618
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Spectral quality of photo-selective shade nettings improves antioxidants and overall quality in selected fresh produce after postharvest storage

, &

References

  • Willett, W.C. Balancing life-style and genomics research for disease prevention. Science. 2002, 296, 695–698.
  • USDA. Dietary Guidelines for Americans. USDA Human Nutrition Information Service: Hyattsville, MD, 2010. https://health.gov/dietaryguidelines/dga2010/dietaryguidelines2010.pdf (accessed June 5 2016).
  • Huché-Thélier, L.; Crespel, L.; Gourrierec, J.L.; Morel, P.; Sakr, S. Leduc, N. Light signaling and plant responses to blue and UV radiations-perspectives for applications in horticulture. Environ. Exp. Bot. 2016, 121, 22–38.
  • Sage, R.F.;Peixoto, M.M.; Sage, T.L. Sugarcane: Physiology, biochemistry, and functional biology. In Photosynthesis in Sugarcane; Moore, P.H.; Botha, F.C., Eds.; Wiley: Blackwell, NJ, 2014; pp 122–124.
  • Flaishman, M.A.; Peles, Y.; Dahan, Y.; Milo-Cochavi, S.; Frieman, A.; Naor, A. Differential response of cell-cycle and cell-expansion regulators to heat stress in apple (Malus domestics) fruitlets. Plant Sci. 2015, 233, 82–89.
  • Jifon, J.L.; Syvertsen, J.P. Effects of moderate shade on citrus leaf gas exchange, fruit yield and quality. Proc. Fla. State. Hortic. Soc. 2001, 114, 177–181.
  • Jifon, J.L.; Syvertsen, J.P. Kaolin particle film applications can increase photosynthesis and water use efficiency of Ruby Red grapefruit leaves. J. Am. Soc. Hortic. Sci. 2003, 128, 107–112.
  • Jifon, J.L.; Syvertsen. J.P. Effects of moderate shade on citrus leaf gas exchange, fruit yield and quality. Peer-reviewed Proc. Florida State Hort. Soc. 2002, 114, 177–181.
  • Glenn, D.M.; Puterka, G.J.; Vanderzwet, T.; Byers, R.E.; Feldhake, C. Hydrophobic particle films: A new paradigm for suppression of arthropod pests and plant diseases. J. Ecom. Entomol. 1999, 92, 759–771.
  • Shahak, Y. Photoselective netting for improved performance of horticultural crops. A review of ornamental and vegetable studies carried out in Israel. Acta. Hortic. 2008, 770, 161–168.
  • Al-Helal, I.M.; Abdel-Ghany, A.M. Responses of plastic shading nets to global and diffuse PAR transfer: Optical properties and evaluation. NJAS - NJAS-Wagen J. Life. Sc. 2010, 57, 125–132.
  • Stamps, R.H. Use of colored shade netting in horticulture. HortScience. 2009, 44, 239–41.
  • Gu, L; Baldocchi, D; Verma, S.B; Black, T.A; Vesala, T; Falge, E.M; Dowty, P.R. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. 2002, 107, 2–23.
  • Fallik, E. Using Photoselective Shade Netting for Improving Sweet Pepper Productivity. http://www.israelagri.com/?CategoryID=398&ArticleID=649 (accessed September 19, 2016).
  • Fallik, E.; Alkalai-Tuvia, S.; Parselan, Y.; Aharon, Z.; Elmann, A.; Offir, Y.; Shahak, Y. Can colored shade nets maintain sweet pepper quality during storage and marketing? Acta Hortic. 2009, 830, 37–43.
  • Nissim-Levi, A.; Farkash, L.; Hamburger, D.; Ovadia, R.; Forrer, I.; Kagan, S.; Oren-Shamir, M. Light-scattering shade net increases branching and flowering in ornamental pot plants. J. Hortic. Sci. Biotech. 2008, 83, 9–14.
  • Shahak, Y.; Gussakovsky, E.E.; Gal, E.; Ganelevin, R. ColorNets: Crop protection and light quality manipulation in one technology. Acta Hortic. 2004, 659, 143–51.
  • Selahle, M.K.; Sivakumar, D.; Jifon, J.; Soundy, P. Postharvest responses of red and yellow sweet peppers grown under photo-selective nets. Food Chem. 2015, 173, 951–956.
  • Mashabela, M.N.; Selahle, K.M.; Soundy, P.; Crosby, K.M.; Sivakumar, D. Bioactive compounds and fruit quality of green sweet pepper grown under different colored shade netting during postharvest storage. J. Food Sci. 2015, 80, H2612–H2618.
