1,162
Views
42
CrossRef citations to date
0
Altmetric
Reviews

2-Acetyl-1-pyrroline: A key aroma component of aromatic rice and other food products

&

References

  • Nadaf, A.; Krishnan, S.; Wakte, K. Histochemical and biochemical analysis of major aroma compound (2-acetyl-1-pyrroline) in basmati and other scented rice (Oryza sativa L.). Curr. Science-Bangalore. 2006, 91(11), 1533.
  • Wongpornchai, S.; Sriseadka, T.; Choonvisase, S. Identification and quantitation of the rice aroma compound, 2-acetyl-1-pyrroline, in bread flowers (Vallaris glabra Ktze). J. Agric. Food Chem. 2003, 51(2), 457–462.
  • Fushimi, T.; Masuda, R. 2-Acetyl-1-pyrroline concentration of the aromatic vegetable soybean “Dadacha-Mame”. in Proceedings of Second International Vegetable Soybean Conference Washington State University. 2001. Tacoma, Washington, USA.
  • Schieberle, P. The role of free amino acids present in yeast as precursors of the odorants 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine in wheat bread crust. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung. 1990, 191(3), 206–209.
  • Harrison, T.J.; Dake, G.R. An expeditious, high-yielding construction of the food aroma compounds 6-acetyl-1, 2, 3, 4-tetrahydropyridine and 2-acetyl-1-pyrroline. J. Org. Chem. 2005, 70(26), 10872–10874.
  • Lasekan, O.; Abbas, K.A. Flavour chemistry of palm toddy and palm juice: A review. Trends Food Sci. Technol. 2010, 21(10), 494–501.
  • Costello, P.J.; Lee, T.H.; Henschke, P. Ability of lactic acid bacteria to produce N‐heterocycles causing mousy off‐flavour in wine. Aust. J. Grape Wine Res. 2001, 7(3), 160–167.
  • Schieberle, P.; Grosch, W. Identification of the volatile flavour compounds of wheat bread crust—Comparison with rye bread crust. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung. 1985, 180(6), 474–478.
  • Buttery, R.G.; Ling, L.C.; Juliano, B.O.; Turnbaugh, J.G. Cooked rice aroma and 2-acetyl-1-pyrroline. J. Agric. Food Chem. 1983, 31(4), 823–826.
  • Tsugita, T.; Kurata, T.; Kato, H. Volatile components after cooking rice milled to different degrees. Agric. Biol. Chem. 1980, 44(4), 835–840.
  • Buttery, R.G.; Turnbaugh, J.G.; Ling, L.C. Contribution of volatiles to rice aroma. J. Agric. Food Chem. 1988, 36(5), 1006–1009.
  • Mahattanatawee, K.; Rouseff, R.L. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC–Olfactometry and GC–PFPD. Food Chem. 2014, 154, 1–6.
  • Mathure, S.V.; Jawali, N.; Thengane, R.J.; Nadaf, A.B. Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice (Oryza sativa L.) cultivars of India. Food Chem. 2014, 142, 383–391.
  • Givianrad, M.H. Characterization and assessment of flavor compounds and some allergens in three Iranian rice cultivars during gelatinization process by HS-SPME/GC-MS. J. Chem. 2012, 9(2), 716–728.
  • Yang, D.S.; Lee, K.-S.; Jeong, O.-Y.; Kim, K.-J.; Kays, S.J. Characterization of volatile aroma compounds in cooked black rice. J. Agric. Food Chem. 2007, 56(1), 235–240.
  • Lin, C.F.; Hsieh, T.C.Y.; Hoff, B.J. Identification and Quantification of the “Popcorn”‐like aroma in louisiana aromatic Delia rice (Oryza sativa, L.). J. Food Sci. 1990, 55(5), 1466–1467.
  • Paule, C.M.; Powers, J. Sensory and chemical examination of aromatic and nonaromatic rices. J. Food Sci. 1989, 54(2), 343–346.
  • Tanchotikul, U.; Hsieh, T.C. An improved method for quantification of 2-acetyl-1-pyrroline, a” popcorn”-like aroma, in aromatic rice by high-resolution gas chromatography/mass spectrometry/selected ion monitoring. J. Agric. Food Chem. 1991, 39(5), 944–947.
  • Widjaja, R.; Craske, J.D.; Wootton, M. Comparative studies on volatile components of non‐fragrant and fragrant rices. J. Sci. Food Agric. 1996, 70(2), 151–161.
