1,859
Views
5
CrossRef citations to date
0
Altmetric
Review

Application of electronic tongue for fresh foods quality evaluation: A review

, , &

References

  • Min, Z.;. Theory and Practice of New Technology on Fresh Food Preservation and Drying; Beijing Chemical Industry Press: Beijing, 2009; pp 1–5.
  • J.R., L.;. Research Progress of Fresh - Keeping Technology on Fresh Food. J. Chin. Inst. Food Sci. Technol. 2010, 10(3), 1–12.
  • Toko, K.;. Electronic Tongue. Biosens. Bioelectron. 1998, 13(6), 701. DOI: 10.1016/S0956-5663(98)00025-6.
  • Ha, D.; et al. Recent Achievements in Electronic Tongue and Bioelectronic Tongue as Taste Sensors. Sens. Actuators B: Chem. 2015, 207, 1136–1146. DOI: 10.1016/j.snb.2014.09.077.
  • Baldwin, E.A.; et al. Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries. Sensors (Basel). 2011, 11(5), 4744–4766. DOI: 10.3390/s110504744.
  • Mimendia, A.; J.M., G.; Leija, L.; et al. A Review of the Use of the Potentiometric Electronic Tongue in the Monitoring of Environmental Systems. Environ. Modell. Software. 2010, 25(9), 1023–1030. DOI: 10.1016/j.envsoft.2009.12.003.
  • Czolkos, I.; Dock, E.; Tønning, E.; et al. Prediction of Wastewater Quality Using Amperometric Bioelectronic Tongues. Biosens. Bioelectron. 2016, 75, 375–382. DOI: 10.1016/j.bios.2015.08.055.
  • Turner, C.; Rudnitskaya, A.; Legin, A. Monitoring Batch Fermentations with an Electronic Tongue. J. Biotechnol. 2003, 103(1), 87–91. DOI: 10.1016/S0168-1656(03)00066-X.
  • Ciosek, P.; W., W. Potentiometric and Hybrid Electronic Tongues for Bioprocess Monitoring - an Overview. Anal. Methods. 2015, 7(9), 3958–3966. DOI: 10.1039/C5AY00445D.
  • Gutiérrez, M.; Alegret, S.; Cáceres, R.; et al. Nutrient Solution Monitoring in Greenhouse Cultivation Employing a Potentiometric Electronic Tongue. J. Agric. Food Chem. 2008, 56(6), 1810. DOI: 10.1021/jf073438s.
  • Escuder-Gilabert, L.; Peris, M. Review: Highlights in Recent Applications of Electronic Tongues in Food Analysis. Anal. Chim. Acta. 2010, 665(1), 15–25. DOI: 10.1016/j.aca.2010.03.017.
  • Legin, A.; A., R.; Yu, V.; et al. Application of Electronic Tongue for Qualitative and Quantitative Analysis of Complex Liquid Media. Sensors Actuat. B Chem.L. 2000, 65(1), 232–234. DOI: 10.1016/S0925-4005(99)00324-X.
  • Hayashi, K.; Yamanaka, M.; Toko, K.; et al. Multichannel Taste Sensor Using Lipid Membranes. Sensors Actuat. B Chem.L. 1990, 2(3), 205–213. DOI: 10.1016/0925-4005(90)85006-K.
  • Jain, H.; R., P.; Pradhan, P.; et al. Electronic Tongue: A New Taste Sensor. Int. J. Pharm. Sci. Rev. Res. 2010, 5(2), 91–96.
  • Vlasov, Y.G.; A.V., L.; Rudnitskaya, A.M.; et al. «Electronic Tongue» — New Analytical Tool for Liquid Analysis on the Basis of Non-Specific Sensors and Methods of Pattern Recognition. Sensors Actuat. B Chem.L. 2000, 65(1), 235–236. DOI: 10.1016/S0925-4005(99)00323-8.