  • Maalekuu, K.; Elkind, Y.; Tuvia-Alkalai, S.; Shalom, Y.; Fallik, E. The influence of harvest season and cultivar type on several quality traits and quality stability of three commercial sweet bell peppers during the harvest period. Adv. Hortic. Sci. 2004, 18, 21–25.
  • Abdel-Ghany, A.M.; Al-Helal, I.M.; Shady, M.R. On the emissivity and absorptivity of plastic shading nets under natural conditions. Adv. Mech. Eng. 2014, 1, 1–9.
  • Castellano, S.; Candura, A.; Scarascia, M.G. Relationship between solidity ratio, colour and shading effect of agricultural nets. Acta Hortic. 2008, 801, 253–258.
  • Lobos, GA.; Retamales, J.B.; Hancock, J.F.; Flore J.A.; Romero-Bravo, S.; del Pozo, A. Productivity and fruit quality of Vaccinium corymbosum cv. Elliott under photo-selective shading nets. Sci. Hort. 2013, 153, 143–149.
  • Rosati, A.; Dejong, T.M. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves. Ann. Bot. 2003, 91, 869–877.
  • Mõttus, M.; Baret, F.; Lopez-Lozano A.F.R.; Reinart, A. Photosynthetically active radiation: Measurement and modeling. In Encyclopedia of sustainability science and technology; Meyers, R.A., Ed.; Springer Science, LLC: New York, 2012, pp. 7902–7932.
  • Elad, Y.; Messika, Y.; Brand M.; David. D.R.; Aztejnberg, A. Effect of colored shade nets on pepper powdery mildew (Leveillula taurica). Phytoparasitica. 2007, 35, 285–299.
  • Tinyane, P.P.; Sivakumar, D.; Soundy, P. Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Sci. Hortic. 2013, 16, 1340–1349.
  • Lobos, A.G; Retamales, J.B; Hancock, J.F; Flore, J.A; Cobo, N; del Pozo, A. Spectral irradiance, gas exchange characteristics and leaf traits of Vaccinium corymbosum L. ‘Elliott’ grown under photo-selective nets. Environ. Exp. Bot. 2012, 75, 142–149.
  • Dodd, M.B.; MacGowan, W.A.; Power, L.I.; Thorrold, B.S. Effects of variation in shade level, shade duration and light quality on perennial pastures. New Zeal. J. Agr. Res. 2005, 48, 531–543.
  • Zelanski, P.; Fisher, M.P.; Color, 6th ed. Prentice Hall; Avenel, NJ, Retamales, 2009.
  • Milenkovic, L.; Ilic, Z.S.; Durovka, M.; Kapoulas, N.; Mirecki, N.; Fallik, E. Yield and pepper quality as affected by light intensity using colour shade nets. Poljopr. Sumar. 2012, 58, 19–33.
  • Arthurs, S.P.; Stamps, R.H.; Giglia, F.F. Environmental modification inside photoselective shade houses. HortScience, 2013, 48, 975–9.
  • Kong, Y.; Avrahamc, L.; Perzelanb, Y.; Alkalai-Tuvia, S.; Ratner, K.; Shahakc, Y.; Fallik, E. Pearl netting affects postharvest fruit quality in ‘Vergasa’ sweet pepper via light environment manipulation. Sci. Hortic. 2013, 150, 290–298.
  • Fletcher, J.M.; Tatsiopoulou, A.; Mpezamihigo, M.; Carew, J.G.; Henbest, R.G.C.; Battey, P. Far-red light filtering by plastic film, greenhouse-cladding materials: Effects on growth and flowering in petunia and impatiens. J. Hortic. Sci. Biotech. 2005, 80, 303–306.
  • Rajapakse, N.M.; Shahak Y. Light quality manipulation by horticulture industry. Annu. Rev. Plant Biol. 2007, 30, 290–312.
  • Selahle, M.K.; Sivakumar, D.; Soundy, P. Effect of photo‐selective nettings on post‐harvest quality and bioactive compounds in selected tomato cultivars. J. Sci. Food Agric. 2014, 94, 2187–95.
  • Buthelezi, M.N.D; Soundy, P; Jifon, J; Sivakumar, D. Spectral quality of photo-selective nets improves phytochemicals and aroma volatiles in coriander leaves (Coriandrum sativum L.) after postharvest storage. Photochem. Photobiol. B. 2016, 161, 328–334.