  • Yang, D.S.; Lee, K.S.; Kays, S.J. Characterization and discrimination of premium quality, waxy, and black pigmented rice based on odor active compounds. J. Sci. Food Agric. 2010, 90, 2595–2601.
  • Bryant, R.J.; McClung, A.M. Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC-MS. Food Chem. 2011, 124(2), 501–503.
  • Mathure, S.V.; Wakte, K.V.; Jawali, N.; Nadaf, A.B. Quantification of 2-acetyl-1-pyrroline and other rice aroma volatiles among Indian scented rice cultivars by HS-SPME/GC-FID. Food Anal Meth. 2011, 4(3), 326–333.
  • Grimm, C.C.; Champagne, E.T.; Lloyd, S.W.; Easson, M.; Condon, B.; McClung, A. Analysis of 2-acetyl-1-pyrroline in rice by HSSE/GC/MS. Cereal Chem. 2011, 88(3), 271–277.
  • Boontakham, P.; Sookwong, P.; Mahathreeranont, S. Rapid Analysis of the key Aroma Compound, 2-Acetyl-1-Pyrroline, in Rice Plant at Different Growth Stages using Automated Headspace-Gas Chromatography with Nitrogen-Phosphorus Detector, in International Symposium on Phytochemicals in Medicine and Food. Würzburg University Press: Shanghai, China, China, 2015; p. 44.
  • Kiefl, J.; Pollner, G.; Schieberle, P. Sensomics analysis of key hazelnut odorants (Corylus avellana L.‘Tonda Gentile’) using comprehensive two-dimensional gas chromatography in combination with time-of-flight mass spectrometry (GC× GC-TOF-MS). J. Agric. Food Chem. 2013, 61(22), 5226–5235.
  • Hinge, V.; Patil, H.; Nadaf, A. Comparative characterization of aroma volatiles and related gene expression analysis at vegetative and mature stages in basmati and non-basmati rice (Oryza sativa L.) cultivars. Appl. Biochem. Biotechnol. 2015, 178(4), 1–21.
  • Bryant, R.; McClung, A.; Grimm, C. Development of a single kernel analysis method for detection of 2-acetyl-1-pyrroline in aromatic rice germplasm. Sens Instrum Food Qual Saf. 2011, 5(5), 147–154.
  • Yoshihashi, T. Quantitative analysis on 2‐Acetyl‐1‐pyrroline of an aromatic rice by stable isotope dilution method and model studies on its formation during cooking. J. Food Sci. 2002, 67(2), 619–622.
  • Yoshihashi, T.; Huong, N.T.T.; Inatomi, H. Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. J. Agric. Food Chem. 2002, 50(7), 2001–2004.
  • Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: Recent advances and future perspectives. CRC Crit Rev Plant Sci. 2006, 25(5), 417–440.
  • Yoshihashi, T.; Huong, N.T.T.; Surojanametakul, V.; Tungtrakul, P.; Varanyanond, W. Effect of Storage Conditions on 2–Acetyl‐1–pyrroline content in aromatic rice variety, khao dawk mali 105. J. Food Sci. 2005, 70(1), S34–S37.
  • Hien, N.L.; Yoshihashi, T.; Sarhadi, W.A.; Hirata, Y. Sensory test for aroma and quantitative analysis of 2-acetyl-1-pyrroline in Asian aromatic rice varieties. Plant Prod. Sci. 2006, 9(3), 294–297.
  • Huang, T.-C.; Teng, C.-S.; Chang, J.-L.; Chuang, H.-S.; Ho, C.-T.; Wu, M.-L. Biosynthetic mechanism of 2-acetyl-1-pyrroline and its relationship with Δ1-pyrroline-5-carboxylic acid and methylglyoxal in aromatic rice (Oryza sativa L.) callus. J. Agric. Food Chem. 2008, 56(16), 7399–7404.
  • Lorieux, M.; Petrov, M.; Huang, N.; Guiderdoni, E.; Ghesquière, A. Aroma in rice: Genetic analysis of a quantitative trait. Theor. Appl. Genet. 1996, 93(7), 1145–1151.
  • Ahn, S.; Bollich, C.; Tanksley, S. RFLP tagging of a gene for aroma in rice. Theor. Appl. Genet. 1992, 84(7–8), 825–828.
  • Reddy, V.; Reddy, G. Genetic and biochemical basis of scent in rice (Oryza sativa L.). Theor. Appl. Genet. 1987, 73(5), 699–700.
