910
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Beverage clouding agents: Review of principles and current manufacturing

ORCID Icon, , & ORCID Icon

References

  • Beveridge, T. Opalescent and Cloudy Fruit Juices: Formation and Particle Stability. Crit. Rev. Food Sci. Nutr. 2002, 42(4), 317–337, DOI: 10.1080/10408690290825556.
  • Mizrahi, S.; Berk, Z. Physico-Chemical Characteristics of Orange Juice Cloud. J. Sci. Food Agric. 1970, 21, 250–253, DOI: 10.1002/(ISSN)1097-0010.
  • Shachman, M. The Soft Drinks Companion: A Technical Handbook for the Beverage Industry; CRC Press: Boca Raton, 2004.
  • Klavons, J.A.; Bennett, R.D.; Vannier, S.H. Physical-Chemical Nature of Pectin Associated with Commercial Orange Juice Cloud. J. Food Sci. 1994, 59(2), 399–401, DOI: 10.1111/j.1365-2621.1994.tb06976.x.
  • Euromonitor International. Changing Consumer Tastes; Seeking Regional Opportunities in an Evolving Beverage Market,” in Ausdrinks Regional Beverages Summit; 2016. http://australianbeverages.org/wp-content/uploads/2016/05/Euromonitor_Erika_Ausdrinks-2016-21032016.ppt
  • Tan, C.-T. Beverage Emulsions. In Food Emulsions, Fourth.; Friberg, S.E., Larsson, K., Sjöblom, J., Eds; Marcel Dekker: New York, 2004.
  • McClements, D.J. Biopolymers in Food Emulsions. In Modern Biopolymer Science, First.; Kasapis, S., Norton, I.T., Ubbink, J.B., Eds; Academic Press: Amsterdam, 2009; pp 129–166.
  • Taherian, A.R.; Fustier, P.; Britten, M.; Ramaswamy, H.S. Rheology and Stability of Beverage Emulsions in the Presence and Absence of Weighting Agents: A Review. Food Biophys. 2008, 3, 279–286, DOI: 10.1007/s11483-008-9093-4.
  • Piorkowski, D.T.; McClements, D.J. Beverage Emulsions: Recent Developments in Formulation, Production, and Applications. Food Hydrocoll. 2014, 42, 5–41, DOI: 10.1016/j.foodhyd.2013.07.009.
  • Jasentuliyana, N.; Toma, R.B.; Klavons, J.A.; Medora, N. Beverage Cloud Stability with Isolated Soy Protein. J. Sci. Food Agric. 1998, 78, 389–394, DOI: 10.1002/(ISSN)1097-0010.
  • Chantrapornchai, W.; Clydesdale, F.M.; Mcclements, D.J. Optical Properties of Oil-In-Water Emulsions Containing Titanium Dioxide Particles. Colloids Surfaces A Physicochem. Eng. Asp. 2000, 166, 123–131, DOI: 10.1016/S0927-7757(99)00407-0.
  • Linke, C.; Drusch, S. Turbidity in Oil-In-Water-Emulsions - Key Factors and Visual Perception. Food Res. Int. 2016, 89, 202–210, DOI: 10.1016/j.foodres.2016.07.019.
  • McClements, D.J. Food Emulsions: Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Raton, 2015.
  • Walstra, P. Physical Chemistry of Foods; Marcel Dekker: New York, 2003.
  • Benitez, E.I.; Genovese, D.B.; Lozano, J.E. Scattering Efficiency of a Cloudy Apple Juice: Effect of Particles Characteristics and Serum Composition. Food Res. Int. 2007, 40, 915–922, DOI: 10.1016/j.foodres.2007.03.004.
  • Siebert, K.J.;. Haze in Beverages. In Advances in Food and Nutrition Research: Volume 57, First.; Taylor, S., Ed; Academic Press: San Diego, 2009; pp 53–86.
  • Chantrapornchai, W.; Clydesdale, F.M.; McClements, D.J. Influence of Droplet Characteristics on the Optical Properties of Colored Oil-In-Water Emulsions. Colloids Surfaces A Physicochem. Eng. Asp. 1999, 155, 373–382, DOI: 10.1016/S0927-7757(99)00004-7.
  • McClements, D.J.; Chantrapornchai, W.; Clydesdale, F.M. Prediction of Food Emulsion Color Using Light Scattering Theory. J. Food Sci. 1998, 63(6), 935–939, DOI: 10.1111/j.1365-2621.1998.tb15827.x.
  • Zhang, J.; Reineccius, G.A. Factors Controlling the Turbidity of Submicron Emulsions Stabilized by Food Biopolymers and Natural Surfactant. LWT - Food Sci. Technol. 2016, 71, 162–168, DOI: 10.1016/j.lwt.2016.03.035.
  • Hernandez, E.; Baker, R.A. Turbidity of Beverages with Citrus Clouding Agent. J. Food Sci. 1991, 56(4), 1024–1026, DOI: 10.1111/j.1365-2621.1991.tb14632.x.
  • Hernandez, E.; Baker, R.A.; Crandall, P.G. Model for Evaluating Turbidity in Cloudy Beverages. J. Food Sci. 1991, 56(3), 747–750, DOI: 10.1111/j.1365-2621.1991.tb05373.x.
  • Dickinson, E. Colloidal Aspects of Beverages. Food Chem. 1994, 51, 343–347, DOI: 10.1016/0308-8146(94)90184-8.