  • Ivarsson, P.; Kikkawa, Y.; Winquist, F.; et al. Comparison of a Voltammetric Electronic Tongue and a Lipid Membrane Taste Sensor. Anal. Chim. Acta. 2001, 449(1), 59–68. DOI: 10.1016/S0003-2670(01)01349-6.
  • Wadehra, A.; Patil, P.S. Application of Electronic Tongues in Food Processing. Anal. Methods. 2016, 8(3), 474–480. DOI: 10.1039/C5AY02724A.
  • Tahara, Y.; Toko, K. Electronic Tongues–A Review. IEEE Sens. J. 2013, 13(8), 3001–3011. DOI: 10.1109/JSEN.2013.2263125.
  • Nery, E.W.; Kubota, L.T. Integrated, Paper-Based Potentiometric Electronic Tongue for the Analysis of Beer and Wine. Anal. Chim. Acta. 2016, 918, 60–68. DOI: 10.1016/j.aca.2016.03.004.
  • Zhang, X.; et al. Evaluation of Beef by Electronic Tongue System TS-5000Z: Flavor Assessment, Recognition and Chemical Compositions according to Its Correlation with Flavor. PLoS One. 2015, 10(9), 1–10.
  • Rudnitskaya, A.; A., E.; Legin, A.; et al. Multisensor System on the Basis of an Array of Non-Specific Chemical Sensors and Artificial Neural Networks for Determination of Inorganic Pollutants in a Model Groundwater. Talanta. 2001, 55(2), 425–431. DOI: 10.1016/S0039-9140(01)00444-1.
  • Bratov, A.; Abramova, N.; Ipatov, A. Recent Trends in Potentiometric Sensor Arrays–A Review. Anal. Chim. Acta. 2010, 678(2), 149–159. DOI: 10.1016/j.aca.2010.08.035.
  • Ciosek, P.; Wroblewski, W. Sensor Arrays for Liquid Sensing–Electronic Tongue Systems. Analyst. 2007, 132(10), 963–978. DOI: 10.1039/b705107g.
  • Juan-Borras, M.; Soto, J.; Gil-Sanchez, L.; et al. Antioxidant Activity and Physico-Chemical Parameters for the Differentiation of Honey Using a Potentiometric Electronic Tongue. J. Sci. Food Agric. 2017, 97, 2215–2222. DOI: 10.1002/jsfa.2017.97.issue-7.
  • Lenik, J.; Wesoły, M.; Ciosek, P.; Wroblewski, W. Evaluation of Taste Masking Effect of Diclofenac Using Sweeteners and Cyclodextrin by a Potentiometric Electronic Tongue. J. Electroanalytical Chem. 2016, 780, 153–159. DOI: 10.1016/j.jelechem.2016.09.017.
  • Cuartero, M.; Carretero, A.; Garcia, M.S.; Ortuno, J.A. New Potentiometric Electronic Tongue For Analysing Teas and Infusion. Electroanalysis. 2015, 27(3), 782–788. DOI: 10.1002/elan.201400586.
  • Dias, L.G.; Fernandes, A.; Veloso, A.C.A.; et al. Single-Cultivar Extra Virgin Olive Oil Classification Using a Potentiometricelectronic Tongue. Food Chem. 2014, 160, 321–329. DOI: 10.1016/j.foodchem.2014.03.072.
  • Cetó, X.; Gutiérrez-Capitán, M.; Calvo, D.; et al. Beer Classification by Means of a Potentiometric Electronic Tongue. Food Chem. 2013, 141(3), 2533–2540. DOI: 10.1016/j.foodchem.2013.05.091.
  • Deivy, W.; Abbas, M.N.; Radwan, A.L.A.; et al. Potentiometric Electronic Tongue to Resolve Mixtures of Sulfide and Perchlorate Anions. Sensors. 2011, 11(3), 3214–3226. DOI: 10.3390/s110303214.
  • Winquist, F.; Krantz-Rülcker, C.; Lundström, I. Electronic Tongues and Combinations of Artificial Senses. Sens. Update. 2002, 11(1), 279–306. DOI: 10.1002/seup.200211107.
