1,345
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Emerging technologies to extract high added value compounds from fruit residues: Sub/supercritical, ultrasound-, and enzyme-assisted extractions

, , , ORCID Icon & ORCID Icon

References

  • Allende, A.; Tomas-Barberan, F.A.; Gil, M.I. Minimal Processing for Healthy Traditional Foods. Trends Food Sci. Technol. 2006, 17(9), 513–519. DOI: 10.1016/j.tifs.2006.04.005.
  • Statista. Global production of fresh fruit from 1990 to 2013 (in 1,000 metric tons). 2015 01/2016]. http://www.statista.com/statistics/262266/global-production-of-fresh-fruit/
  • Statista. Global fruit production in 2013, by region (in million metric tons). 2015 01/2016]. http://www.statista.com/statistics/264004/fruit-production-worldwide-since-2007-by-region/
  • Girotto, F.; Alibardi, L.; Cossu, R. Food Waste Generation and Industrial Uses: A Review. Waste Manag. 2015, 45, 32–41. DOI: 10.1016/j.wasman.2015.06.008.
  • Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; Ujang, Z.B. The Food Waste Hierarchy as a Framework for the Management of Food Surplus and Food Waste. J. Clean Prod. 2014, 76, 106–115. DOI: 10.1016/j.jclepro.2014.04.020.
  • Baiano, A. Recovery of Biomolecules from Food Wastes - A Review. Molecules 2014, 19(9), 14821. DOI: 10.3390/molecules190914821.
  • Kalpna, R.; Mital, K.; Sumitra, C. Vegetable and Fruit Peels as a Novel Source of Antioxidants. J. Med. Plants Res. 2011, 5(1), 63–71.
  • Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from Fruits and Vegetables: Chemistry, Analysis, Occurrence, Bioavailability and Biological Activities. Food Res. Int. 2015, 76(Part 3), 735–750. DOI: 10.1016/j.foodres.2015.07.047.
  • Prakash, D.; Upadhayay, G.; Singh, B.N.; Singh, H.B. Antioxidant and Free Radical - Scavenging Activities of Seeds and Agri - Wastes of Some Varieties of Soyabean (Glycine Max). Food Chem. 2007, 104, 783–790. DOI: 10.1016/j.foodchem.2006.12.029.
  • Rakholiya, K.; Kaneria, M.; Chanda, S. Vegetable and Fruit Peels as a Novel Source of Antioxidants. J. Med. Plants Res. 2011, 5(1), 63–71.
  • Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Siddiqui, M.W.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-Industrial Potential of Exotic Fruit Byproducts as a Source of Food Additives. Food Res. Int. 2011, 44(7), 1866–1874. DOI: 10.1016/j.foodres.2011.02.021.
  • Smith, R.M. Before the Injection - Modern Methods of Sample Preparation for Separation Techniques. J. Chromatogr. 2003, 1000(1–2), 3–27. DOI: 10.1016/S0021-9673(03)00511-9.
  • Wu, J.; Lin, L.; Chau, F.T. Ultrasound-Assisted Extraction of Ginseng Saponins from Ginseng Roots and Cultured Ginseng Cells. Ultrason. Sonochem. 2001, 8(4), 347–352. DOI: 10.1016/S1350-4177(01)00066-9.
  • Huang, H.-W.; Hsu, C.-P.; Yang, B.B.; Wang, C.-Y. Advances in the Extraction of Natural Ingredients by High Pressure Extraction Technology. Trends Food Sci. Technol. 2013, 33(1), 54–62. DOI: 10.1016/j.tifs.2013.07.001.
  • Yang, B.; Jiang, Y.; Shi, J.; Chen, F.; Ashraf, M. Extraction and Pharmacological Properties of Bioactive Compounds from Longan (Dimocarpus longan Lour.) Fruit - A Review. Food Res. Int. 2011, 44(7), 1837–1842. DOI: 10.1016/j.foodres.2010.10.019.
  • Li, Y.; Fabiano-Tixier, A.S.; Tomao, V.; Cravotto, G.; Chemat, F. Green Ultrasound-Assisted Extraction of Carotenoids Based on the Bio-Refinery Concept Using Sunflower Oil as an Alternative Solvent. Ultrason. Sonochem. 2013, 20(1), 12–18. DOI: 10.1016/j.ultsonch.2012.07.005.
  • Jacotet-Navarro, M.; Rombaut, N.; Deslis, S.; Fabiano-Tixier, A.S.; Pierre, F.X.; Bily, A.; Chemat, F. Towards a “Dry” Bio-Refinery without Solvents or Added Water Using Microwaves and Ultrasound for Total Valorization of Fruit and Vegetable By-Products. Green Chem. 2016, 18(10), 3106–3115. DOI: 10.1039/C5GC02542G.
  • Achat, S.; Tomao, V.; Madani, K.; Chibane, M.; Elmaataoui, M.; Dangles, O.; Chemat, F. Direct Enrichment of Olive Oil in Oleuropein by Ultrasound-Assisted Maceration at Laboratory and Pilot Plant Scale. Ultrason. Sonochem. 2012, 19(4), 777–786. DOI: 10.1016/j.ultsonch.2011.12.006.
  • Périno-Issartier, S.; Abert-Vian, M.; Chemat, F. Solvent Free Microwave-Assisted Extraction of Antioxidants from Sea Buckthorn (Hippophae rhamnoides) Food By-Products. Food Bioproc. Technol 2011, 4(6), 1020–1028. DOI: 10.1007/s11947-010-0438-x.
  • Gui-Fang, D.; Chen, S.; Xiang-Rong, X.; Ru-Dan, K.; Ya-Jun, G.; Li-Shan, Z.; Li-Li, G.; Xi, L.; Jie-Feng, X.; En-Qin, X.; Sha, L.; Shan, W.; Feng, C.; Wen-Hua, L. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds. Int. J. Mol. Sci. 2012, 13(7), 8308–8323. DOI: 10.3390/ijms13078308.
  • Ma, J.-N.; Wang, S.-L.; Zhang, K.; Wu, Z.-G.; Hattori, M.; Chen, G.-L.; Ma, C.-M. Chemical Components and Antioxidant Activity of the Peels of Commercial Apple-Shaped Pear (Fruit of Pyrus Pyrifolia Cv. Pingguoli). J. Food Sci. 2012, 77(10), C1097–C1102. DOI: 10.1111/jfds.2012.77.issue-10.
  • Hernández-Santos, B.; Vivar-Vera, M.A.; Rodríguez-Miranda, J.; Herman-Lara, E.; Torruco-Uco, J.G.; Acevedo-Vendrell, O.; Martínez‐Sánchez, C.E. Dietary Fibre and Antioxidant Compounds in Passion Fruit (Passiflora edulis F. Flavicarpa) Peel and Depectinised Peel Waste. Int. J. Food Sci. Technol. 2015, 50(1), 268–274. DOI: 10.1111/ijfs.12647.
  • Rakholiya, K.; Kaneria, M.; Chanda, S. Inhibition of Microbial Pathogens Using Fruit and Vegetable Peel Extracts. Int. J. Food Sci. Nutr. 2014, 65(6), 733–739. DOI: 10.3109/09637486.2014.908167.
  • Mahadwar, G.; Chauhan, K.R.; Bhagavathy, G.V.; Murphy, C.; Smith, A.D.; Bhagwat, A.A. Swarm Motility of Salmonella Enterica Serovar Typhimurium Is Inhibited by Compounds from Fruit Peel Extracts. Lett. Appl. Microbiol. 2015, 60(4), 334–340. DOI: 10.1111/lam.2015.60.issue-4.
  • Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. DOI: 10.3390/nu5041417.
  • Ajila, C.M.; Aalami, M.; Leelavathi, K.; Rao, U.J.S.P. Mango Peel Powder: A Potential Source of Antioxidant and Dietary Fiber in Macaroni Preparations. Innovat. Food Sci. Emerg. Technol. 2010, 11(1), 219–224. DOI: 10.1016/j.ifset.2009.10.004.