  • Taylor, B.;. Ingredients and Formulation of Carbonated Soft Drinks. In Carbonated Soft Drinks: Formulation and Manufacture; Steen, D.P., Ashurst, P.R., Eds; Blackwell Publishing Ltd: Oxford, 2006, pp 48–86.
  • Chantrapornchai, W.; Clydesdale, F.M.; Mcclements, D.J. Influence of Relative Refractive Index on Optical Properties of Emulsions. Food Res. Int. 2001, 34, 827–835, DOI: 10.1016/S0963-9969(01)00105-3.
  • Kaufman, V.R.; Garti, N. Effect of Cloudy Agents on the Stability and Opacity of Cloudy Emulsions for Soft Drinks. J. Food Technol. 1884, 19, 255–261, DOI: 10.1111/j.1365-2621.1984.tb00348.x.
  • Ray, A.K.; Johnson, J.K.; Sullivan, R.J. Refractive Index of the Dispersed Phase in Oil-In-Water Emulsions: Its Dependence on Droplet Size and Aging. J. Food Sci. 1983, 48, 513–516, DOI: 10.1111/j.1365-2621.1983.tb10778.x.
  • Saǧlam, D.; Venema, P.; De Vries, R.; Van Aelst, A.; Van Der Linden, E. Relation between Gelation Conditions and the Physical Properties of Whey Protein Particles. Langmuir. 2012, 28, 6551−6560, DOI: 10.1021/la300344g.
  • Dissanayake, M.; Liyanaarachchi, S.; Vasiljevic, T. Functional Properties of Whey Proteins Microparticulated at Low pH. J. Dairy Sci. 2012, 95(4), 1667–1679, DOI: 10.3168/jds.2011-4823.
  • Duval, S.; Chung, C.; Mcclements, D.J. Protein-Polysaccharide Hydrogel Particles Formed by Biopolymer Phase Separation. Food Biophys. 2015, 10, 334–341, DOI: 10.1007/s11483-015-9396-1.
  • Chanamai, R.; McClements, D.J. Prediction of Emulsion Color from Droplet Characteristics: Dilute Monodisperse Oil-In-Water Emulsions. Food Hydrocoll. 2001, 15, 83–91, DOI: 10.1016/S0268-005X(00)00055-2.
  • Chantrapornchai, W.; Clydesdale, F.M.; Mcclements, D.J. Theoretical and Experimental Study of Spectral Reflectance and Color of Concentrated Oil-in-Water Emulsions. J. Colloid Interface Sci. 1999, 218, 324–330, DOI: 10.1006/jcis.1999.6428.
  • Tadros, T.F. Emulsion Formation, Stability, and Rheology. In Emulsion Formation and Stability; Tadros, T.F., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2013, pp 1–75.
  • Dickinson, E.;. Hydrocolloids as Emulsifiers and Emulsion Stabilizers. Food Hydrocoll. 2009, 23, 1473–1482, DOI: 10.1016/j.foodhyd.2008.08.005.
  • Taherian, A.R.; Fustier, P.; Ramaswamy, H.S. Effect of Added Oil and Modified Starch on Rheological Properties, Droplet Size Distribution, Opacity and Stability of Beverage Cloud Emulsions. J. Food Eng. 2006, 77, 687–696, DOI: 10.1016/j.jfoodeng.2005.06.073.
  • Walstra, P. Principles of Emulsion Formation. Chem. Eng. Sci. 1993, 48(2), 333–349, DOI: 10.1016/0009-2509(93)80021-H.
  • Ghosh, S.; Rousseau, D. Emulsion Breakdown in Foods and Beverages. In Chemical Deterioration and Physical Instability of Food and Beverages; Skibsted, L.H., Risbo, J., Andersen, M.L., Eds; Woodhead Publishing Limited: Boca Raton, 2010, pp 260–295.
  • Qian, C.; McClements, D.J. Formation of Nanoemulsions Stabilized by Model Food-Grade Emulsifiers Using High-Pressure Homogenization: Factors Affecting Particle Size. Food Hydrocoll. 2011, 25(5), 1000–1008, DOI: 10.1016/j.foodhyd.2010.09.017.
  • Verkoeijen, D.; Zamolo, R.; Sein, A.; Smolders, G.J.F. Spray-Dried Emulsions; United States Patent and Trademark Office, 2011, pp US 20110039002 A1.
  • Klein, M.; Aserin, A.; Svitov, I.; Garti, N. Enhanced Stabilization of Cloudy Emulsions with Gum Arabic and Whey Protein Isolate. Colloids Surfaces B Biointerfaces. 2010, 77, 75–81, DOI: 10.1016/j.colsurfb.2010.01.008.
  • Harnsilawat, T.; Pongsawatmanit, R.; McClements, D.J. Stabilization of Model Beverage Cloud Emulsions Using Protein−Polysaccharide Electrostatic Complexes Formed at the Oil−Water Interface. J. Agric. Food Chem. 2006, 54, 5540–5547, DOI: 10.1021/jf052860a.
  • Zhao, X.; Liu, F.; Ma, C.; Yuan, F.; Gao, Y. Effect of Carrier Oils on the Physicochemical Properties of Orange Oil Beverage Emulsions. Food Res. Int. 2015, 74, 260–268, DOI: 10.1016/j.foodres.2015.05.002.