  • Chen, S.; Wu, J.; Yang, Y.; Shi, W.; Xu, M. The fgr gene responsible for rice fragrance was restricted within 69kb. Plant Sci. 2006, 171(4), 505–514.
  • Fitzgerald, M.A.; Sackville Hamilton, N.R.; Calingacion, M.N.; Verhoeven, H.A.; Butardo, V.M. Is there a second fragrance gene in rice?. Plant Biotechnol. J. 2008, 6(4), 416–423.
  • Bourgis, F.; Guyot, R.; Gherbi, H.; Tailliez, E.; Amabile, I.; Salse, J. et al. Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice. Theor. Appl. Genet. 2008, 117(3), 353–368.
  • Chen, S.; Yang, Y.; Shi, W.; Ji, Q.; He, F.; Zhang, Z. et al. BADH2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell. 2008, 20(7), 1850–1861.
  • Bradbury, L.M.; Gillies, S.A.; Brushett, D.J.; Waters, D.L.; Henry, R.J. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol. Biol. 2008, 68(4–5), 439–449.
  • Niu, X.; Tang, W.; Huang, W.; Ren, G.; Wang, Q.; Luo, D. et al. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol. 2008, 8, (1), 100.
  • Kaikavoosi, K.; Kad, T.D.; Zanan, R.L.; Nadaf, A.B. 2-acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene transformation. Appl. Biochem. Biotechnol. 2015, 177(7), 1466–1479.
  • He, Q.; Park, Y.-J. Discovery of a novel fragrant allele and development of functional markers for fragrance in rice. Mol. Breeding. 2015, 35(11), 1–10.
  • Itani, T.; Tamaki, M.; Hayata, Y.; Fushimi, T.; Hashizume, K. Variation of 2-acetyl-1-pyrroline concentration in aromatic rice grains collected in the same region in Japan and factors affecting its concentration. Plant Prod. Sci. 2004, 7(2), 178–183.
  • Pinson, S. Inheritance of aroma in six rice cultivars. Crop Sci. 1994, 34(5), 1151–1157.
  • Yoshihashi, T.; Nguyen, T.T.H.; Kabaki, N. Area dependency of 2-acetyl-1-pyrroline content in an aromatic rice variety, Khao Dawk Mali 105. Japan Agric. Res. Q. 2004, 38(2), 105–109.
  • Mo, Z.; Li, W.; Pan, S.; Fitzgerald, T.L.; Xiao, F.; Tang, Y. et al. Shading during the grain filling period increases 2-acetyl-1-pyrroline content in fragrant rice. Rice. 2015, 8(1), 9.
  • Goufo, P.; Wongpornchai, S.; Tang, X. Decrease in rice aroma after application of growth regulators. Agron. Sustainable Dev. 2010, 31(2), 349–359.
  • Bora, D.; Goswami, J.; Saud, R.K.; Begum, M. Effect of organic inputs on production and quality of scented rice (Oryza sativa) variety Keteki joha in Assam and its economic aspect. Agric. Sci. Dig. 2014, 34(2), 115–118.
  • Poonlaphdecha, J.; Maraval, I.; Roques, S.; Audebert, A.; Boulanger, R.; Bry, X. et al. Effect of timing and duration of salt treatment during growth of a fragrant rice variety on yield and 2-Acetyl-1-pyrroline, proline, and GABA levels. J. Agric. Food Chem. 2012, 60(15), 3824–3830.
  • Widjaja, R.; Craske, J.D.; Wootton, M. Changes in volatile components of paddy, brown and white fragrant rice during storage. J. Sci. Food Agric. 1996, 71(2), 218–224.
  • Griglione, A.; Liberto, E.; Cordero, C.; Bressanello, D.; Cagliero, C.; Rubiolo, P. et al. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality. Food Chem. 2015, 172, 305–313.
  • Wongpornchai, S.; Dumri, K.; Jongkaewwattana, S.; Siri, B. Effects of drying methods and storage time on the aroma and milling quality of rice (Oryza sativa L.) cv. Khao Dawk Mali 105. Food Chem. 2004, 87(3), 407–414.
  • Peil, A.; Barret, F.; Rha, C.; Langer, R. Retention of micronutrients by polymer coatings used to fortify rice. J. Food Sci. 1982, 47(1), 260–262.
  • Guibert, S.; Biquet, B. Edible films and coatings. Food Packaging Technology; Bureau, G.; Multon, J.L., Editors; VCH Publishers: New York, NY, 1996; 315–353.