  • Jun, X.;. High-Pressure Processing as Emergent Technology for the Extraction of Bioactive Ingredients from Plant Materials. Crit. Rev. Food Sci. Nutr. 2013, 53(8), 837–852. DOI: 10.1080/10408398.2011.561380.
  • Kabuki, T.; Nakajima, H.; Arai, M.; Ueda, S.; Kuwabara, Y.; Dosako, S. Characterization of Novel Antimicrobial Compounds from Mango (Mangifera indica L). Kernel Seeds. Food Chem. 2000, 71, 61–66. DOI: 10.1016/S0308-8146(00)00126-6.
  • Singh, R.P.; Murthy, K.N.C.; Jayaprakasha, G.K. Studies on the Antioxidant Activity of Pomegranate (Punica granatum) Peel and Seed Extracts Using in Vitro Models. J. Agric. Food Chem. 2002, 50, 81–86. DOI: 10.1021/jf010865b.
  • Alexandre, E.M.C.; Araújo, P.; Duarte, M.F.; De Freitas, V.; Pintado, M.; Saraiva, J.A. Experimental Design, Modeling, and Optimization of High-Pressure-Assisted Extraction of Bioactive Compounds from Pomegranate Peel. Food Bioproc. Technol 2017, 10(5), 886–900. DOI: 10.1007/s11947-017-1867-6.
  • Gullon, B.; Pintado, M.E.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of Polyphenolic Profile and Antibacterial Activity of Pomegranate Peel (Punica granatum) Flour Obtained from Co-Product of Juice Extraction. Food Cont. 2016, 59, 94–98. DOI: 10.1016/j.foodcont.2015.05.025.
  • Negro, C.; Tommasi, L.; Miceli, A. Phenolic Compounds and Antioxidant Activity from Red Grape Marc Extracts. Bioresour. Technol. 2003, 87, 41–44. DOI: 10.1016/S0960-8524(02)00202-X.
  • Leong, L.P.; Shui, G. An Investigation of Antioxidant Capacity of Fruits in Singapore Markets. Food Chem. 2002, 76(1), 69−75. DOI: 10.1016/S0308-8146(01)00251-5.
  • Wang, W.; Bostic, T.R.; Gu, L. Antioxidant Capacities, Procyanidinsand Pigments in Avocados of Different Strains and Cultivars. Food Chem. 2010, 122, 1193−1198. DOI: 10.1016/j.foodchem.2010.03.114.
  • Prasad, K.N.; Xie, H.; Hao, J.; Yang, B.; Qiu, S.; Wei, X.; Chen, F.; Jiang, Y. Antioxidant and Anticancer Activities of 8-Hydroxypsoralen Isolated from Wampee [Clausena lansium (Lour.) Skeels] Peel. Food Chem. 2010, 118, 62–66. DOI: 10.1016/j.foodchem.2009.04.073.
  • Demiray, S.; Piccirillo, C.; Rodrigues, C.L.; Pintado, M.E.; Castro, P.M.L. Extraction of Valuable Compounds from Ginja Cherry By-Products: Effect of the Solvent and Antioxidant Properties. Waste Biomass Valor. 2011, 2(4), 365–371. DOI: 10.1007/s12649-011-9088-0.
  • Liu, R.H.;. Health Benefits of Fruit and Vegetables are from Additive and Synergistic Combinations of Phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517–520.
  • Kuhad, R.C.; Gupta, R.; Singh, A. Microbial Cellulases and Their Industrial Applications. Enzyme Res. 2011, 2011, 1–10. DOI: 10.4061/2011/280696.
  • Zougagh, M.; Valcárcel, M.; Ríos, A. Supercritical Fluid Extraction: A Critical Review of Its Analytical Usefulness. TrAC Trends Anal. Chem. 2004, 23(5), 399–405. DOI: 10.1016/S0165-9936(04)00524-2.
  • Ueno, H.; Tanaka, M.; Machmudah, S.; Sasaki, M.; Goto, M. Supercritical Carbon Dioxide Extraction of Valuable Compounds from Citrus Junos Seed. Food Bioproc. Technol 2008, 1(4), 357–363. DOI: 10.1007/s11947-007-0015-0.
  • Da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical Fluid Extraction of Bioactive Compounds. TrAC Trends Anal. Chem. 2016, 76, 40–51. DOI: 10.1016/j.trac.2015.11.013.
  • Guclu-Ustundag, O.; Temelli, F. Solubility Behavior of Ternary Systems of Lipids, Cosolvents and Supercritical Carbon Dioxide and Processing Aspects. J. Supercrit. Fluids. 2005, 36(1), 1–15. DOI: 10.1016/j.supflu.2005.03.002.
  • Barbosa, H.M.A.; De Melo, M.M.R.; Coimbra, M.A.; Passos, C.P.; Silva, C.M. Optimization of the Supercritical Fluid Coextraction of Oil and Diterpenes from Spent Coffee Grounds Using Experimental Design and Response Surface Methodology. J. Supercrit. Fluids. 2014, 85, 165–172. DOI: 10.1016/j.supflu.2013.11.011.
  • Tunchaiyaphum, S.; Eshtiaghi, M.N.; Yoswathana, N. Extraction of Bioactive Compounds from Mango Peels Using Green Technology. Int. J. Chem. Eng. Appl. 2013, 4(4), 194–198. DOI: 10.7763/IJCEA.2013.V4.293.
  • Uddin, M.S.; Sarker, M.Z.; Ferdosh, S.; Akanda, M.J.; Easmin, M.S.; Bt Shamsudin, S.H.; Bin Yunus, K. Phytosterols and Their Extraction from Various Plant Matrices Using Supercritical Carbon Dioxide: A Review. J. Sci. Food Agric. 2015, 95(7), 1385–1394. DOI: 10.1002/jsfa.6833.
  • Brunner, G. Supercritical Gases as Solvents: Phase Equilibria, in Gas Extraction: An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes; Steinkopff: Heidelberg, 1994; 59–146.
  • Wang, L.; Weller, C.L. Recent Advances in Extraction of Nutraceuticals from Plants. Trends Food Sci. Technol. 2006, 17(6), 300–312. DOI: 10.1016/j.tifs.2005.12.004.
  • Giannuzzo, A.N.; Boggetti, H.J.; Nazareno, M.A.; Mishima, H.T. Supercritical Fluid Extraction of Naringin from the Peel of Citrus Paradisi. Phytochemical Anal. 2003, 14(4), 221–223. DOI: 10.1002/(ISSN)1099-1565.
  • Femenia, A.; Garcia-Marin, M.; Simal, S.; Rossello, C.; Blasco, M. Effects of Supercritical Carbon Dioxide (SC-CO2) Oil Extraction on the Cell Wall Composition of Almond Fruits. J. Ofc Agric. Food Chem. 2001, 49(12), 5828–5834. DOI: 10.1021/jf010532e.
  • Adil, İ.H.; Çetin, H.İ.; Yener, M.E.; Bayındırlı, A. Subcritical (Carbon Dioxide + Ethanol) Extraction of Polyphenols from Apple and Peach Pomaces, and Determination of the Antioxidant Activities of the Extracts. J. Supercrit. Fluids. 2007, 43(1), 55–63. DOI: 10.1016/j.supflu.2007.04.012.
  • Li, J.; Guo, Y.; Li, Z.; Lin, Y.; Liu, L.; Zhang, X.; Deng, H. Supercritical Carbon Dioxide and Hexane Extraction of Wax from Apple Peel Pomace: Content, Composition, and Thermal Properties. Sep. Sci. Technol. 2015, 50(14), 2230–2237.
  • Massias, A.; Boisard, S.; Baccaunaud, M.; Leal Calderon, F.; Subra-Paternault, P. Recovery of Phenolics from Apple Peels Using CO2 + Ethanol Extraction: Kinetics and Antioxidant Activity of Extracts. J. Supercrit. Fluids. 2015, 98, 172–182. DOI: 10.1016/j.supflu.2014.12.007.