  • Rao, J.; McClements, D.J. Impact of Lemon Oil Composition on Formation and Stability of Model Food and Beverage Emulsions. Food Chem. 2012, 134, 749–757, DOI: 10.1016/j.foodchem.2012.02.174.
  • Chanamai, R.; McClements, D.J. Impact of Weighting Agents and Sucrose on Gravitational Separation of Beverage Emulsions. J. Agric. Food Chem. 2000, 48, 5561–5565, DOI: 10.1021/jf0002903.
  • Rao, J.; McClements, D.J. Optimization of Lipid Nanoparticle Formation for Beverage Applications: Influence of Oil Type, Cosolvents, and Cosurfactants on Nanoemulsion Properties. J. Food Eng. 2013, 118, 198–204, DOI: 10.1016/j.jfoodeng.2013.04.010.
  • European Parliament and Council. Directive 95/2/EC of the European Parliament and Council of 20 February 1995 on Food Additives Other than Colours and Sweeteners; Publications Office: 1995.
  • Taherian, A.R.; Fustier, P.; Ramaswamy, H.S. Effects of Added Weighting Agent and Xanthan Gum on Stability and Rheological Properties of Beverage Cloud Emulsions Formulated Using Modified Starch. J. Food Process Eng. 2007, 30, 204–224, DOI: 10.1111/j.1745-4530.2007.00109.x.
  • Mirhosseini, H.; Tan, C.P.; Aghlara, A.; Hamid, N.S.A.; Yusof, S.; Chern, B.H. Influence of Pectin and CMC on Physical Stability, Turbidity Loss Rate, Cloudiness and Flavor Release of Orange Beverage Emulsion during Storage. Carbohydr. Polym. 2008, 73, 83–91, DOI: 10.1016/j.carbpol.2007.11.002.
  • Arancibia, C.; Bayarri, S.; Costell, E. Comparing Carboxymethyl Cellulose and Starch as Thickeners in Oil/Water Emulsions. Implications on Rheological and Structural Properties. Food Biophys. 2013, 8, 122–136, DOI: 10.1007/s11483-013-9287-2.
  • Zhang, J.; Peppard, T.L.; Reineccius, G.A. Double-Layered Emulsions as Beverage Clouding Agents. Flavour Fragr. J. 2015, 30, 218–223, DOI: 10.1002/ffj.v30.3.
  • Zhao, J.; Xiang, J.; Wei, T.; Yuan, F.; Gao, Y. Influence of Environmental Stresses on the Physicochemical Stability of Orange Oil Bilayer Emulsions Coated by Lactoferrin-Soybean Soluble Polysaccharides and Lactoferrin-Beet Pectin. Food Res. Int. 2014, 66, 216–227, DOI: 10.1016/j.foodres.2014.09.019.
  • Liu, L.; Zhao, Q.; Liu, T.; Kong, J.; Long, Z.; Zhao, M. Sodium Caseinate/Carboxymethylcellulose Interactions at Oil-Water Interface: Relationship to Emulsion Stability. Food Chem. 2012, 132, 1822–1829, DOI: 10.1016/j.foodchem.2011.12.014.
  • Koupantsis, T.; Kiosseoglou, V. Whey Protein-Carboxymethylcellulose Interaction in Solution and in Oil-In-Water Emulsion Systems. Effect on Emulsion Stability. Food Hydrocoll. 2009, 23, 1156–1163, DOI: 10.1039/c0sm00220h.
  • Chanamai, R.; Mcclements, D.J. Comparison of Gum Arabic, Modified Starch, and Whey Protein Isolate as Emulsifiers: Influence of pH, CaCl2 and Temperature. J. Food Sci. 2002, 67(1), 120–125, DOI: 10.1111/j.1365-2621.2002.tb11370.x.
  • Buffo, R.A.; Reineccius, G.A.; Oehlert, G.W. Factors Affecting the Emulsifying and Rheological Properties of Gum Acacia in Beverage Emulsions. Food Hydrocoll. 2001, 15, 53–66, DOI: 10.1016/S0268-005X(00)00050-3.
  • Dłużewska, E.; Stobiecka, A.; Maszewska, M. Effect of Oil Phase Concentration on Rheological Properties and Stability of Beverage Emulsions. Acta Sci. Pol. Technol. Aliment. 2006, 5(2), 147–156.
  • Castel, V.; Rubiolo, A.C.; Carrara, C.R. Droplet Size Distribution, Rheological Behavior and Stability of Corn Oil Emulsions Stabilized by a Novel Hydrocolloid (Brea Gum) Compared with Gum Arabic. Food Hydrocoll. 2017, 63, 170–177, DOI: 10.1016/j.foodhyd.2016.08.039.
  • Yin, B.; Deng, W.; Xu, K.; Huang, L.; Yao, P. Stable Nano-Sized Emulsions Produced from Soy Protein and Soy Polysaccharide Complexes. J. Colloid Interface Sci. 2012, 380, 51–59, DOI: 10.1016/j.jcis.2012.04.075.
  • Liu, Q.-R.; et al. The Influence of Heat Treatment on Acid-Tolerant Emulsions Prepared from Acid Soluble Soy Protein and Soy Soluble Polysaccharide Complexes. Food Res. Int. 2016, 89(1), 211–218. DOI: 10.1016/j.foodres.2016.07.001.
