladeras, E.; Martín-Belloso, O. Influence of the addition of peach dietary fiber in composition, physical properties and acceptability of reduced-fat muffins. Food Sci. Technol. Int. 2001, 7, 425–431.
  • Al-Sayed, H.M.A.; Ahmed, A.R. Utilization of watermelon rinds and sharlyn melon peels as a natural source of dietary fiber and antioxidants in cake. Ann. Agric. Sci. 2013, 58, 83–95.
  • Kocer, D.; Hicsasmaz, Z.; Bayindirli, A.; Katnas, S. Bubble and pore formation of the high-ratio cake formulation with polydextrose as a sugar- and fat-replacer. J. Food Eng. 2007, 78, 953–964.
  • Baker, B.; Davis, E.; Gordon, J. The influence of sugar and emulsifier type during microwave and conventional heating of a lean formula cake batter. Cereal Chem. 1990, 67, 451–457.
  • Hicsasmaz, Z.; Yazgan, Y.; Bozoglu, F.; Katnas, Z. Effect of polydextrose-substitution on the cell structure of the high-ratio cake system. LWT - Food Sci. Technol. 2003, 36, 441–450.
  • Struck, S.; Jaros, D.; Brennan, C.S.; Rohm, H. Sugar replacement in sweetened bakery goods. Int. J. Food Sci. Technol. 2014, 49, 1963–1976.
  • Zahn, S.; Forker, A.; Krügel, L.; Rohm, H. Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Sci. Technol. 2013, 50, 695–701.
  • Ajila, C.M.; Leelavathi, K.; Prasada Rao, U.J.S. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326.
  • Kohajdová, Z.; Karovičová, J.; Jurasová, M. Influence of grapefruit dietary fibre rich powder on the rheological characteristics of wheat flour dough and on biscuit quality. Acta Alimentaria, 2013, 42, 91–101.
  • Kohajdová, Z.; Karovičacute, ová, J.; Jurasová, M.; Kukurová, K. Application of citrus dietary fibre preparations in biscuit production. J. Food Nutr. Res. 2011, 50, 182–190.
  • Kohajdová, Z.; Karovičová, J.; Magala, M.; Kuchtová, V. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chem. Pap. 2014, 68, 1059–1065.
  • Nassar, A.; AbdEl-Hamied, A.; El-Naggar, E. Effect of citrus by-products flour incorporation on chemical, rheological and organolepic characteristics of biscuits. World J. Agric. Sci. 2008, 4, 612–616.
  • Rosell, C.M.; Rojas, J.A.; Benedito de Barber, C. Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids 2001, 15, 75–81.
  • Mildner-Szkudlarz, S.; Bajerska, J.; Zawirska-Wojtasiak, R.; Górecka, D. White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. J. Sci. Food Agric. 2013, 93, 389–395.
  • Srivastava, P.; Indrani, D.; Singh, R.P. Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. Int. J. Food Sci. Nutr. 2014, 65, 827–833.
  • Min, B.; Bae, I.Y.; Lee, H.G.; Yoo, S.H.; Lee, S. Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresour. Technol. 2010, 101, 5414–5418.
  • Larrea, M.A.; Chang, Y.K.; Martínez Bustos, F. Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chem. 2005, 89, 301–308.
  • Jung, J.; Cavender, G.; Zhao, Y. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products. J. Food Sci. Technol. 2015, 52, 5568–5578.
  • Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F. Physico-chemical, sensory and volatile profiles of biscuits enriched with grape marc extract. Food Res. Int. 2014, 65, 385–393.
  • Carson, K.J.; Collins, J.L.; Penfield, M.P. Unrefined, dried apple pomace as a potential food ingredient. J. Food Sci. 1994, 59, 1213–1215.
  • Górecka, D.; Pachołek, B.; Dziedzic, K.; Górecka, M. Raspberry pomace as a potential fiber source for cookies enrichment. ACTA Scientiarum Polonorum Technologia Alimentaria, 2010, 9, 451–461.