  • Kasperbauer, M.J. Spectral distribution of light in a tobacco canopy and effects of end-of-day light quality on growth and development. Plant Physiol. 1970, 47, 775–778.
  • Kasperbauer, M.J.; Peaslee, D.E. Morphology and photosynthetic efficiency of tobacco leaves that received end-of-day red or far-red light during development. Plant Physiol. 1973, 52, 440–442.
  • Li, S.; Rajapakse, N.C.; Young R.E.; Oi, R. Growth responses of chrysanthemum and bell peppers transplants to photoselective plastic films. Sci. Hortic. 2000, 84, 215–225.
  • González, C.V.; Ibarra, S.E.; Piccoli, P.N.; Botto, J.F.; Boccalandro, H.E. Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana. Plant Cell Environ. 2012, 35, 1958–68.
  • Shibuya, T.; Komuro, J.; Hirai, N.; Sakamoto, Y.; Endo, R.; Kitaya, Y. Preference of sweet potato whitefly adults to cucumber seedlings grown under two different light sources. HortTechnology. 2010, 20, 873–876.
  • Barreiro, R.; Guiamét, J.J.; Beltrano, J.; Montaldi, E.R. Regulation of photosynthetic capacity of primary bean leaves by the red: Far-red ratio and photosynthetic photon flux density of incident light. Physiol. Plant. 1992, 85, 97–101.
  • Thiele, A.; Herold, M.; Lenk, I.; Quail, PH.; Gatz, C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol. 1999, 120, 73–82.
  • Boccalandro, H.E.; Ploschuk, E.L.; Yanovsky, M.J.; Sánchez, R.A.; Gatz, C.; Casal, J.J. Increased phytochrome B alleviates density effects on tuber yield of field potato crops. Plant Physiol. 2003, 33, 1539–46.
  • Kasperbauer, M.J.; Hamilton, J. Chloroplast structure and starch grain accumulation in leaves that received different red and far-red levels during development. Plant Physiol. 1984, 74, 967–970.
  • Botto, J.F.; Sanchez, R.A.; Whitelam, G.C.; Casal, J.J. Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiol. 1996, 110, 439–444.
  • Reed, J.W.; Nagatani, A.; Elich, T.D.; Fagan, M.; Chory, J. Phytochrome A and Phytochrome B have overlapping but distinct functions in arabidopsis development. Plant Physiol. 1994, 104, 1139–1149.
  • Shinomura, T.; Nagatani, A.; Hanzawa, H.; Kubota, M.; Watanabe, M.; Furuya, M. Action spectra for phytochrome A- and B-specific photo induction of seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 1996, 93, 8129–8133.
  • Holmes, M.G.; Smith, H. Function of phytochrome in natural environment 1. Characterization of daylight for studies in photo morphogenesis and photoperiodism. Photochem. Photobiol. 1977, 25, 533–538.
  • Sager, J.; Simith, W.; Edwards, J. Photosynthetic efficiency and phytochrome photo equilibria determination using spectral data. Trans. ASAE. 1988, 31, 1883–1888.
  • Azari, R.; Tadmor, Y.; Meir, A.; Reuveni, M.; Evenor, D.; Nahon, S.; Shlomo, H.; Chen, L.; Levin, I., Light signaling genes and their manipulation towards modulation of phytonutrient content in tomato fruits. Biotechnol. Adv. 2010, 28, 108–118.
  • Cashmore, A.R.; Jarillo, J.A.; Wu, Y.J.; Liu, D. Cryptochromes: Blue light receptors for plants and animals. Science. 1999, 284, 760–765.
  • Ninu, L.; Ahmad, M.; Miarelli, C.;Cashmore, A.R.; Giuliano, G. Cryptochrome 1 controls tomato development in response to blue light. Plant J. 1999, 18, 551–6.
  • Wu, G.; Spalding, E.P. Separate functions for nuclear and cytoplasmic cryptochrome 1 during photo morphogenesis of Arabidopsis seedlings. Proc. Natl. Acad. Sci. USA. 2007, 1048, 18813–18818.
  • Lin, C.; Yang, H.; Guo, H.; Mockler, T.; Chen, J.;Cashmore, A. R. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl. Acad. Sci. USA. 1998, 95, 2686–269.
  • Wang, H. Signalling Mechanisms of Higher Plant Photoreceptors: A Structure‐Function Perspective. Curr Top Dev Biol. 2005, 68, 227–261.
  • Roenneberg, T.; Merrow, M. Circadian clocks: Omnes viae romam ducunt. Curr. Biol. 2000, 10, 742–745.
  • McClung, C.R. Circadian rhythms in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 139–162.