  • Akhtar, M.; Dickinson, E. Whey Protein-Maltodextrin Conjugates as Emulsifying Agents: An Alternative to Gum Arabic. Food Hydrocoll. 2007, 21(4), 607–616, DOI: 10.1016/j.foodhyd.2005.07.014.
  • Chaudhari, A.; Pan, Y.; Nitin, N. Beverage Emulsions: Comparison among Nanoparticle Stabilized Emulsion with Starch and Surfactant Stabilized Emulsions. Food Res. Int. 2015, 69, 156–163, DOI: 10.1016/j.foodres.2014.12.030.
  • Mirhosseini, H.; Tan, C.P.; Hamid, N.S.A.; Yusof, S. Optimization of the Contents of Arabic Gum, Xanthan Gum and Orange Oil Affecting Turbidity, Average Particle Size, Polydispersity Index and Density in Orange Beverage Emulsion. Food Hydrocoll. 2008, 22, 1212–1223, DOI: 10.1016/j.foodhyd.2007.06.011.
  • Wurzburg, O.B.; Lenchin, J.M. Clouding with a Starch Material; United States Patent and Trademark Office, 1981, pp US 4279940 A.
  • Pelton, R.; Hoare, T. Microgels and Their Synthesis: An Introduction. In Microgel Suspensions: Fundamentals and Applications; Fernandez-Nieves, A., Wyss, H.M., Mattsson, J., Weitz, D.A., Eds; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2011, pp 3–32.
  • Jones, O.G.; McClements, D.J. Functional Biopolymer Particles: Design, Fabrication, and Applications. Compr. Rev. Food Sci. Food Saf. 2010, 9, 374–397, DOI: 10.1111/j.1541-4337.2010.00118.x.
  • Singer, N.S. Microparticulated Proteins as Fat Mimetics. In Handbook of Fat Replacers; Roller, S., Jones, S.A., Eds; CRC Press LLC: Boca Raton, 1996.
  • Joye, I.J.; McClements, D.J. Biopolymer-Based Nanoparticles and Microparticles: Fabrication, Characterization, and Application. Curr. Opin. Colloid Interface Sci. 2014, 19, 417–427, DOI: 10.1016/j.cocis.2014.07.002.
  • Schmitt, C.; et al. Internal Structure and Colloidal Behaviour of Covalent Whey Protein Microgels Obtained by Heat Treatment. Soft Matter. 2010, 6, 4876–4884. DOI: 10.1039/c0sm00220h.
  • McClements, D.J.;. Nanoparticle- and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds; CRC Press: Boca Rato, 2014.
  • Kühn, J.; Considine, T.; Singh, H. Interactions of Milk Proteins and Volatile Flavor Compounds: Implications in the Development of Protein Foods. J. Food Sci. R Concise Rev. Food Sci. 2006, 71(5), R72–R82.
  • Sarama, R.; Arcuino, G. Protein Suspension as a Beverage Opacifier System; United States Patent and Trademark Office, 2014, pp US 2014/0255583 A1.
  • Singer, N.S.; Yamamoto, S.; Latella, J. Protein Product Base; United States Patent and Trademark Office, 1988, pp US4734287 A.
  • Gibson, S.M.; Strauss, G. Heat-Stable Protein Microparticles and No-Shear Process for Producing Same; United States Patent and Trademark Office, 2001, pp US006187368B1.
  • Shen, C.; Wagner, T.J. Ultra High Pressure Homogenization Process for Making a Stable Protein Based Acid Beverage; United States Patent and Trademark Office, 2006, pp US 7,101,585 B2.
  • Klavons, J.A.; Bennett, R.D.; Vannier, S.H. Clouding Agent for Beverages and Method of Making; United States Patent and Trademark Office, 1994, pp US5286511 A.
  • Sağlam, D.; Venema, P.; Van Der Linden, E.; De Vries, R. Design, Properties, and Applications of Protein Micro- and Nanoparticles. Curr. Opin. Colloid Interface Sci. 2014, 19, 428–437, DOI: 10.1016/j.cocis.2014.09.004.
  • Joye, I.J.; McClements, D.J. Production of Nanoparticles by Anti-Solvent Precipitation for Use in Food Systems. Trends Food Sci. Technol. 2013, 34, 109–123, DOI: 10.1016/j.tifs.2013.10.002.
  • Sanchez, C.; Paquin, P. Protein and Protein-Polysaccharide Microparticles. In Food Proteins and Their Applications; Damodaran, S., Paraf, A., Eds; Marcel Dekker: New York, 1997, pp 503–528.
  • Santipanichwong, R.; Suphantharika, M.; Weiss, J.; McClements, D.J. Core-Shell Biopolymer Nanoparticles Produced by ElectrostaticDeposition of Beet Pectin onto Heat-Denatured Β-Lactoglobulin Aggregates. J. Food Sci. N Nanoscale Food Sci. Eng. Technol. 2008, vol. 73(no. 6), N23–N30.
  • Phan-Xuan, T.; Durand, D.; Nicolai, T.; Donato, L.; Schmitt, C.; Bovetto, L. On the Crucial Importance of the pH for the Formation and Self-Stabilization of Protein Microgels and Strands. Langmuir. 2011, 27, 15092–15101, DOI: 10.1021/la203357p.
  • Jones, O.G.; McClements, D.J. Biopolymer Nanoparticles from Heat-Treated Electrostatic Protein-Polysaccharide Complexes: Factors Affecting Particle Characteristics. J. Food Sci. 2010, 72(2), 36–43, DOI: 10.1111/j.1750-3841.2009.01512.x.