  • Tulyathan, V.; Mekjarutkul, T.; Jongkaewwattana, S. Iron retention on flour gel‐coated rice grains and its storage stability. Foodservice Res. Int. 2004, 15(3‐4), 147–156.
  • Sirisoontaralak, P.; Noomhorm, A. Changes to physicochemical properties and aroma of irradiated rice. J Stored Prod Res. 2006, 42(3), 264–276.
  • Buttery, R.; Juliano, B.; Ling, L. Identification of rice aroma compound 2-acetyl-1-pyrroline in pandan leaves. Chemistry and Industry. 1983; 478.
  • Yahya, F.; Fryer, P.J.; Bakalis, S. The absorption of 2-acetyl-1-pyrroline during cooking of rice (Oryza sativa L.) with Pandan (Pandanus amaryllifolius Roxb.) leaves). Procedia Food Sci. 2011, 1, 722–728.
  • Wakte, K.V.; Nadaf, A.B.; Krishnan, S.; Thengane, R.J. Studies on lower epidermal papillae, the site of storage of basmati rice aroma compounds in Pandanus amaryllifolius Roxb. Curr. Science-Bangalore. 2007, 93(2), 238.
  • Wakte, K.; Zanan, R.; Thengane, R.; Jawali, N.; Nadaf, A. Identification of elite population of roxb. for higher 2-acetyl-1-pyrroline and other volatile contents by HS-SPME/GC-FID from peninsular India. Food Anal Meth. 2012, 6(5), 1276–1288.
  • Arikit, S.; Yoshihashi, T.; Wanchana, S.; Uyen, T.T.; Huong, N.T.T.; Wongpornchai, S. et al. Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.). Plant Biotechnol. J. 2011, 9(1), 75–87.
  • Arikit, S.; Yoshihashi, T.; Wanchana, S.; Tanya, P.; Juwattanasomran, R.; Srinives, P. et al. A PCR-based marker for a locus conferring aroma in vegetable soybean (Glycine max L.). Theor. Appl. Genet. 2011, 122(2), 311–316.
  • Blank, I.; Fischer, K.-H.; Grosch, W. Intensive neutral odourants of linden honey differences from honeys of other botanical origin. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung. 1989, 189(5), 426–433.
  • Ruisinger, B.; Schieberle, P. Characterization of the key aroma compounds in rape honey by means of the molecular sensory science concept. J. Agric. Food Chem. 2012, 60(17), 4186–4194.
  • RüCkriemen, J.; Schwarzenbolz, U.; Adam, S.; Henle, T. Identification and quantitation of 2-acetyl-1-pyrroline in manuka honey (Leptospermum scoparium). J. Agric. Food Chem. 2015, 63(38), 8488–8492.
  • Buttara, M.; Intarapichet, K.-O.; Cadwallader, K.R. Characterization of potent odorants in Thai chempedak fruit (Artocarpus integer Merr.), an exotic fruit of Southeast Asia. Food Res. Int. 2014, 66, 388–395.
  • Yundaeng, C.; Somta, P.; Tangphatsornruang, S.; Chankaew, S.; Srinives, P. A single base substitution in BADH/AMADH is responsible for fragrance in cucumber (Cucumis sativus L.), and development of SNAP markers for the fragrance. Theor. Appl. Genet. 2015, 128(9), 1881–1892.
  • Steinhaus, M. Characterization of the major odor-active compounds in the leaves of the curry tree bergera koenigii L. by aroma extract dilution analysis. J. Agric. Food Chem. 2015, 63(16), 4060–4067.
  • Brahmachary, R. The expanding world of 2-acetyl-1-pyrroline. Curr. Sci. 1996, 71(4), 257–258.
  • Wakte, K.V.; Kad, T.D.; Zanan, R.L.; Nadaf, A.B. Mechanism of 2-acetyl-1-pyrroline biosynthesis in bassia latifolia roxb. flowers. Physiol. Mol. Biol. Plants. 2011, 17(3), 231–237.
  • Cappelletti, M.; Ferrentino, G.; Endrizzi, I.; Aprea, E.; Betta, E.; Corollaro, M.L. et al. High pressure carbon dioxide pasteurization of coconut water: A sport drink with high nutritional and sensory quality. J Food Eng. 2015, 145, 73–81.
  • Seitz, L.M.; Wright, R.L.; Waniska, R.D.; Rooney, L.W. Contribution of 2-acetyl-1-pyrroline to odors from wetted ground pearl millet. J. Agric. Food Chem. 1993, 41(6), 955–958.