  • Briggs, W.R.; Christie, J.M. Phototropins 1 and 2: Versatile plant blue-light receptors. Trends Plant Sci. 2002, 7, 204–210.
  • Casal, J.J. Photoreceptor signalling networks in plant responses to shade. Annu. Rev. Plant Biol. 2013, 64, 403–427.
  • Verdaguer, M.A.K.; Llorens, J.L.; Morales, L.O.; Susanne N. UV-A radiation effects on higher plants: Exploring the known unknown colors. Plant Science. 2017, 255, 72–81.
  • Cooley, N.M.; Higgins, J.T.; Holmes, M.G.; Attridge, T.H. Ecotypic differences in responses of Arabidopsis thaliana L. to elevated polychromatic UV-A and UV-B1A radiation in the natural environment: A positive correlation between UV-B1A inhibition and growth rate, J. Photochem. Photobiol. B Biol. 2001, 60, 143–150.
  • Victório, C.P.; Leal-Costa, M.V.; Tavares, E.S.; Kuster, R.M.; Lage, C.L.S. Effects of supplemental UV-A on the development, anatomy and metabolite production of Phyllanthus tenellus cultured in vitro. Photochem. Photobiol. 2011, 87, 685–689.
  • Ballare, C.L.; Mazza, C.A.; Austin, A.T.; Pierik, R. Canopy light and plant health. Plant Physiol. 2012, 160, 145–155.
  • Huché-Thélier, L.; Crespel, L.; Le Gourrierec, J,L.; Morel, P; Sakr, S.; Leduc, N. Light signaling and plant responses to blue and UV radiations: Perspectives for applications in horticulture. Environ. Exp. Bot. 2016, 121, 22–38.
  • Tilbrook, K.; Arongaus, A.B.; Binkert, M.; Heijde, M.; Yin, R.; Ulm, R. The UVR8 UV-B Photoreceptor: Perception, signaling and response. Arabidopsis Book 2013, 1–21.
  • Nishimura, Y.; Wada, E.; Fukumoto, Y.; Aruga, H.; Shimoi, Y. The effect of spectrum conversion covering film on cucumber in soilless culture. Acta Hortic. 2012, 956, 481–487.
  • Son, K.H.; Oh, M.M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience. 2013, 48, 988–995.
  • Ntsoane, L.M.; Soundy, P.; Jifon, J.; Sivakumar, D. Variety-specific responses of lettuce grown under the different-coloured shade nets on phytochemical quality after postharvest storage. J. Hortic. Sci. Biotech. 2016, 91, 520–528.
  • Goren, A.; Alkalia-Tuvia, S.; Perzelan, Y.; Aharon, Z.; Faliik, E. Photoselective shade nets reduce postharvest decay development in pepper fruits. Adv. Hort. Sci., 2011, 25, 26–31.
  • IIić, Z.S.; Milenković, L.; Stanojević, L.; Cvetković, D.; Fallik, E. Effects of the modification of light intensity by color shade nets on yield and quality of tomato fruits. Sci. Hortic. 2012, 139, 90–95.
  • Kong, Y.; Avrahamc, L.; Perzelanb, Y.; Alkalai-Tuvia, S.; Ratner, K.; Shahakc, Y.; Fallik, E. Pearl netting affects postharvest fruit quality in ‘Vergasa’ sweet pepper via light environment manipulation. Sci. Hortic. 2013, 150, 290–298.
  • Colquhoun, T.A.; Sehwieterman, M.L.; Gilbert, J.L.; Jaworski, E.A.; Langer, K.M.; Jones C.R.; Rushin, G.V.; Hunter, T.M.; Olmstead, J.; Clark, D.G.; Folta, K.M. Light modulation of volatile organic compounds from petunia flowers and selected fruits. Postharvest Biol. Tec. 2013, 86, 37–44.
  • Luning P.A.; Carey A.T.; Roozen J.P.; Wichers H.J. Characterization and occurrence of lipoxygenase in bell peppers at different ripening stages in relation to the formation of volatile flavour compounds. J. Agr. Food Chem. 1995, 43, 1493–500.
  • Selahle, M.K. The effect of photo-selective netting technology on postharvest quality of tomato and sweet peppers. Magister Technologiae: Agriculture. Department of Crop Sciences, Tshwane University of Technology: Pretoria West, South Africa, 2014.
  • Loughrin, J.H.; Kasperbouer, M.J. Aroma of fresh strawberries is enhanced by ripening over red versus black mulch. J. Agr. Food Chem. 2002, 50, 161–165.