  • Bromley, E.H.C.; Krebs, M.R.H.; Donald, A.M. Mechanisms of Structure Formation in Particulate Gels of Β-Lactoglobulin Formed near the Isoelectric Point. Eur. Phys. J. E. 2006, 21, 145–152, DOI: 10.1140/epje/i2006-10055-7.
  • Jones, O.G.; Lesmes, U.; Dubin, P.L.; McClements, D.J. Effect of Polysaccharide Charge on Formation and Properties of Biopolymer Nanoparticles Created by Heat Treatment of Β-Lactoglobulin-Pectin Complexes. Food Hydrocoll. 2010, 24, 374–383, DOI: 10.1016/j.foodhyd.2009.11.003.
  • Jones, O.G.; Decker, E.A.; McClements, D.J. Thermal Analysis of Β-Lactoglobulin Complexes with Pectins or Carrageenan for Production of Stable Biopolymer Particles. Food Hydrocoll. 2010, 24, 239–248, DOI: 10.1016/j.foodhyd.2009.10.001.
  • Jones, O.G.; Decker, E.A.; McClements, D.J. Comparison of Protein-Polysaccharide Nanoparticle Fabrication Methods: Impact of Biopolymer Complexation before or after Particle Formation. J. Colloid Interface Sci. 2010, 344, 21–29, DOI: 10.1016/j.jcis.2009.12.017.
  • Krzeminski, A.; Prell, K.A.; Weiss, J.; Hinrichs, J. Environmental Response of Pectin-Stabilized Whey Protein Aggregates. Food Hydrocoll. 2014, 35, 332–340, DOI: 10.1016/j.foodhyd.2013.06.014.
  • Carpineti, L.; Martinez, M.J.; Pilosof, A.M.R.; Pérez, O.E. Β-Lactoglobulin-Carboxymethylcellulose Core-Shell Microparticles: Construction, Characterization and Isolation. J. Food Eng. 2014, 131, 65–74, DOI: 10.1016/j.jfoodeng.2014.01.018.
  • Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric Nanoparticles. Sci. Technol. Adv. Mater. 2010, 11, 1, DOI: 10.1088/1468-6996/11/1/014104.
  • Duclairoir, C.; Nakache, E.; Marchais, H.; Orecchioni, A.-M. Formation of Gliadin Nanoparticles: Influence of the Solubility Parameter of the Protein Solvent. Colloid Polym. Sci. 1998, 276, 321—327, DOI: 10.1007/s003960050246.
  • Patel, A.; Hu, Y.; Tiwari, J.K.; Velikov, K.P. Synthesis and Characterisation of Zein–Curcumin Colloidal Particles. Soft Matter. 2010, 6, 6192–6199, DOI: 10.1039/c0sm00800a.
  • Zhong, Q.; Jin, M. Zein Nanoparticles Produced by Liquid-Liquid Dispersion. Food Hydrocoll. 2009, 23, 2380–2387, DOI: 10.1016/j.foodhyd.2009.06.015.
  • Coester, C.J.; Langer, K.; Von Briesen, H.; Kreuter, J. Gelatin Nanoparticles by Two Step Desolvation - a New Preparation Method, Surface Modifications and Cell Uptake. J. Microencapsul. 2000, 17(2), 187–193, DOI: 10.1080/026520400288427.
  • Ezpeleta, I.; et al. Gliadin Nanoparticles for the Controlled Release of All-Trans- Retinoic Acid. Int. J. Pharm. 1996, 131, 191–200. DOI: 10.1016/0378-5173(95)04338-1.
  • Teng, Z.; Luo, Y.; Wang, Q. Nanoparticles Synthesized from Soy Protein: Preparation, Characterization, and Application for Nutraceutical Encapsulation. J. Agric. Food Chem. 2012, 60, 2712−2720, DOI: 10.1021/jf205238x.
  • Schmitt, C.; Turgeon, S.L. Protein/Polysaccharide Complexes and Coacervates in Food Systems. Adv. Colloid Interface Sci. 2011, 167, 63–70, DOI: 10.1016/j.cis.2010.10.001.
  • Turgeon, S.L.; Laneuville, S.I. Protein + Polysaccharide Coacervates and Complexes: From Scientific Background to Their Application as Functional Ingredients in Food Products. In Modern Biopolymer Science, First Edit.; Kasapis, S., Norton, I.T., Ubbink, J.B., Eds; Academic Press: Amsterdam, 2009; pp 327–363.
  • Ding, X.; Yao, P. Soy Protein/Soy Polysaccharide Complex Nanogels: Folic Acid Loading, Protection, and Controlled Delivery. Langmuir. 2013, 29, 8636–8644, DOI: 10.1021/la401664y.
  • Weinbreck, F.; Nieuwenhuijse, H.; Robijn, G.W.; De Kruif, C.G. Complex Formation of Whey Proteins: Exocellular Polysaccharide EPS B40. Langmuir. 2003, 19, 9404–9410, DOI: 10.1021/la0348214.
  • Tolstoguzov, V.B.;. Protein-Polysaccharide Interactions. In Food Proteins and Their Applications; Damodaran, S., Paraf, A., Eds; Marcel Dekker: New York, 1997, pp 171–198.