  • Şanal, İ.S.; Güvenç, A.; Salgın, U.; Mehmetoğlu, Ü.; Çalımlı, A. Recycling of Apricot Pomace by Supercritical CO2 Extraction. J. Supercrit. Fluids. 2004, 32(1–3), 221–230. DOI: 10.1016/j.supflu.2004.02.002.
  • Şanal, İ.S.; Bayraktar, E.; Mehmetoğlu, Ü.; Çalımlı, A. Determination of Optimum Conditions for SC (CO2 + Ethanol) Extraction of Β-Carotene from Apricot Pomace Using Response Surface Methodology. J. Supercrit. Fluids. 2005, 34(3), 331–338. DOI: 10.1016/j.supflu.2004.08.005.
  • Comim, S.R.R.; Madella, K.; Oliveira, J.V.; Ferreira, S.R.S. Supercritical Fluid Extraction from Dried Banana Peel (Musa Spp., Genomic Group AAB): Extraction Yield, Mathematical Modeling, Economical Analysis and Phase Equilibria. J. Supercrit. Fluids. 2010, 54(1), 30–37. DOI: 10.1016/j.supflu.2010.03.010.
  • Laroze, L.E.; Díaz-Reinoso, B.; Moure, A.; Zúñiga, M.E.; Domínguez, H. Extraction of Antioxidants from Several Berries Pressing Wastes Using Conventional and Supercritical Solvents. Eur. Food Res. Technol. 2010, 231(5), 669–677. DOI: 10.1007/s00217-010-1320-9.
  • Reátegui, J.L.P.; Machado, A.P.D.F.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Extraction of Antioxidant Compounds from Blackberry (Rubus Sp.) Bagasse Using Supercritical CO2 Assisted by Ultrasound. J. Supercrit. Fluids. 2014, 94, 223–233. DOI: 10.1016/j.supflu.2014.07.019.
  • Paes, J.; Dotta, R.; Barbero, G.F.; Martinez, J. Extraction of Phenolic Compounds and Anthocyanins from Blueberry (Vaccinium myrtillus L.) Residues Using Supercritical CO2 and Pressurized Liquids. J. Supercrit. Fluids. 2014, 95, 8–16. DOI: 10.1016/j.supflu.2014.07.025.
  • Santos, D.N.E.; Souza, L.L.D.; Ferreira, N.J.; Oliveira, A.L.D. Study of Supercritical Extraction from Brazilian Cherry Seeds (Eugenia uniflora L.) with Bioactive Compounds. Food Bioproducts Process. 2015, 94, 365–374. DOI: 10.1016/j.fbp.2014.04.005.
  • Lee, Y.W.; Lee, C.H.; Kim, J.D.; Lee, Y.Y.; Row, K.H. Extraction of Perillyl Alcohol in Korean Orange Peel by Supercritical CO2. Sep. Sci. Technol. 2000, 35(7), 1069–1076. DOI: 10.1081/SS-100100211.
  • Lee, C.H.; Row, K.H.; Lee, Y.W.; Kim, J.D.; Lee, Y.Y. Supercritical Fluid Extraction of Perillyl Alcohol in Korean Orange Peel. J. Liq. Chromatogr. Relat. Technol. 2001, 24(13), 1987–1996. DOI: 10.1081/JLC-100104440.
  • Atti-Santos, A.C.; Rossato, M.; Serafini, L.A.; Cassel, E.; Moyna, P. Extraction of Essential Oils from Lime (Citrus latifolia Tanaka) by Hydrodistillation and Supercritical Carbon Dioxide. Braz. Arch. Biol. Technol. 2005, 48, 155–160. DOI: 10.1590/S1516-89132005000100020.
  • Teng, W.Y.; Chen, C.C.; Chung, R.S. HPLC Comparison of Supercritical Fluid Extraction and Solvent Extraction of Coumarins from the Peel of Citrus Maxima Fruit. Phytochemical Anal. 2005, 16(6), 459–462. DOI: 10.1002/pca.870.
  • Roy, B.C.; Hoshino, M.; Ueno, H.; Sasaki, M.; Goto, M. Supercritical Carbon Dioxide Extraction of the Volatiles from the Peel of Japanese Citrus Fruits. J. Essential Oil Res. 2007, 19(1), 78–84. DOI: 10.1080/10412905.2007.9699234.
  • Yu, J.; Dandekar, D.V.; Toledo, R.T.; Singh, R.K.; Patil, B.S. Supercritical Fluid Extraction of Limonoids and Naringin from Grapefruit (Citrus paradisi Macf.) Seeds. Food Chem. 2007, 105(3), 1026–1031. DOI: 10.1016/j.foodchem.2007.04.062.
  • Toledo-Guillen, A.R.; Higuera-Ciapara, I.; Garcia-Navarrete, G.; De La Fuente, J.C. Extraction of Bioactive Flavonoid Compounds from Orange (Citrus sinensis) Peel Using Supercritical CO2. J. Biotechnol. 2010, 150, S313–S314. DOI: 10.1016/j.jbiotec.2010.09.292.
  • Lee, Y.-H.; Charles, A.L.; Kung, H.-F.; Ho, C.-T.; Huang, T.-C. Extraction of Nobiletin and Tangeretin from Citrus Depressa Hayata by Supercritical Carbon Dioxide with Ethanol as Modifier. Ind. Crops Prod. 2010, 31(1), 59–64. DOI: 10.1016/j.indcrop.2009.09.003.
  • Omar, J.; Alonso, I.; Garaikoetxea, A.; Etxebarria, N. Optimization of Focused Ultrasound Extraction (FUSE) and Supercritical Fluid Extraction (SFE) of Citrus Peel Volatile Oils and Antioxidants. Food Anal. Met. 2012, 6(4), 1244–1252. DOI: 10.1007/s12161-012-9536-x.
  • He, J.-Z.; Shao, P.; Liu, J.-H.; Ru, Q.-M. Supercritical Carbon Dioxide Extraction of Flavonoids from Pomelo (Citrus grandis (L.) Osbeck) Peel and Their Antioxidant Activity. Int. J. Mol. Sci. 2012, 13(10), 13065–13078. DOI: 10.3390/ijms131013065.
  • M’hiri, N.; Ioannou, I.; Mihoubi Boudhrioua, N.; Ghoul, M. Effect of Different Operating Conditions on the Extraction of Phenolic Compounds in Orange Peel. Food Bioproducts Process. 2015, 96, 161–170. DOI: 10.1016/j.fbp.2015.07.010.
  • Xhaxhiu, K.; Wenclawiak, B. Comparison of Supercritical CO2 and Ultrasonic Extraction of Orange Peel Essential Oil from Albanian Moro Cultivars. J. Essen. Oil Bear. Plants. 2015, 18(2), 289–299. DOI: 10.1080/0972060X.2015.1010603.
  • Gök, A.; İsmail Kirbaşlar, Ş.; Gülay Kirbaşlar, F. Comparison of Lemon Oil Composition after Using Different Extraction Methods. J. Essential Oil Res. 2015, 27(1), 17–22. DOI: 10.1080/10412905.2014.982872.
  • Murga, R.; Ruiz, R.; Beltrán, S.; Cabezas, J.L. Extraction of Natural Complex Phenols and Tannins from Grape Seeds by Using Supercritical Mixtures of Carbon Dioxide and Alcohol. J. Agric. Food Chem. 2000, 48(8), 3408–3412. DOI: 10.1021/jf9912506.
  • Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of Phenolic Antioxidants from Wine Industry By-Products. Bioresour. Technol. 2004, 92(2), 201–208. DOI: 10.1016/j.biortech.2003.06.002.
  • Ghafoor, K.; Park, J.; Choi, Y.-H. Optimization of Supercritical Fluid Extraction of Bioactive Compounds from Grape (Vitis labrusca B.) Peel by Using Response Surface Methodology. Innovat. Food Sci. Emerg. Technol. 2010, 11(3), 485–490. DOI: 10.1016/j.ifset.2010.01.013.