  • Uysal, H.; Bilgiçli, N.; Elgün, A.; Ibanoǧlu, Ş.; Herken, E.N.; Kürşat Demir, M. Effect of dietary fibre and xylanase enzyme addition on the selected properties of wire-cut cookies. J. Food Eng. 2007, 78, 1074–1078.
  • Özboy-Özbaş, O.; Seker, I.T.; Gökbulut, I. Effects of resistant starch, apricot kernel flour, and fiber-rich fruit powders on low-fat cookie quality. Food Sci. Biotechnol. 2010, 19, 979–986.
  • Altan, A.; McCarthy, K.L.; Maskan, M. Effect of extrusion process on antioxidant activity, total phenolics and β‐glucan content of extrudates developed from barley‐fruit and vegetable by‐products. Int. J. Food Sci. Technol. 2009, 44, 1263–1271.
  • Karkle, E.L.; Keller, L.; Dogan, H.; Alavi, S. Matrix transformation in fiber-added extruded products: Impact of different hydration regimens on texture, microstructure and digestibility. J. Food Eng. 2012, 108, 171–182.
  • Mäkilä, L.; Laaksonen, O.; Diaz, J.M.R.; Vahvaselkä, M.; Myllymäki, O.; Lehtomäki, I.; Laakso, S.; Jahreis, G.; Jouppila, K.; Larmo, P. Exploiting blackcurrant juice press residue in extruded snacks. LWT-Food Sci. Technol. 2014, 57, 618–627.
  • Selani, M.M.; Brazaca, S.G.C.; dos Santos Dias, C.T.; Ratnayake, W.S.; Flores, R.A.; Bianchini, A. Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chem. 2014, 163, 23–30.
  • Yağcı, S.; Göğüş, F. Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. J. Food Eng. 2008, 86, 122–132.
  • Paraman, I.; Sharif, M.K.; Supriyadi, S.; Rizvi, S.S. Agro-food industry byproducts into value-added extruded foods. Food Bioprod. Process. 2015, 96, 78–85.
  • Karkle, E.L.; Alavi, S.; Dogan, H. Cellular architecture and its relationship with mechanical properties in expanded extrudates containing apple pomace. Food Res. Int. 2012, 46, 10–21.
  • Altan, A.; McCarthy, K.; Maskan, M. Effect of extrusion cooking on functional properties and in vitro starch digestibility of barley‐based extrudates from fruit and vegetable by‐products. J. Food Sci. 2009, 74, E77–E86.
  • Altan, A.; McCarthy, K.L.; Maskan, M. Twin-screw extrusion of barley–grape pomace blends: Extrudate characteristics and determination of optimum processing conditions. J. Food Eng. 2008, 89, 24–32.
  • Drożdż, W.; Tomaszewska-Ciosk, E.; Zdybel, E.; Boruczkowska, H.; Boruczkowski, T.; Regiec, P. Effect of apple and rosehip pomaces on colour, total phenolics and antioxidant activity of corn extruded snacks. Pol. J. Chem. Technol. 2014, 16, 7–11.
  • Gumul, D.; Ziobro, R.; ZIĘBA, T.; Roj, E. The influence of addition of defatted blackcurrant seeds on pro‐health constituents and texture of cereal extrudates. J. Food Qual. 2011, 34, 395–402.
  • Khanal, R.; Howard, L.; Brownmiller, C.; Prior, R. Influence of extrusion processing on procyanidin composition and total anthocyanin contents of blueberry pomace. J. Food Sci. 2009, 74, H52–H58.
  • Khanal, R.; Howard, L.; Prior, R. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extrusion processing. J. Food Sci. 2009, 74, H174–H182.
  • Hirth, M.; Leiter, A.; Beck, S.M.; Schuchmann, H.P. Effect of extrusion cooking process parameters on the retention of bilberry anthocyanins in starch based food. J. Food Eng. 2014, 125, 139–146.
  • White, B.L.; Howard, L.R.; Prior, R.L. Polyphenolic composition and antioxidant capacity of extruded cranberry pomace. J. Agric.Food Chem. 2010, 58, 4037–4042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.