  • Xu, X.; Luo, L.; Liu, C.; Zhang, Z.; McClements, D.J. Influence of Electrostatic Interactions on Behavior of Mixed Rice Glutelin and Alginate Systems: PH and Ionic Strength Effects. Food Hydrocoll. 2017, 63, 301–308, DOI: 10.1016/j.foodhyd.2016.09.005.
  • Yin, B.; Zhang, R.; Yao, P. Influence of Pea Protein Aggregates on the Structure and Stability of Pea Protein/Soybean Polysaccharide Complex Emulsions. Molecules. 2015, 20, 5165–5183, DOI: 10.3390/molecules20035165.
  • Matalanis, A.; Lesmes, U.; Decker, E.A.; McClements, D.J. Fabrication and Characterization of Filled Hydrogel Particles Based on Sequential Segregative and Aggregative Biopolymer Phase Separation. Food Hydrocoll. 2010, 24, 689–701, DOI: 10.1016/j.foodhyd.2010.04.009.
  • Matalanis, A.; McClements, D.J. Factors Influencing the Formation and Stability of Filled Hydrogel Particles Fabricated by Protein/Polysaccharide Phase Separation and Enzymatic Cross-Linking. Food Biophys. 2012, 7, 72–83, DOI: 10.1007/s11483-011-9244-x.
  • Chung, C.; McClements, D.J. Controlling Microstructure and Physical Properties of Biopolymer Hydrogel Particles through Modulation of Electrostatic Interactions. J. Food Eng. 2015, 158, 13–21, DOI: 10.1016/j.jfoodeng.2015.02.028.
  • Du, B.; Li, J.; Zhang, H.; Chen, P.; Huang, L.; Zhou, J. The Stabilization Mechanism of Acidified Milk Drinks Induced by Carboxymethylcellulose. Lait. 2007, 87, 287–300, DOI: 10.1051/lait:2007021.
  • Du, B.; Li, J.; Zhang, H.; Huang, L.; Chen, P.; Zhou, J. Influence of Molecular Weight and Degree of Substitution of Carboxymethylcellulose on the Stability of Acidified Milk Drinks. Food Hydrocoll. 2009, 23, 1420–1426, DOI: 10.1016/j.foodhyd.2008.10.004.
  • Wu, J.; Du, B.; Li, J.; Zhang, H. Influence of Homogenisation and the Degradation of Stabilizer on the Stability of Acidified Milk Drinks Stabilized by Carboxymethylcellulose. LWT - Food Sci. Technol. 2014, 56, 370–376, DOI: 10.1016/j.lwt.2013.12.029.
  • Chen, F.P.; Ou, S.Y.; Tang, C.H. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)Particles as Carriers for Improved Stability and Sustained Release of Curcumin. J. Agric. Food Chem. 2016, 64, 5053–5059, DOI: 10.1021/acs.jafc.6b01176.
  • Salinger, E.; Laaman, T.R. Microgranular Protein Opacifying Material; United States Patent and Trademark Office, 1994, pp US5322702 A.
  • Thoegersen, J.;. Stable Aqueous Suspension of Insoluble Protein; United States Patent and Trademark Office, 2006, pp US 20060078668A1.
  • Sağlam, D.; Venema, P.; De Vries, R.; Van Der Linden, E. The Influence of pH and Ionic Strength on the Swelling of Dense Protein Particles. Soft Matter. 2013, 9, 4598–4606, DOI: 10.1039/c3sm50170a.
  • Wu, J.; et al. Pickering Emulsions Stabilized by Whey Protein Nanoparticles Prepared by Thermal Cross-Linking. Colloids Surfaces B Biointerfaces. 2015, 127, 96–104. DOI: 10.1016/j.colsurfb.2015.01.029.
  • Zhang, W.; Zhong, Q. Microemulsions as Nanoreactors to Produce Whey Protein Nanoparticles with Enhanced Heat Stability by Thermal Pretreatment. Food Chem. 2010, 119, 1318–1325, DOI: 10.1016/j.foodchem.2009.08.043.
  • Pintea, A.M.;. Other Natural Pigments. In Food Colorants: Chemical and Functional Properties; Socaciu, C., Ed.; CRC Press: Boca Raton, 2007, pp 101–124.
  • Chuang, L.Y.-J.; MacDonald, J.L. High Performance Titanium Dioxide Clouding Agent and Method of Manufacture Thereof; United States Patent and Trademark Office, 2000, pp US006159522A.
  • Dunn, J.M.; Gross, A.T.; Finocchiaro, E.T. Starch-Based Opacifying Agent for Food and Beverages; United States Patent and Trademark Office, 1996, pp US5571334A.
  • Mezzino, J.F.; Chuang, L.Y. Pectin-Based Clouding Agent; United States Patent and Trademark Office, 1985, pp US4529613.
  • Schmedding, D.; Kremer, H.; Sloot, B. Dry Clouding Agent for Dry Beverage Mixes and Method for Manufacture Thereof; United States Patent and Trademark Office, 2002, pp US 20030035878 A1.
  • Serafino, J.M.; Yadlowsky, S.; Witzeman, J.S. Dry Beverage Mix Containing a Clouding Agent; United States Patent and Trademark Office, 1980, pp US 4187326 A.
  • Carlson, P.O.; Cohan, A.N.; Gray, J.C. Clouding Agent; United States Patent and Trademark Office, 1972, pp US3658552.