  • Casas, L.; Mantell, C.; Rodríguez, M.; Ossa, E.J.M.D.L.; Roldán, A.; Ory, I.D.; Caro, I.; Blandino, A. Extraction of Resveratrol from the Pomace of Palomino Fino Grapes by Supercritical Carbon Dioxide. J. Food Eng. 2010, 96(2), 304–308. DOI: 10.1016/j.jfoodeng.2009.08.002.
  • Yilmaz, E.E.; Özvural, E.B.; Vural, H. Extraction and Identification of Proanthocyanidins from Grape Seed (Vitis vinifera) Using Supercritical Carbon Dioxide. J. Supercrit. Fluids. 2011, 55(3), 924–928. DOI: 10.1016/j.supflu.2010.10.046.
  • Farías-Campomanes, A.M.; Rostagno, M.A.; Meireles, M.A.A. Production of Polyphenol Extracts from Grape Bagasse Using Supercritical Fluids: Yield, Extract Composition and Economic Evaluation. J. Supercrit. Fluids. 2013, 77, 70–78. DOI: 10.1016/j.supflu.2013.02.006.
  • Oliveira, D.A.; Salvador, A.A.; Smania, A., Jr.; Smania, E.F.; Maraschin, M.; Ferreira, S.R. Antimicrobial Activity and Composition Profile of Grape (Vitis vinifera) Pomace Extracts Obtained by Supercritical Fluids. J. Biotechnol. 2013, 164(3), 423–432. DOI: 10.1016/j.jbiotec.2012.09.014.
  • Da Porto, C.; Natolino, A.; Decorti, D. Extraction of Proanthocyanidins from Grape Marc by Supercritical Fluid Extraction Using CO2 as Solvent and Ethanol–Water Mixture as Co-Solvent. J. Supercrit. Fluids. 2014, 87, 59–64. DOI: 10.1016/j.supflu.2013.12.013.
  • Da Porto, C.; Natolino, A.; Decorti, D. The Combined Extraction of Polyphenols from Grape Marc: Ultrasound Assisted Extraction Followed by Supercritical CO2 Extraction of Ultrasound-Raffinate. LWT Food Sci. Technol. 2015, 61(1), 98–104. DOI: 10.1016/j.lwt.2014.11.027.
  • Reverchon, E.; Kaziunas, A.; Marrone, C. Supercritical CO2 Extraction of Hiprose Seed Oil: Experiments and Mathematical Modelling. Chem. Eng. Sci. 2000, 55(12), 2195–2201. DOI: 10.1016/S0009-2509(99)00519-9.
  • Ouyang, H.; Yu, J. Study on Aucutin Extraction in Eucommia Key Fruit Seeds Meal by Supercritical CO2 Mixed with Entrainers. Advanced Mater. Res. 2013, 610–613, 3545–3548. DOI: 10.4028/www.scientific.net/AMR.610-613.3545.
  • Cravotto, G.; Bicchi, C.; Mantegna, S.; Binello, A.; Tomao, V.; Chemat, F. Extraction of Kiwi Seed Oil: Soxhlet versus Four Different Non-Conventional Techniques. Nat. Prod. Res. 2011, 25(10), 974–981. DOI: 10.1080/14786419.2010.524162.
  • Kawahito, Y.; Kondo, M.; Machmudah, S.; Sibano, K.; Sasaki, M.; Goto, M. Supercritical CO2 Extraction of Biological Active Compounds from Loquat Seed. Separation and Purification Technology. 2008, 61(2), 130–135.
  • Garcia-Mendoza, M.P.; Paula, J.T.; Paviani, L.C.; Cabral, F.A.; Martinez-Correa, H.A. Extracts from Mango Peel By-Product Obtained by Supercritical CO2 and Pressurized Solvent Processes. LWT Food Sci. Technol. 2015, 62(1, Part 1), 131–137. DOI: 10.1016/j.lwt.2015.01.026.
  • Maran, J.P.; Priya, B. Supercritical Fluid Extraction of Oil from Muskmelon (Cucumis melo) Seeds. J. Taiwan Inst. Chem. Eng. 2015, 47, 71–78. DOI: 10.1016/j.jtice.2014.10.007.
  • Tonthubthimthong, P.; Douglas, P.L.; Douglas, S.; Leuwisutthichat, W.; Teppaitoon, W.; Pengsopa, L. Extraction of Nimbin from Neem Seeds Using Supercritical CO2 and a Supercritical CO2–Methanol Mixture. J. Supercrit. Fluids. 2004, 30(3), 287–301. DOI: 10.1016/j.supflu.2003.07.007.
  • Bai, X.P.; Zhao, X.L.; Guo, Z.Y.; Liu, X.Q.; Xu, F.L. Optimization of Supercritical CO2 Extraction of Noni (Morinda citrifolia L) Seed Oil Using Response Surface Methodology. Advanced Mater. Res. 2012, 361-363, 743–747.
  • De Oliveira, R.C.; Rossi, R.M.; Gimenes, M.L.; Jagadevan, S.; Giufrida, W.M.; Davantel De Barrosl, S.T. Extraction of Passion Fruit Seed Oil Using Supercritical CO2: A Study of Mass Transfer and Rheological Property by Bayesian Inference. Grasas Y Aceites 2013, 64(4), 400–406. DOI: 10.3989/gya.095512.
  • Oliveira, D.A.; Angonese, M.; Gomes, C.; Ferreira, S.R.S. Valorization of Passion Fruit (Passiflora Edulis Sp.) By-Products: Sustainable Recovery and Biological Activities. J. Supercrit. Fluids. 2016, 111, 55–62. DOI: 10.1016/j.supflu.2016.01.010.
  • Viganó, J.; Coutinho, J.P.; Souza, D.S.; Baroni, N.A.F.; Godoy, H.T.; Macedo, J.A.; Martínez, J. Exploring the Selectivity of Supercritical CO2 to Obtain Nonpolar Fractions of Passion Fruit Bagasse Extracts. J. Supercrit. Fluids. 2016, 110, 1–10. DOI: 10.1016/j.supflu.2015.12.001.
  • Ekinci, M.S.; Gürü, M. Extraction of Oil and Β-Sitosterol from Peach (Prunus persica) Seeds Using Supercritical Carbon Dioxide. J. Supercrit. Fluids. 2014, 92, 319–323. DOI: 10.1016/j.supflu.2014.06.004.
  • Takahashi, M.; Watanabe, H.; Kikkawa, J.; Ota, M.; Watanabe, M.; Sato, Y.; Inomata, H.; Sato, N. Carotenoids Extraction from Japanese Persimmon (Hachiya-Kaki) Peels by Supercritical CO2 with Ethanol. Anal. Sci. 2006, 22(11), 1441–1447. DOI: 10.2116/analsci.22.1441.
  • Goli, A.H.; Barzegar, M.; Sahari, M.A. Antioxidant Activity and Total Phenolic Compounds of Pistachio (Pistachia vera) Hull Extracts. Food Chem. 2005, 92(3), 521–525. DOI: 10.1016/j.foodchem.2004.08.020.
  • Liu, W.; Fu, Y.-J.; Zu, Y.-G.; Tong, M.-H.; Wu, N.; Liu, X.-L.; Zhang, S. Supercritical Carbon Dioxide Extraction of Seed Oil from Opuntia Dillenii Haw. and Its Antioxidant Activity. Food Chem. 2009, 114(1), 334–339. DOI: 10.1016/j.foodchem.2008.09.049.
  • Abbasi, H.; Rezaei, K.; Emamdjomeh, Z.; Mousavi, S.M.E. Effect of Various Extraction Conditions on the Phenolic Contents of Pomegranate Seed Oil. Eur. J. Lipid Sci. Technol. 2008, 110(5), 435–440. DOI: 10.1002/ejlt.200700199.