  • Gasser, U.; Grosch, W. Identification of volatile flavor compounds with high aroma values from cooked beef. Zeitschrift Fur Lebensmittel-Untersuchung und-Forschung. 1988, 186(6), 489–494.
  • Yu, H.Z.; Chen, S.S. Identification of characteristic aroma-active compounds in steamed mangrove crab (Scylla serrata). Food Res. Int. 2010, 43(8), 2081–2086.
  • Straßer, S.; Schieberle, P. Characterization of the key aroma compounds in roasted duck liver by means of aroma extract dilution analysis: Comparison with beef and pork livers. Eur. Food Res. Technol. 2014, 238(2), 307–313.
  • Demeyer, D.; Raemaekers, M.; Rizzo, A.; Holck, A.; De Smedt, A.; Ten Brink, B. et al. Control of bioflavour and safety in fermented sausages: First results of a European project. Food Res. Int. 2000, 33(3), 171–180.
  • Corral, S.; Leitner, E.; Siegmund, B.; Flores, M. Determination of sulfur and nitrogen compounds during the processing of dry fermented sausages and their relation to amino acid generation. Food Chem. 2016, 190, 657–664.
  • Corral, S.; Salvador, A.; Belloch, C.; Flores, M. Improvement the aroma of reduced fat and salt fermented sausages by Debaromyces hansenii inoculation. Food Contr. 2015, 47, 526–535.
  • Stahnke, M.L.H. 2-acetyl-1-pyrroline-key aroma compound in Mediterranean dried sausages. 9th Weurman Flavour Research Symposium; Schieberlee, K.-H., Editor; Deutsche Forschungsanstalt für Lebensmittelchemie: Freising, Germany, 2000; 361–365.
  • Blank, I.; Devaud, S.; Fay, L.; Cerny, C.; Steiner, M.; Zurbriggen, B. Odor-active compounds of dry-cured meat: Italian-type salami and Parma ham. Aroma Active Compounds in Foods: Chemistry and Sensory Practices; Takeoka, G.; Gntert, M.; Engel, K., Editors; American Chemical Society: Washington, DC, 2001; 9–20.
  • Calkins, C.; Hodgen, J. A fresh look at meat flavor. Meat Sci. 2007, 77(1), 63–80.
  • Takakura, Y.; Sakamoto, T.; Hirai, S.; Masuzawa, T.; Wakabayashi, H.; Nishimura, T. Characterization of the key aroma compounds in beef extract using aroma extract dilution analysis. Meat Sci. 2014, 97(1), 27–31.
  • Lotfy, S.N.; Fadel, H.H.; El-Ghorab, A.H.; Shaheen, M.S. Stability of encapsulated beef-like flavourings prepared from enzymatically hydrolysed mushroom proteins with other precursors under conventional and microwave heating. Food Chem. 2015, 187, 7–13.
  • Cerny, C.; Guntz, R. Evaluation of potent odorants in heated egg yolk by aroma extract dilution analysis. Eur. Food Res. Technol. 2004, 219(5), 452–454.
  • Paraskevopoulou, A.; Amvrosiadou, S.; Biliaderis, C.; Kiosseoglou, V. Mixed whey protein isolate-egg yolk or yolk plasma heat-set gels: Rheological and volatile compounds characterisation. Food Res. Int. 2014, 62, 492–499.
  • Song, H.; Cadwallader, K.R. Aroma components of American Country Ham. J. Food Sci. 2008, 73(1), C29–C35.
  • Song, H.; Cadwallader, K.R.; Singh, T.K. Odour‐active compounds of Jinhua ham. Flavour Fragr J. 2008, 23(1), 1–6.
  • Carrascon, V.; Escudero, A.; Ferreira, V.; Lopez, R. Characterisation of the key odorants in a squid broth (Illex argentinus). LWT-Food Sci. Technol. 2014, 57(2), 656–662.
  • Kiatbenjakul, P.; Intarapichet, K.-O.; Cadwallader, K.R. Characterization of potent odorants in male giant water bug (Lethocerus indicus Lep. and Serv.), an important edible insect of Southeast Asia. Food Chem. 2015, 168, 639–647.
  • Schieberle, P.; Grosch, W. Quantitative analysis of aroma compounds in wheat and rye bread crusts using a stable isotope dilution assay. J. Agric. Food Chem. 1987, 35(2), 252–257.
  • Zehentbauer, G.; Grosch, W. Crust aroma of baguettes I.Key Odorants of Baguettes Prepared in Two Different Ways. J Cereal Sci. 1998, 28(1), 81–92.