  • Singer, N.S.; Chang, -H.-H.; Tang, P.; Dunn, J.M. Carbohydrate Cream Substitute; United States Patent and Trademark Office, 1990, pp US 4911946 A.
  • Hirt, S.A.; McPherson, A.E.; Topinka, J.B.; Del, M.; Cobos, P. Starch-Based Clouding Agent for Powdered Beverages; United States Patent and Trademark Office, 2017, pp US20170000165 A1.
  • Donaldson, I.; Vaag, P. Stable Haze for Beverages; World Intellectual Property Organization, 2015, pp WO 2015086027 A1.
  • Chiu, C.-W.; Henley, M. Foods Opacified with Debranched Starch; United States Patent and Trademark Office, 1993, pp US 005194284 A.
  • Abbas, I.R.; Bishop, R.M.; Mackey, W.J.; Patil, S.K.; Wilson, J.E. Beverage Clouding Agent; United States Patent and Trademark Office, 1993, pp US4971828 A.
  • Crandall, P.G.; Matthews, R.F.; Baker, R.A. Citrus Beverage Clouding Agents - Review and Status. Food Technol. 1983, 37(12), 106–109.
  • Wiener, C.; Haas, G.J. Dried Albedo Clouding Agent and Process Therefor; United States Patent and Trademark Office, 1982, pp US4335143 A.
  • Sreenath, H.K.; Crandall, P.G.; Baker, R.A. Utilization of Citrus By-Products and Wastes as Beverage Clouding Agents. J. Ferment. Bioeng. 1995, 80(2), 190–194, DOI: 10.1016/0922-338X(95)93218-9.
  • Espachs-Barroso, A.; Soliva-Fortuny, R.C.; Martín-Belloso, O. A Natural Clouding Agent from Orange Peels Obtained Using Polygalacturonase and Cellulase. Food Chem. 2005, 92(1), 55–61, DOI: 10.1016/j.foodchem.2004.04.047.
  • El-Shamei, Z.; El-Zoghibi, M. Producing of Natural Clouding Agents from Orange and Lemon Peels. Nahrung. 1994, 38(2), 158–166, DOI: 10.1002/food.19940380208.
  • Lashkajani, H.B. Method for Producing a Clouding Agent; United States Patent and Trademark Office, 1999, pp US005965177A.
  • Villadsen, K.J.S. Preparation of Clouding and Coloring Agent for Soft Drinks; United States Patent and Trademark Office, 1968, pp US3404990.
  • Herrera, M.V.; Matthews, R.F. Evaluation of a Beverage Clouding Agent from Orange Pectin Pomace Leach Water. Proc. Florida State Hortic. Soc. 1979, 92, 151–153.
  • Garti, N.; Agmon, G.; Pintus, E. Method for Obtaining Natural Super-Cloud Composition; United States Patent and Trademark Office, 2003, pp US6506427B1.
  • Chu, O.A.; Chung, Y.; Sanders, T.; Lineback, S. Citrus Peel Juice; United States Patent and Trademark Office, 2010, pp USRE41537E.
  • Turgeon, S.L.; Beaulieu, M.; Schmitt, C.; Sanchez, C. Protein-Polysaccharide Interactions: Phase-Ordering Kinetics, Thermodynamic and Structural Aspects. Curr. Opin. Colloid Interface Sci. 2003, 8, 401–414, DOI: 10.1016/S1359-0294(03)00093-1.
  • Damodaran, S.;. Protein-Stabilised Foam and Emulsions. In Food Proteins and Their Applications; Damodaran, S., Paraf, A., Eds; Marcel Dekker: New York, 1997, pp 57–110.
  • Reiner, S.J.; Reineccius, G.A.; Peppard, T.L. A Comparison of the Stability of Beverage Cloud Emulsions Formulated with Different Gum Acacia- and Starch-Based Emulsifier. J. Food Sci. 2010, 75(no. 5), E236–E246.
  • Dłużewska, E.; Panasiewicz, M.; Leszczyński, K., “Effect of Gum Arabic and Modified Starch on Stability of Beverage Emulsions,” Electronic Journal of Polish Agricultural Universities, 2004. [Online]. Available: http://www.ejpau.media.pl/volume7/issue2/food/art-10.html. [Accessed: 20-Jul-2017].
  • Rosen, M.J. Emulsification by Surfactants. In Surfactants and Interfacial Phenomena, 3rd ed.; John Wiley & Sons: Hoboken, 2004; pp 303–331.
  • Sworn, G. Xanthan Gum. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G.O., Williams, P.A., Eds; Woodhead Publishing Limited: Oxford, 2009; pp 186–203.
  • Schramm, L.L.;. Emulsions, Foams, and Suspensions: Fundamentals and Applications; WILEY-VCH Verlag GmbH & Co.: Weinheim, Germany, 2005.
  • Ye, A.; Flanagan, J.; Singh, H. Formation of Stable Nanoparticles via Electrostatic Complexation between Sodium Caseinate and Gum Arabic. Biopolymers. 2006, 82, 121–133, DOI: 10.1002/(ISSN)1097-0282.
  • Cho, Y.H.; McClements, D.J. Theoretical Stability Maps for Guiding Preparation of Emulsions Stabilized by Protein−Polysaccharide Interfacial Complexes. Langmuir. 2009, 25(12), 6649–6657, DOI: 10.1021/la8006684.