  • Abbasi, H.; Rezaei, K.; Rashidi, L. Extraction of Essential Oils from the Seeds of Pomegranate Using Organic Solvents and Supercritical CO2. J. Am. Oil Chemists’ Soc. 2008, 85(1), 83–89. DOI: 10.1007/s11746-007-1158-x.
  • Liu, G.; Xu, X.; Gong, Y.; He, L.; Gao, Y. Effects of Supercritical CO2 Extraction Parameters on Chemical Composition and Free Radical-Scavenging Activity of Pomegranate (Punica granatum L.) Seed Oil. Food Bioproducts Process. 2012, 90(3), 573–578. DOI: 10.1016/j.fbp.2011.11.004.
  • Wenli, Y.; Yaping, Z.; Jingjing, C.; Bo, S. Comparison of Two Kinds of Pumpkin Seed Oils Obtained by Supercritical CO2 Extraction. Eur. J. Lipid Sci. Technol. 2004, 106(6), 355–358. DOI: 10.1002/(ISSN)1438-9312.
  • Mitra, P.; Ramaswamy, H.S.; Chang, K.S. Pumpkin (Cucurbita maxima) Seed Oil Extraction Using Supercritical Carbon Dioxide and Physicochemical Properties of the Oil. J. Food Eng. 2009, 95(1), 208–213. DOI: 10.1016/j.jfoodeng.2009.04.033.
  • Fathordoobady, F.; Mirhosseini, H.; Selamat, J.; Manap, M.Y.A. Effect of Solvent Type and Ratio on Betacyanins and Antioxidant Activity of Extracts from Hylocereus polyrhizus Flesh and Peel by Supercritical Fluid Extraction and Solvent Extraction. Food Chem. 2016, 202, 70–80. DOI: 10.1016/j.foodchem.2016.01.121.
  • Castro-Vargas, H.I.; Benelli, P.; Ferreira, S.R.S.; Parada-Alfonso, F. Supercritical Fluid Extracts from Tamarillo (Solanum betaceum Sendtn) Epicarp and Its Application as Protectors against Lipid Oxidation of Cooked Beef Meat. J. Supercrit. Fluids. 2013, 76, 17–23. DOI: 10.1016/j.supflu.2012.10.006.
  • Baysal, T.; Ersus, S.; Starmans, D.A.J. Supercritical CO2 Extraction of Β-Carotene and Lycopene from Tomato Paste Waste. J. Agric. Food Chem. 2000, 48(11), 5507–5511. DOI: 10.1021/jf000311t.
  • Rozzi, N.L.; Singh, R.K.; Vierling, R.A.; Watkins, B.A. Supercritical Fluid Extraction of Lycopene from Tomato Processing Byproducts. J. Agric. Food Chem. 2002, 50(9), 2638–2643. DOI: 10.1021/jf011001t.
  • Sabio, E.; Lozano, M.; Montero De Espinosa, V.; Mendes, R.L.; Pereira, A.P.; Palavra, A.F.; Coelho, J.A. Lycopene and Β-Carotene Extraction from Tomato Processing Waste Using Supercritical CO2. Ind. Eng. Chem. Res. 2003, 42(25), 6641–6646. DOI: 10.1021/ie0301233.
  • Topal, U.; Sasaki, M.; Goto, M.; Hayakawa, K. Extraction of Lycopene from Tomato Skin with Supercritical Carbon Dioxide: Effect of Operating Conditions and Solubility Analysis. J. Agric. Food Chem. 2006, 54(15), 5604–5610. DOI: 10.1021/jf0606407.
  • Vági, E.; Simándi, B.; Vásárhelyiné, K.P.; Daood, H.; Kéry, Á.; Doleschall, F.; Nagy, B. Supercritical Carbon Dioxide Extraction of Carotenoids, Tocopherols and Sitosterols from Industrial Tomato By-Products. J. Supercrit. Fluids. 2007, 40(2), 218–226. DOI: 10.1016/j.supflu.2006.05.009.
  • Huang, W.; Li, Z.; Niu, H.; Li, D.; Zhang, J. Optimization of Operating Parameters for Supercritical Carbon Dioxide Extraction of Lycopene by Response Surface Methodology. J. Food Eng. 2008, 89(3), 298–302. DOI: 10.1016/j.jfoodeng.2008.05.006.
  • Shi, J.; Yi, C.; Xue, S.J.; Jiang, Y.; Ma, Y.; Li, D. Effects of Modifiers on the Profile of Lycopene Extracted from Tomato Skins by Supercritical CO2. J. Food Eng. 2009, 93(4), 431–436. DOI: 10.1016/j.jfoodeng.2009.02.008.
  • Zhang, K.; Jiang, H.; Ren, Y. The Effect of Technical Parameters on Lycopene Extraction in Supercritical Fluid Extraction from Freeze-Dried Tomato Pomace (Peels and Seeds). Adv. Mater. Res. 2011, 236–238, 2868–2871.
  • Machmudah, S.; Winardi, S.; Sasaki, M.; Goto, M.; Kusumoto, N.; Hayakawa, K. Lycopene Extraction from Tomato Peel By-Product Containing Tomato Seed Using Supercritical Carbon Dioxide. J. Food Eng. 2012, 108(2), 290–296. DOI: 10.1016/j.jfoodeng.2011.08.012.
  • Bimakr, M.; Rahman, R.A.; Ganjloo, A.; Taip, F.S.; Adzahan, N.M.; Sarker, M.Z.I. Characterization of Valuable Compounds from Winter Melon (Benincasa hispida (Thunb.) Cogn.) Seeds Using Supercritical Carbon Dioxide Extraction Combined with Pressure Swing Technique. Food Bioproc. Technol 2015, 9(3), 396–406. DOI: 10.1007/s11947-015-1636-3.
  • Hrabovski, N.; Sinadinović-Fišer, S.; Nikolovski, B.; Sovilj, M.; Borota, O. Phytosterols in Pumpkin Seed Oil Extracted by Organic Solvents and Supercritical CO2. Eur. J. Lipid Sci. Technol. 2012, 114(10), 1204–1211. DOI: 10.1002/ejlt.v114.10.
  • Wang, X.; Chen, Q.; Lü, X. Pectin Extracted from Apple Pomace and Citrus Peel by Subcritical Water. Food Hydrocoll. 2014, 38, 129–137. DOI: 10.1016/j.foodhyd.2013.12.003.
  • Budrat, P.; Shotipruk, A. Enhanced Recovery of Phenolic Compounds from Bitter Melon (Momordica charantia) by Subcritical Water Extraction. Separation Purif. Technol. 2009, 66(1), 125–129. DOI: 10.1016/j.seppur.2008.11.014.
  • Lamm, L.J.; Yang, Y. Off-Line Coupling of Subcritical Water Extraction with Subcritical Water Chromatography via a Sorbent Trap and Thermal Desorption. Anal. Chem. 2003, 75(10), 2237–2242. DOI: 10.1021/ac020724o.
  • Chienthavorn, O.; Insuan, W. Superheated Water Extraction of Lime Peel: A Comparison with Conventional Methods. Anal. Lett. 2004, 37(11), 2393–2409. DOI: 10.1081/AL-200028189.
  • Kim, J.-W.; Nagaoka, T.; Ishida, Y.; Hasegawa, T.; Kitagawa, K.; Lee, S.-C. Subcritical Water Extraction of Nutraceutical Compounds from Citrus Pomaces. Sep. Sci. Technol. 2009, 44(11), 2598–2608. DOI: 10.1080/01496390903014375.
  • Cheigh, C.-I.; Chung, E.-Y.; Chung, M.-S. Enhanced Extraction of Flavanones Hesperidin and Narirutin from Citrus Unshiu Peel Using Subcritical Water. J. Food Eng. 2012, 110(3), 472–477. DOI: 10.1016/j.jfoodeng.2011.12.019.