  • Gupta, C.; Prakash, D. Nutraceuticals for geriatrics. J. Tradit. Complement Med. 2015, 5, 5–14.
  • Taulavuori, K.; Hyöky, V.; Oksanen, J.; Taulavuori, E.; Iulkunen-Tiitto, R. Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ. Exp. Bot. 2015, 121, 145–150.
  • Stagnari, F.; Galieni, A.;Cafiero, G.; Pisante, M. Application of photo-selective films to manipulate wavelength of transmitted radiation and photosynthate composition in red beet (Beta vulgaris var. conditiva Alef.). J. Sci. Food Agr. 2014, 15, 713–720.
  • Bergquist, S.A.; Gertsson, U.E.; Lotta, Y.G.; Nordmark, G.;Olsson, M.E. Ascorbic acid, carotenoids, and visual quality of baby spinach as affected by shade netting and postharvest storage. J. Agr. Food Chem. 2007, 55, 8444–84451.
  • Buthelezi, M.N.D. Effect of photo-selective netting on postharvest quality and bioactive compounds in three selected summer herbs (coriander, marjoram and oregano). Magister Technologiae: Agriculture. Department of Crop Sciences, Tshwane University of Technology: Pretoria West, South Africa, 2016.
  • Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.N.; Yoshohara, T. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience. 2010, 45, 1809–1814.
  • Das, K.; Aryadeep, R. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 1–13. doi:10.3389/fenvs.2014.00053.
  • Frei, B.; Trabe, M.G. The new US dietary reference intakes for vitamins C and E. Redox Rep. 2011, 6, 5–9.
  • Mar´ın, A.; Ferreres, F.; Tomás-Barberán, F.A.; Gil, M.I. Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J. Agric. Food Chem. 2004, 52, 3861–3869.
  • Hallmann, E.; Rembiałkowska, E. Characterisation of antioxidant compounds in sweet bell pepper (Capsicum annuum L.) under organic and conventional growing systems. J. Sci. Food Agr. 2012, 92, 2409–15.
  • Grierson, D.; Kader, A.A. Fruit Ripening and Quality. In The Tomato Crop; Atherton, J.G.; Rudich, J., Eds.; Chapman and Hall: New York, London, 1986, pp 241–280.
  • Jenkins, GI.; Long, JC.; Wade, H.K.; Shenton, M.R; Bibikova, T.N. UV and blue light signalling: pathway regulating chalcone synthase gene expression in Arabidopsis. New Phytologist. 2001, 151, 121–131.
  • Lee, M.J.; Son, J.E.; Oh, M.M. Growth and phenolic compounds of Lactuca sativa L. grown in a closed –type plant production system with UV-A-B, or –C lamp. J. Sci. Food Agric. 2014, 94, 197–20.
  • Chappell, J.; Hahlbrock, K. Transcription of plant defence genes in response to UV light or fungal elicitor. Nature. 1984, 311, 76–78.
  • Burchard P.; Bilger W, Weissenböck G Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ. 2000, 23, 1373–1380.
  • Ohashi-Kaneko, K.M.;Takase, N; Kon, K; Kurata, F. Effect of light quality on growth and vegetable quality in leafy lettuce, spinach and komatsuna. Environ. Control Biol. 2007, 45, 189–198.
  • Eckstein, A.; Zięba, P.; Gabry, H. Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. J. Plant Growth Regul. 2012, 31, 90–101.
  • Wojciechowska, R.; Dlugosz-Grochowska, O.; Kolton, A.; Zupnik. M. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Scientia Hortic. 2015, 187, 80–86.
  • Bartoli, C.G.; Yu, J.; Gomez, F.; Fernandez, L.; McIntosh, L.; Foyer, C.H. Inter- relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J. Exp. Bot. 2006, 57, 1621–1631.
  • Vinson, J.A.; Hao, Y.; Su, X.; Zubik, L.; Hao, Y.; Su, X.H. Phenol antioxidant quantity and quality in foods: Vegetables. J. Agr. Food Chem. 1998, 46, 3630–4.
  • Giliberto, L.; Perrotta, G.; Pallara, P.; Weller, J.L.; Fraser, P.D.; Bramley, P.M.; Fiore, A.; Tavazza, M.; Giuliano, G. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol. 2005, 137, 199–208.
  • Dhar, M.K.; Sharma, R.; Koul, A.; Kaul S. Development of fruit color in Solanaceae: A story of two biosynthetic pathways. Briefings Funct. Genomics. 2014, 14, 199–212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.