  • Callejo, M.J.; Vargas-Kostiuk, M.-E.; Rodríguez-Quijano, M. Selection, training and validation process of a sensory panel for bread analysis: Influence of cultivar on the quality of breads made from common wheat and spelt wheat. J. Cereal Sci. 2015, 61, 55–62.
  • Pico, J.; Bernal, J.; Gómez, M. Wheat bread aroma compounds in crumb and crust: A review. Food Res. Int. 2015, 75, 200–215.
  • Rychlik, M.; Grosch, W. Identification and quantification of potent odorants formed by toasting of wheat bread. LWT-Food Sci. Technol. 1996, 29(5), 515–525.
  • Hoffmann, T.; Schieberle, P. 2-oxopropanal, hydroxy-2-propanone, and 1-pyrrolineimportant intermediates in the generation of the roast-smelling food flavor compounds 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine. J. Agric. Food Chem. 1998, 46(6), 2270–2277.
  • Moskowitz, M.R.; Bin, Q.; Elias, R.J.; Peterson, D.G. Influence of endogenous ferulic acid in whole wheat flour on bread crust aroma. J. Agric. Food Chem. 2012, 60(45), 11245–11252.
  • Pacyński, M.; Wojtasiak, R.Z.; Mildner-Szkudlarz, S. Improving the aroma of gluten-free bread. LWT-Food Sci. Technol. 2015, 63(1), 706–713.
  • Ying, S.; Lasekan, O.; Naidu, K.R.M.; Lasekan, S. Headspace solid-phase microextraction gas chromatography-mass spectrometry and gas chromatography-olfactometry analysis of volatile compounds in pineapple breads. Molecules. 2012, 17(12), 13795–13812.
  • Zehentbauer, G.; Grosch, W. Crust aroma of baguettes II. Dependence of the concentrations of key odorants on yeast level and dough processing. J. Cereal Science. 1998, 28(1), 93–96.
  • Liu, J.; Liu, M.; He, C.; Song, H.; Guo, J.; Wang, Y. et al. A comparative study of aroma-active compounds between dark and milk chocolate: Relationship to sensory perception. J. Sci. Food Agric. 2015, 95(6), 1362–1372.
  • Romanczyk, L.J. Jr; McClelland, C.A.; Post, L.S.; Aitken, W.M. Formation of 2-acetyl-1-pyrroline by several Bacillus cereus strains isolated from cocoa fermentation boxes. J. Agric. Food Chem. 1995, 43(2), 469–475.
  • Adams, A.; De Kimpe, N. Formation of pyrazines and 2-acetyl-1-pyrroline by Bacillus cereus. Food Chem. 2007, 101(3), 1230–1238.
  • Deshmukh, Y.; Khare, P.; Patra, D.; Nadaf, A.B. HS‐SPME‐GC‐FID method for detection and quantification of Bacillus cereus ATCC 10702 mediated 2‐acetyl‐1‐pyrroline. Biotechnol. Prog. 2014, 30(6), 1356–1363.
  • Lasekan, O.; Buettner, A.; Christlbauer, M. Investigation of important odorants of palm wine (Elaeis guineensis). Food Chem. 2007, 105(1), 15–23.
  • Lasekan, O. A comparative analysis of the influence of human salivary enzymes on odorant concentration in three palm wines. Molecules. 2013, 18(10), 11809–11823.
  • Chen, S.; Wang, D.; Xu, Y. Characterization of odor-active compounds in sweet-type Chinese rice wine by aroma extract dilution analysis with special emphasis on sotolon. J. Agric. Food Chem. 2013, 61(40), 9712–9718.
  • Langos, D.; Granvogl, M.; Schieberle, P. Characterization of the key aroma compounds in two bavarian wheat beers by means of the sensomics approach. J. Agric. Food Chem. 2013, 61(47), 11303–11311.
  • Lapsongphon, N.; Cadwallader, K.R.; Rodtong, S.; Yongsawatdigul, J. Characterization of protein hydrolysis and odor-active compounds of fish sauce inoculated with virgibacillus sp. SK37 under reduced salt content. J. Agric. Food Chem. 2013, 61(27), 6604–6613.
  • Lapsongphon, N.; Yongsawatdigul, J.; Cadwallader, K.R. Identification and characterization of the aroma-impact components of thai fish sauce. J. Agric. Food Chem. 2015, 63(10), 2628–2638.
  • Jeleń, H.; Majcher, M.; Ginja, A.; Kuligowski, M. Determination of compounds responsible for tempeh aroma. Food Chem. 2013, 141(1), 459–465.