  • Tanaka, M.; Takamizu, A.; Hoshino, M.; Sasaki, M.; Goto, M. Extraction of Dietary Fiber from Citrus Junos Peel with Subcritical Water. Food Bioproducts Process. 2012, 90(2), 180–186. DOI: 10.1016/j.fbp.2011.03.005.
  • Min, K.Y.; Lee, K.A.; Kim, H.J.; Kim, K.-T.; Chung, M.-S.; Chang, P.-S.; Park, H.; Paik, H.-D. Antioxidative and Anti-Inflammatory Activities of Citrus Unshiu Peel Extracts Using a Combined Process of Subcritical Water Extraction and Acid Hydrolysis. Food Sci. Biotechnol. 2014, 23(5), 1441–1446. DOI: 10.1007/s10068-014-0197-y.
  • Aliakbarian, B.; Fathi, A.; Perego, P.; Dehghani, F. Extraction of Antioxidants from Winery Wastes Using Subcritical Water. J. Supercrit. Fluids. 2012, 65, 18–24. DOI: 10.1016/j.supflu.2012.02.022.
  • Duba, K.S.; Casazza, A.A.; Mohamed, H.B.; Perego, P.; Fiori, L. Extraction of Polyphenols from Grape Skins and Defatted Grape Seeds Using Subcritical Water: Experiments and Modeling. Food Bioproducts Process. 2015, 94, 29–38. DOI: 10.1016/j.fbp.2015.01.001.
  • Roselló-Soto, E.; Parniakov, O.; Deng, Q.; Patras, A.; Koubaa, M.; Grimi, N.; Boussetta, N.; Tiwari, B.K.; Vorobiev, E.; Lebovka, N.; Barba, F.J. Application of Non-Conventional Extraction Methods: Toward a Sustainable and Green Production of Valuable Compounds from Mushrooms. Food Eng. Rev. 2016, 8(2), 214–234. DOI: 10.1007/s12393-015-9131-1.
  • Talmaciu, A.I.; Volf, I.; Popa, V.I. A Comparative Analysis of the ‘Green’ Techniques Applied for Polyphenols Extraction from Bioresources. Chem. Biodiversity. 2015, 12(11), 1635–1651. DOI: 10.1002/cbdv.201400415.
  • Ashokkumar, M.;. Applications of Ultrasound in Food and Bioprocessing. Ultrason. Sonochem. 2015, 25, 17–23. DOI: 10.1016/j.ultsonch.2014.08.012.
  • Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M.; Bordbar, S.; Serjouie, A. Optimisation of Ultrasound-Assisted Extraction of Oil from Papaya Seed by Response Surface Methodology: Oil Recovery, Radical Scavenging Antioxidant Activity, and Oxidation Stability. Food Chem. 2015, 172, 7–17. DOI: 10.1016/j.foodchem.2014.08.068.
  • Herrera, M.C.; Luque De Castro, M.D. Ultrasound-Assisted Extraction of Phenolic Compounds from Strawberries Prior to Liquid Chromatographic Separation and Photodiode Array Ultraviolet Detection. J. Chromatogr. 2005, 1100(1), 1–7. DOI: 10.1016/j.chroma.2005.09.021.
  • Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. DOI: 10.1016/j.ultsonch.2016.06.035.
  • Soria, A.C.; Villamiel, M. Effect of Ultrasound on the Technological Properties and Bioactivity of Food: A Review. Trends Food Sci. Technol. 2010, 21(7), 323–331. DOI: 10.1016/j.tifs.2010.04.003.
  • Awad, T.S.; Moharram, H.A.; Shaltout, O.E.; Asker, D.; Youssef, M.M. Applications of Ultrasound in Analysis, Processing and Quality Control of Food: A Review. Food Res. Int. 2012, 48(2), 410–427. DOI: 10.1016/j.foodres.2012.05.004.
  • Deng, G.F.; Xu, D.P.; Li, S.; Li, H.B. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from Sugar Apple (Annona squamosa L.) Peel Using Response Surface Methodology. Molecules 2015, 20(11), 20448–20459. DOI: 10.3390/molecules201119708.
  • Yolmeh, M.; Habibi Najafi, M.B.; Farhoosh, R. Optimisation of Ultrasound-Assisted Extraction of Natural Pigment from Annatto Seeds by Response Surface Methodology (RSM). Food Chem. 2014, 155, 319–324. DOI: 10.1016/j.foodchem.2014.01.059.
  • Galván D’Alessandro, L.; Dimitrov, K.; Vauchel, P.; Nikov, I. Kinetics of Ultrasound Assisted Extraction of Anthocyanins from Aronia melanocarpa (Black Chokeberry) Wastes. Chem. Eng. Res. Des. 2014, 92(10), 1818–1826. DOI: 10.1016/j.cherd.2013.11.020.
  • Ma, Y.; Ye, X.; Hao, Y.; Xu, G.; Xu, G.; Liu, D. Ultrasound-Assisted Extraction of Hesperidin from Penggan (Citrus reticulata) Peel. Ultrason. Sonochem. 2008, 15(3), 227–232. DOI: 10.1016/j.ultsonch.2007.03.006.
  • Ma, Y.Q.; Chen, J.C.; Liu, D.H.; Ye, X.Q. Effect of Ultrasonic Treatment on the Total Phenolic and Antioxidant Activity of Extracts from Citrus Peel. J. Food Sci. 2008, 73(8), T115–20. DOI: 10.1111/j.1750-3841.2008.00908.x.
  • Ma, Y.Q.; Ye, X.Q.; Fang, Z.X.; Chen, J.C.; Xu, G.H.; Liu, D.H. Phenolic Compounds and Antioxidant Activity of Extracts from Ultrasonic Treatment of Satsuma Mandarin (Citrus unshiu Marc.) Peels. J. Agric. Food Chem. 2008, 56(14), 5682–5690. DOI: 10.1021/jf072474o.
  • Ma, Y.-Q.; Chen, J.-C.; Liu, D.-H.; Ye, X.-Q. Simultaneous Extraction of Phenolic Compounds of Citrus Peel Extracts: Effect of Ultrasound. Ultrason. Sonochem. 2009, 16(1), 57–62. DOI: 10.1016/j.ultsonch.2008.04.012.
  • Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.-S.; Dangles, O.; Chemat, F. Ultrasound-Assisted Extraction of Polyphenols (Flavanone glycosides) from Orange (Citrus sinensis L.) Peel. Food Chem. 2010, 119(2), 851–858. DOI: 10.1016/j.foodchem.2009.08.046.
  • Sun, Y.; Liu, D.; Chen, J.; Ye, X.; Yu, D. Effects of Different Factors of Ultrasound Treatment on the Extraction Yield of the All-Trans-Β-Carotene from Citrus Peels. Ultrason. Sonochem. 2011, 18(1), 243–249. DOI: 10.1016/j.ultsonch.2010.05.014.
  • Li, W.; Wang, Z.; Wang, Y.-P.; Jiang, C.; Liu, Q.; Sun, Y.-S.; Zheng, Y.-N. Pressurised Liquid Extraction Combining LC–DAD–ESI/MS Analysis as an Alternative Method to Extract Three Major Flavones in Citrus Reticulata ‘Chachi’ (Guangchenpi). Food Chem. 2012, 130(4), 1044–1049. DOI: 10.1016/j.foodchem.2011.07.129.
  • Dahmoune, F.; Boulekbache, L.; Moussi, K.; Aoun, O.; Spigno, G.; Madani, K. Valorization of Citrus Limon Residues for the Recovery of Antioxidants: Evaluation and Optimization of Microwave and Ultrasound Application to Solvent Extraction. Ind. Crops Prod. 2013, 50, 77–87. DOI: 10.1016/j.indcrop.2013.07.013.
  • Allaf, T.; Tomao, V.; Ruiz, K.; Chemat, F. Instant Controlled Pressure Drop Technology and Ultrasound Assisted Extraction for Sequential Extraction of Essential Oil and Antioxidants. Ultrason. Sonochem. 2013, 20(1), 239–246. DOI: 10.1016/j.ultsonch.2012.05.013.