  • Chanamai, R.; Mcclements, D.J. Depletion Flocculation of Beverage Emulsions by Gum Arabic and Modified Starch. J. Food Sci. 2001, 66(3), 457–463, DOI: 10.1111/j.1365-2621.2001.tb16129.x.
  • Neirynck, N.; Van Lent, K.; Dewettinck, K.; Van Der Meeren, P. Influence of pH and Biopolymer Ratio on Sodium Caseinate-Guar Gum Interactions in Aqueous Solutions and in O/W Emulsions. Food Hydrocoll. 2007, 21, 862–869, DOI: 10.1016/j.foodhyd.2006.10.003.
  • Liu, S.; Elmer, C.; Low, N.H.; Nickerson, M.T. Effect of pH on the Functional Behaviour of Pea Protein Isolate-Gum Arabic Complexes. Food Res. Int. 2010, 43(2), 489–495, DOI: 10.1016/j.foodres.2009.07.022.
  • Wilde, P.; Mackie, A.; Husband, F.; Gunning, P.; Morris, V. Proteins and Emulsifiers at Liquid Interfaces. Adv. Colloid Interface Sci. 2004, 108–109, 63–71, DOI: 10.1016/j.cis.2003.10.011.
  • Tcholakova, S.; Denkov, N.D.; Ivanov, I.B.; Campbell, B. Coalescence Stability of Emulsions Containing Globular Milk Proteins. Adv. Colloid Interface Sci. 2006, 123–126, 259–293, DOI: 10.1016/j.cis.2006.05.021.
  • Jourdain, L.S.; Schmitt, C.; Leser, M.E.; Murray, B.S.; Dickinson, E. Mixed Layers of Sodium Caseinate + Dextran Sulfate: Influence of Order of Addition to Oil-Water Interface. Langmuir. 2009, 25(17), 10026–10037, DOI: 10.1021/la900919w.
  • Chanamai, R.; Horn, G.; McClements, D.J. Influence of Oil Polarity on Droplet Growth in Oil-In-Water Emulsions Stabilized by aWeakly Adsorbing Biopolymer or a Nonionic Surfactant. J. Colloid Interface Sci. 2002, 247, 167–176, DOI: 10.1006/jcis.2001.8110.
  • McClements, D.J.; Henson, L.; Popplewell, L.M.; Decker, E.A.; Jun Choi, S. Inhibition of Ostwald Ripening in Model Beverage Emulsions by Addition of Poorly Water Soluble Triglyceride Oils. J. Food Sci. 2012, 71,(1), C33–C38, DOI: 10.1111/j.1750-3841.2011.02484.x.
  • Wooster, T.J.; Golding, M.; Sanguansri, P. Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability. Langmuir. 2008, 24, 12758–12765, DOI: 10.1021/la801685v.
  • Lim, S.S.; et al. Stabilization of Orange Oil-In-Water Emulsions: A New Role for Ester Gum as an Ostwald Ripening Inhibitor. Food Chem. 2011, 128, 1023–1028. DOI: 10.1016/j.foodchem.2011.04.008.
  • Ghosh, A.K.; Bandyopadhyay, P. Polysaccharide-Protein Interactions and Their Relevance in Food Colloids. In The Complex World of Polysaccharides; Karunaratne, D.N., Ed.; InTech: 2012, pp 395–408. https://www.intechopen.com/books/the-complex-world-of-polysaccharides/polysaccharide-protein-interactions-and-their-relevance-in-food-colloids
  • Weinbreck, F.; Nieuwenhuijse, H.; Robijn, G.W.; De Kruif, C.G. Complexation of Whey Proteins with Carrageenan. J. Agric. Food Chem. 2004, 52, 3550−3555, DOI: 10.1021/jf034969t.
  • Schmitt, C.; Sanchez, C.; Desobry-Banon, S.; Hardy, J. Structure and Technofunctional Properties of Protein- Polysaccharide Complexes: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38(8), 689–753, DOI: 10.1080/10408699891274354.
  • Cooper, C.L.; Dubin, P.L.; Kayitmazer, A.B.; Turksen, S. Polyelectrolyte-Protein Complexes. Curr. Opin. Colloid Interface Sci. 2005, 10(1–2), 52–78, DOI: 10.1016/j.cocis.2005.05.007.
  • De Kruif, C.G.; Weinbreck, F.; De Vries, R. Complex Coacervation of Proteins and Anionic Polysaccharides. Curr. Opin. Colloid Interface Sci. 2004, 9, 340–349, DOI: 10.1016/j.cocis.2004.09.006.
  • Girard, M.; Schaffer-Lequart, C. Attractive Interactions between Selected Anionic Exopolysaccharides and Milk Proteins. Food Hydrocoll. 2008, 22, 1425–1434, DOI: 10.1016/j.foodhyd.2007.09.001.
  • Sanchez, C.; Mekhloufi, G.; Renard, D. Complex Coacervation between Β-Lactoglobulin and Acacia Gum: A Nucleation and Growth Mechanism. J. Colloid Interface Sci. 2006, 299, 867–873, DOI: 10.1016/j.jcis.2006.02.031.
  • Aryee, F.N.A.; Nickerson, M.T. Formation of Electrostatic Complexes Involving Mixtures of Lentil Protein Isolates and Gum Arabic Polysaccharides. Food Res. Int. 2012, 48, 520–527, DOI: 10.1016/j.foodres.2012.05.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.