  • Rungsardthong, V.; Noomhoom, A. Production of 2‐acetyl‐1‐pyrroline by microbial cultures. Flavour Fragr J. 2005, 20(6), 710–714.
  • Berney, M.; Weimar, M.R.; Heikal, A.; Cook, G.M. Regulation of proline metabolism in mycobacteria and its role in carbon metabolism under hypoxia. Mol. Microbiol. 2012, 84(4), 664–681.
  • Güneşer, O.; Demirkol, A.; Yüceer, Y.K.; Toğay, S.Ö.; Hoşoğlu, M.İ.; Elibol, M. Bioflavour production from tomato and pepper pomaces by Kluyveromyces marxianus and Debaryomyces hansenii. Bioprocess Biosyst Eng. 2015, 38(6), 1143–1155.
  • Karagül-Yüceer, Y.; Drake, M.; Cadwallader, K.R. Aroma-active components of nonfat dry milk. J. Agric. Food Chem. 2001, 49(6), 2948–2953.
  • Avsar, Y.; Karagul-Yuceer, Y.; Drake, M.; Singh, T.; Yoon, Y.; Cadwallader, K. Characterization of nutty flavor in Cheddar cheese. J. Dairy Sci. 2004, 87(7), 1999–2010.
  • Varming, C.; Andersen, L.T.; Petersen, M.A.; Ardö, Y. Flavour compounds and sensory characteristics of cheese powders made from matured cheeses. Int. Dairy J. 2013, 30(1), 19–28.
  • Engin, B.; Karagul Yuceer, Y. Effects of ultraviolet light and ultrasound on microbial quality and aroma‐active components of milk. J. Sci. Food Agric. 2012, 92(6), 1245–1252.
  • Mahajan, S.; Goddik, L.; Qian, M. Aroma compounds in sweet whey powder. J. Dairy Sci. 2004, 87(12), 4057–4063.
  • Karagül‐Yüceer, Y.; Drake, M.; Cadwallader, K. Aroma‐active components of liquid cheddar whey. J. Food Sci. 2003, 68(4), 1215–1219.
  • Singh, T.; Drake, M.; Cadwallader, K. Flavor of Cheddar cheese: A chemical and sensory perspective. Compr. Rev. Food Sci. Food Saf. 2003, 2(4), 166–189.
  • Bendall, J.G. Aroma compounds of fresh milk from New Zealand cows fed different diets. J. Agric. Food Chem. 2001, 49(10), 4825–4832.
  • Griffith, R.; Hammond, E.G. Generation of Swiss cheese flavor components by the reaction of amino acids with carbonyl compounds1. J. Dairy Sci. 1989, 72(3), 604–613.
  • Schieberle, P. Odour-active compounds in moderately roasted sesame. Food Chem. 1996, 55(2), 145–152.
  • Chetschik, I.; Granvogl, M.; Schieberle, P. Quantitation of key peanut aroma compounds in raw peanuts and pan-roasted peanut meal. aroma reconstitution and comparison with commercial peanut products. J. Agric. Food Chem. 2010, 58(20), 403–431.
  • Burdack-Freitag, A.; Schieberle, P. Changes in the key odorants of Italian hazelnuts (Coryllus avellana L. Var. Tonda Romana) induced by roasting. J. Agric. Food Chem. 2010, 58(10), 6351–6359.
  • Burdack-Freitag, A.; Schieberle, P. Characterization of the key odorants in raw Italian hazelnuts (Coryllus avellana L. var. Tonda Romana) and roasted hazelnut paste by means of molecular sensory science. J. Agric. Food Chem. 2012, 60(20), 5057–5064.
  • Kaneko, S.; Sakai, R.; Kumazawa, K.; Usuki, M.; Nishimura, O. Key aroma compounds in roasted in-shell peanuts. Biosci. Biotechnol. Biochem. 2013, 77(7), 1467–1473.
  • Schieberle, P. Primary odorants in popcorn. J. Agric. Food Chem. 1991, 39(6), 1141–1144.
  • Buttery, R.G.; Stern, D.J.; Ling, L.C. Studies on flavor volatiles of some sweet corn products. J. Agric. Food Chem. 1994, 42(3), 791–795.
  • Kiefl, J.; Schieberle, P. Evaluation of process parameters governing the aroma generation in three hazelnut cultivars (Corylus avellana L.) by correlating quantitative key odorant profiling with sensory evaluation. J. Agric. Food Chem. 2013, 61(22), 5236–5244.