  • Xhaxhiu, K.; Korpa, A.; Mele, A.; Kota, T. Ultrasonic and Soxhlet Extraction Characteristics of the Orange Peel from “Moro” Cultivars Grown in Albania. J. Essen. Oil Bear. Plants. 2013, 16(4), 421–428. DOI: 10.1080/0972060X.2013.813277.
  • Boukroufa, M.; Boutekedjiret, C.; Petigny, L.; Rakotomanomana, N.; Chemat, F. Bio-Refinery of Orange Peels Waste: A New Concept Based on Integrated Green and Solvent Free Extraction Processes Using Ultrasound and Microwave Techniques to Obtain Essential Oil, Polyphenols and Pectin. Ultrason. Sonochem. 2015, 24, 72–79. DOI: 10.1016/j.ultsonch.2014.11.015.
  • Ma, Y.; Ye, X.; Wu, H.; Wang, H.; Sun, Z.; Zhu, P.; Han, Z. Evaluation of the Effect of Ultrasonic Variables at Locally Ultrasonic Field on Yield of Hesperidin from Penggan (Citrus reticulata) Peels. LWT Food Sci. Technol. 2015, 60(2,Part 2), 1088–1094. DOI: 10.1016/j.lwt.2014.10.013.
  • Nayak, B.; Dahmoune, F.; Moussi, K.; Remini, H.; Dairi, S.; Aoun, O.; Khodir, M. Comparison of Microwave, Ultrasound and Accelerated-Assisted Solvent Extraction for Recovery of Polyphenols from Citrus Sinensis Peels. Food Chem. 2015, 187, 507–516. DOI: 10.1016/j.foodchem.2015.04.081.
  • Dranca, F.; Oroian, M. Optimization of Ultrasound-Assisted Extraction of Total Monomeric Anthocyanin (TMA) and Total Phenolic Content (TPC) from Eggplant (Solanum melongena L.) Peel. Ultrason. Sonochem. 2016, 31, 637–646. DOI: 10.1016/j.ultsonch.2015.11.008.
  • Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of Anthocyanins from Grape By-Products Assisted by Ultrasonics, High Hydrostatic Pressure or Pulsed Electric Fields: A Comparison. Innovat. Food Sci. Emerg. Technol. 2008, 9(1), 85–91. DOI: 10.1016/j.ifset.2007.06.002.
  • Ghafoor, K.; Choi, Y.H. Optimization of Ultrasound Assisted Extraction of Phenolic Compounds and Antioxidants from Grape Peel through Response Surface Methodology. J. Korean Soc. Appl. Biol. Chem. 2009, 52(3), 295–300. DOI: 10.3839/jksabc.2009.052.
  • Casazza, A.A.; Aliakbarian, B.; Mantegna, S.; Cravotto, G.; Perego, P. Extraction of Phenolics from Vitis Vinifera Wastes Using Non-Conventional Techniques. J. Food Eng. 2010, 100(1), 50–55. DOI: 10.1016/j.jfoodeng.2010.03.026.
  • Minjares-Fuentes, R.; Femenia, A.; Garau, M.C.; Meza-Velázquez, J.A.; Simal, S.; Rosselló, C. Ultrasound-Assisted Extraction of Pectins from Grape Pomace Using Citric Acid: A Response Surface Methodology Approach. Carbohydr. Polym. 2014, 106, 179–189. DOI: 10.1016/j.carbpol.2014.02.013.
  • González-Centeno, M.R.; Knoerzer, K.; Sabarez, H.; Simal, S.; Rosselló, C.; Femenia, A. Effect of Acoustic Frequency and Power Density on the Aqueous Ultrasonic-Assisted Extraction of Grape Pomace (Vitis vinifera L.) - A Response Surface Approach. Ultrason. Sonochem. 2014, 21(6), 2176–2184. DOI: 10.1016/j.ultsonch.2014.01.021.
  • Tao, Y.; Zhang, Z.; Sun, D.-W. Kinetic Modeling of Ultrasound-Assisted Extraction of Phenolic Compounds from Grape Marc: Influence of Acoustic Energy Density and Temperature. Ultrason. Sonochem. 2014, 21(4), 1461–1469. DOI: 10.1016/j.ultsonch.2014.01.029.
  • Medina-Meza, I.G.; Barbosa-Cánovas, G.V. Assisted Extraction of Bioactive Compounds from Plum and Grape Peels by Ultrasonics and Pulsed Electric Fields. J. Food Eng. 2015, 166, 268–275. DOI: 10.1016/j.jfoodeng.2015.06.012.
  • Barba, F.J.; Brianceau, S.; Turk, M.; Boussetta, N.; Vorobiev, E. Effect of Alternative Physical Treatments (Ultrasounds, Pulsed Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-Compounds from Fermented Grape Pomace. Food Bioproc. Technol 2015, 8(5), 1139–1148. DOI: 10.1007/s11947-015-1482-3.
  • Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A Comparative Study on Different Extraction Techniques to Recover Red Grape Pomace Polyphenols from Vinification Byproducts. Ind. Crops Prod. 2015, 75(Part B), 141–149. DOI: 10.1016/j.indcrop.2015.05.063.
  • Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of Conventional and Ultrasound Assisted Extraction of Flavonoids from Grapefruit (Citrus paradisi L.) Solid Wastes. LWT Food Sci. Technol. 2015, 64(2), 1114–1122. DOI: 10.1016/j.lwt.2015.07.024.
  • Amid, M.; Murshid, F.S.; Manap, M.Y.; Islam Sarker, Z. Optimization of Ultrasound-Assisted Extraction of Pectinase Enzyme from Guava (Psidium guajava) Peel: Enzyme Recovery, Specific Activity, Temperature, and Storage Stability. Prep. Biochem. Biotechnol. 2016, 46(1), 91–99. DOI: 10.1080/10826068.2015.1031396.
  • Rodrigues, S.; Fernandes, F.A.N.; De Brito, E.S.; Sousa, A.D.; Narain, N. Ultrasound Extraction of Phenolics and Anthocyanins from Jabuticaba Peel. Ind. Crops Prod. 2015, 69, 400–407. DOI: 10.1016/j.indcrop.2015.02.059.
  • Chen, Y.; Luo, H.; Gao, A.; Zhu, M. Ultrasound-Assisted Extraction of Polysaccharides from Litchi (Litchi chinensis Sonn.) Seed by Response Surface Methodology and Their Structural Characteristics. Innovat. Food Sci. Emerg. Technol. 2011, 12(3), 305–309. DOI: 10.1016/j.ifset.2011.03.003.
  • Prasad, K.N.; Yang, B.; Zhao, M.; Sun, J.; Wei, X.; Jiang, Y. Effects of High Pressure or Ultrasonic Treatment on Extraction Yield and Antioxidant Activity of Pericarp Tissues of Longan Fruit. J. Food Biochem. 2010, 34(4), 838–855.
  • Delfanian, M.; Esmaeilzadeh Kenari, R.; Sahari, M.A. Influence of Extraction Techniques on Antioxidant Properties and Bioactive Compounds of Loquat Fruit (Eriobotrya japonica Lindl.) Skin and Pulp Extracts. Food Sci. Nutr. 2015, 3(3), 179–187. DOI: 10.1002/fsn3.201.
  • Ruiz-Montanez, G.; Ragazzo-Sanchez, J.A.; Calderon-Santoyo, M.; Velazquez-De La Cruz, G.; De Leon, J.A.; Navarro-Ocana, A. Evaluation of Extraction Methods for Preparative Scale Obtention of Mangiferin and Lupeol from Mango Peels (Mangifera indica L.). Food Chem. 2014, 159, 267–272. DOI: 10.1016/j.foodchem.2014.03.009.
  • Roselló-Soto, E.; Barba, F.J.; Parniakov, O.; Galanakis, C.M.; Lebovka, N.; Grimi, N.; Vorobiev, E. High Voltage Electrical Discharges, Pulsed Electric Field, and Ultrasound Assisted Extraction of Protein and Phenolic Compounds from Olive Kernel. Food Bioproc. Technol 2015, 8(4), 885–894. DOI: 10.1007/s11947-014-1456-x.
  • Ordóñez-Santos, L.E.; Pinzón-Zarate, L.X.; González-Salcedo, L.O. Optimization of Ultrasonic-Assisted Extraction of Total Carotenoids from Peach Palm Fruit (Bactris gasipaes) By-Products with Sunflower Oil Using Response Surface Methodology. Ultrason. Sonochem. 2015, 27, 560–566. DOI: 10.1016/j.ultsonch.2015.04.010.
  • Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and Pulsed Ultrasound-Assisted Extractions of Antioxidants from Pomegranate Peel. Ultrason. Sonochem. 2012, 19(2), 365–372. DOI: 10.1016/j.ultsonch.2011.05.015.
  • Goula, A.M.;. Ultrasound-Assisted Extraction of Pomegranate Seed Oil – Kinetic Modeling. J. Food Eng. 2013, 117(4), 492–498. DOI: 10.1016/j.jfoodeng.2012.10.009.
  • Kaderides, K.; Goula, A.M.; Adamopoulos, K.G. A Process for Turning Pomegranate Peels into A Valuable Food Ingredient Using Ultrasound-Assisted Extraction and Encapsulation. Innovat. Food Sci. Emerg. Technol. 2015, 31, 204–215. DOI: 10.1016/j.ifset.2015.08.006.
  • Moorthy, I.G.; Maran, J.P.; Surya, S.M.; Naganyashree, S.; Shivamathi, C.S. Response Surface Optimization of Ultrasound Assisted Extraction of Pectin from Pomegranate Peel. Int. J. Biol. Macromol. 2015, 72, 1323–1328. DOI: 10.1016/j.ijbiomac.2014.10.037.
  • Zhu, C.-P.; Zhai, X.-C.; Li, L.-Q.; Wu, X.-X.; Li, B. Response Surface Optimization of Ultrasound-Assisted Polysaccharides Extraction from Pomegranate Peel. Food Chem. 2015, 177, 139–146. DOI: 10.1016/j.foodchem.2015.01.022.
  • Kazemi, M.; Karim, R.; Mirhosseini, H.; Abdul Hamid, A. Optimization of Pulsed Ultrasound-Assisted Technique for Extraction of Phenolics from Pomegranate Peel of Malas Variety: Punicalagin and Hydroxybenzoic Acids. Food Chem. 2016, 206, 156–166. DOI: 10.1016/j.foodchem.2016.03.017.
  • Maran, J.P.; Manikandan, S.; Nivetha, C.V.; Dinesh, R. Ultrasound Assisted Extraction of Bioactive Compounds from Nephelium lappaceum L. Fruit Peel Using Central Composite Face Centered Response Surface Design. Arabian J. Chem. 2013, 10, S1145–S1157.
  • Maran, J.P.; Priya, B. Ultrasound-Assisted Extraction of Polysaccharide from Nephelium lappaceum L. Fruit Peel. Int. J. Biol. Macromol. 2014, 70, 530–536. DOI: 10.1016/j.ijbiomac.2014.07.032.
  • El-Malah, M.H.; Hassanein, M.M.M.; Areif, M.H.; Al-Amrousi, E.F. Utilization of Egyptian Tomato Waste as a Potential Source of Natural Antioxidants Using Solvents, Microwave and Ultrasound Extraction Methods. Am. J. Food Technol. 2015, 10, 14–25. DOI: 10.3923/ajft.2015.14.25.
  • Xu, C.; Yagiz, Y.; Borejsza-Wysocki, W.; Lu, J.; Gu, L.; Ramirez-Rodrigues, M.M.; Marshall, M.R. Enzyme Release of Phenolics from Muscadine Grape (Vitis rotundifolia Michx.) Skins and Seeds. Food Chem. 2014, 157, 20–29. DOI: 10.1016/j.foodchem.2014.01.128.
  • Liu, J.-J.; Gasmalla, M.A.A.; Li, P.; Yang, R. Enzyme-Assisted Extraction Processing from Oilseeds: Principle, Processing and Application. Innovat. Food Sci. Emerg. Technol. 2016, 35, 184–193. DOI: 10.1016/j.ifset.2016.05.002.
  • Pinelo, M.; Zornoza, B.; Meyer, A.S. Selective Release of Phenols from Apple Skin: Mass Transfer Kinetics during Solvent and Enzyme-Assisted Extraction. Separation Purif. Technol. 2008, 63(3), 620–627. DOI: 10.1016/j.seppur.2008.07.007.
  • Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117(4), 426–436. DOI: 10.1016/j.jfoodeng.2013.01.014.
  • Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-Assisted Extraction of Bioactives from Plants. Trends Biotechnol. 2012, 30(1), 37–44. DOI: 10.1016/j.tibtech.2011.06.014.
  • Naghshineh, M.; Olsen, K.; Georgiou, C.A. Sustainable Production of Pectin from Lime Peel by High Hydrostatic Pressure Treatment. Food Chem. 2013, 136(2), 472–478. DOI: 10.1016/j.foodchem.2012.08.036.
  • Mushtaq, M.; Sultana, B.; Bhatti, H.N.; Asgher, M. Optimization of Enzyme-Assisted Revalorization of Sweet Lime (Citrus limetta Risso) Peel into Phenolic Antioxidants. BioResources. 2014, 9, 6153–6165.
  • De Camargo, A.C.; Regitano-d’Arce, M.A.B.; Biasoto, A.C.T.; Shahidi, F. Enzyme-Assisted Extraction of Phenolics from Winemaking By-Products: Antioxidant Potential and Inhibition of Alpha-Glucosidase and Lipase Activities. Food Chem. 2016, 212, 395–402. DOI: 10.1016/j.foodchem.2016.05.047.
  • Choudhari, S.M.; Ananthanarayan, L. Enzyme Aided Extraction of Lycopene from Tomato Tissues. Food Chem. 2007, 102(1), 77–81. DOI: 10.1016/j.foodchem.2006.04.031.
  • Zuorro, A.; Fidaleo, M.; Lavecchia, R. Enzyme-Assisted Extraction of Lycopene from Tomato Processing Waste. Enzyme Microb. Technol. 2011, 49(6–7), 567–573. DOI: 10.1016/j.enzmictec.2011.04.020.
  • Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Enzyme-Assisted Production of Tomato Seed Oil Enriched with Lycopene from Tomato Pomace. Food Bioproc. Technol 2013, 6(12), 3499–3509. DOI: 10.1007/s11947-012-1003-6.
  • Zuorro, A.; Lavecchia, R.; Medici, F.; Piga, L. Use of Cell Wall Degrading Enzymes for the Production of High-Quality Functional Products from Tomato Processing Waste. Chem. Eng. Trans. 2014, 38, 355–360.
  • Strati, I.F.; Gogou, E.; Oreopoulou, V. Enzyme and High Pressure Assisted Extraction of Carotenoids from Tomato Waste. Food Bioproducts Process. 2015, 94, 668–674. DOI: 10.1016/j.fbp.2014.09.012.
  • Azabou, S.; Abid, Y.; Sebii, H.; Felfoul, I.; Gargouri, A.; Attia, H. Potential of the Solid-State Fermentation of Tomato by Products by Fusarium solani Pisi for Enzymatic Extraction of Lycopene. LWT Food Sci. Technol. 2016, 68, 280–287. DOI: 10.1016/j.lwt.2015.11.064.
  • Mushtaq, M.; Sultana, B.; Bhatti, H.N.; Asghar, M. RSM Based Optimized Enzyme-Assisted Extraction of Antioxidant Phenolics from Underutilized Watermelon (Citrullus lanatus Thunb.) Rind. J. Food Sci. Technology-Mysore 2015, 52(8), 5048–5056. DOI: 10.1007/s13197-014-1562-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.