  • Majcher, M.A.; Klensporf-Pawlik, D.; Dziadas, M.; Jeleń, H.H. Identification of aroma active compounds of cereal coffee brew and its roasted ingredients. J. Agric. Food Chem. 2013, 61(11), 2648–2654.
  • De Marchi, F.; Aprea, E.; Endrizzi, I.; Charles, M.; Betta, E.; Corollaro, M. et al. Effects of pasteurization on volatile compounds and sensory properties of coconut (Cocos nucifera l.) water: Thermal vs. high-pressure carbon dioxide pasteurization. Food Bioproc Technol. 2015, 8(7), 1393–1404.
  • Kumazawa, K.; Masuda, H. Identification of potent odorants in different green tea varieties using flavor dilution technique. J. Agric. Food Chem. 2002, 50(20), 5660–5663.
  • Ho, C.-T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness. 2015, 4(1), 9–27.
  • Davidek, T.; Festring, D.; Dufossé, T.; Novotny, O.; Blank, I. Study to elucidate formation pathways of selected roast-smelling odorants upon extrusion cooking. J. Agric. Food Chem. 2013, 61(43), 10215–10219.
  • Rewicki, D.; Tressl, R.; Ellerbeck, U.; Kersten, E.; Burgert, W.; Gorzynski, M. et al. Formation and Synthesis of Some Maillard Generated Aroma Compounds. Allured Publishing: Carol Stream, IL, 1993; 301–314.
  • Buttery, R.G.; Ling, L.C.; Juliano, B.O. 2-acetyl-1-pyrroline and its use for flavoring foods. U.S. Patent, Editor; Google Patents, 1985.
  • Hoffmann, T.; Schieberle, P. New convenient synthesis of the important roasty, popcorn-like smelling food aroma compounds 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine from their corresponding cyclic alpha-amino acids. J. Agric. Food Chem. 1998, 46(2), 616–619.
  • Duby, P.; Huynh-Ba, T. Preparation of 2-acetyl-1-pyrroline compositions. U. Patent, Editor; Google Patents, 1995.
  • Deblander, J.; Van Aeken, S.; Adams, A.; De Kimpe, N.; Tehrani, K.A. New short and general synthesis of three key maillard flavour compounds: 2-acetyl-1-pyrroline, 6-acetyl-1, 2, 3, 4-tetrahydropyridine and 5-acetyl-2, 3-dihydro-4H-1, 4-thiazine. Food Chem. 2015, 168, 327–331.
  • De Kimpe, N.; D’Hondt, L.; Mones, L. Formation of α-iminoketones and α-diimines versus Favorskii rearrangement products from the reaction of α, α′-dibromoketones and primary amines. Tetrahedron. 1992, 48(15), 3183–3208.
  • Buttery, R.; Ling, L.; Juliano, B. 2-acetyl-1-pyrroline: An important aroma component of cooked rice. Chem. Ind. 1982, 23, 958–959.
  • Fuhlhage, D.W.; VanderWerf, C.A. studies on the formation and reactions of 1-pyrroline1. J. Am. Chem. Soc. 1958, 80(23), 6249–6254.
  • Tananuwong, K.; Lertsiri, S. Changes in volatile aroma compounds of organic fragrant rice during storage under different conditions. J. Sci. Food Agric. 2010, 90(10), 1590–1596.
  • Tulyathan, V.; Srisupattarawanich, N.; Suwanagul, A. Effect of rice flour coating on 2-acetyl-1-pyrroline and n-hexanal in brown rice cv. Jao Hom Supanburi during storage. Postharvest Biol. Technol. 2008, 47(3), 367–372.
  • Laohakunjit, N.; Kerdchoechuen, O. Aroma enrichment and the change during storage of non-aromatic milled rice coated with extracted natural flavor. Food Chem. 2007, 101(1), 339–344.
  • Fang, M.-C.; Cadwallader, K.R. Stabilization of the potent odorant 2-acetyl-1-pyrroline and structural analogues by complexation with zinc halides. J. Agric. Food Chem. 2014, 62(35), 8808–8813.
  • Srinivas, P.; Sulochanamma, G.; Raghavan, B.; Gurudutt, K. Process for the stabilization of 2-acetyl-1pyrroline, the basmati rice flavourant. Google Patents; U. Patent, Editor, 2002.
  • Degenhardt, A.; Krammer, G.; Koch, J.; Tai, M.Y. Novel pandan extract articles in powder form and process for the production thereof. Google Patents; U.S. Patent, Editor, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.