  • Ivarsson, P.; et al. A Voltammetric Electronic Tongue. Chem. Senses. 2005, 30(1), DOI: 10.1093/chemse/bjh213.
  • Winquist, F.;. Voltammetric Electronic Tongues – Basic Principles and Applications. Microchimica Acta. 2008, 163(1–2), 3–10. DOI: 10.1007/s00604-007-0929-2.
  • Carlsson, A.; C., K.-R.; Winquist, F. An Electronic Tongue as a Tool for Wet-End Monitoring. Nordic Pulp Pap. Res. J. 2009, 16(4), 319–326. DOI: 10.3183/NPPRJ-2001-16-04-p319-326.
  • Yu, Y.; H., Z.; Yang, R.; et al. Pure Milk Brands Classification by Means of a Voltammetric Electronic Tongue and Multivariate Analysis. Int. J. Electrochemical Sci. 2014, 10(5), 4381–4392.
  • Wei, Z.; Zhang, W.; Wang, Y.; et al. Monitoring the Fermentation, Post-Ripeness and Storage Processes of Set Yogurt Using Voltammetric Electronic Tongue. J. Food. Eng. 2017, 203, 41–52. DOI: 10.1016/j.jfoodeng.2017.01.022.
  • Ghosh, A.; Sharma, P.; Tudu, B.; et al. Detection of Optimum Fermentation Time of Black CTC Tea Using a Voltammetric Electronic Tongue. IEEE Trans. Instrumentation Meas. 2015, 64(10), 2720–2729. DOI: 10.1109/TIM.2015.2415113.
  • Cabral, F.P.A.; et al. Impedance E-Tongue Instrument for Rapid Liquid Assessment. Rev. Sci. Instrum. 2009, 80(2), 026107. DOI: 10.1063/1.3084210.
  • Riul, A.; et al. Wine Classification by Taste Sensors Made from Ultra-Thin Films and Using Neural Networks. Sens. Actuators B: Chem. 2004, 98(1), 77–82. DOI: 10.1016/j.snb.2003.09.025.
  • Bhondekar, A.P.; Vig, R.; Gulati, A.; et al. Performance Evaluation of a Novel iTongue for Indian Black Tea Discrimination. IEEE Sens. J. 2011, 11(12), 3462–3468. DOI: 10.1109/JSEN.2011.2161279.
  • Bhondekar, A.P.; Kaur, R.; Kumar, R.; et al. A Novel Approach Using Dynamic Social Impact Theory for Optimization of impedance-Tongue (Itongue). Chemometrics Intell. Lab. Syst. 2011, 109(1), 65–76. DOI: 10.1016/j.chemolab.2011.08.002.
  • Bhondekar, A.P.; Dhiman, M.; Sharma, A.; et al. A Novel iTongue for Indian Black Tea Discrimination. Sensors Actuat. B Chem.L. 2010, 148(2), 601–609. DOI: 10.1016/j.snb.2010.05.053.
  • Jain, A.K.; P.W., D.R.; Mao, J. Statistical Pattern Recognition: A Review. Optica Acta Int. J. Opt. 2000, 27(1), 4–37.
  • Bougrini, M.; et al. Classification of Honey according to Geographical and Botanical Origins and Detection of Its Adulteration Using Voltammetric Electronic Tongue. Food Anal. Methods. 2016, 9(8), 2161–2173. DOI: 10.1007/s12161-015-0393-2.
  • Kundu, P.K.; Kundu, M. The E‐Tongue‐Based Classification and Authentication of Mineral Water Samples Using Cross‐Correlation‐Based PCA and Sammon’s Nonlinear Mapping. J. Chemom. 2013, 27(11), 379–393. DOI: 10.1002/cem.2521.
  • Qiu, S.; Wang, J.; Gao, L. Discrimination and Characterization of Strawberry Juice Based on Electronic Nose and Tongue: Comparison of Different Juice Processing Approaches by LDA, PLSR, RF, and SVM. J. Agric. Food Chem. 2014, 62(27), 6426–6434. DOI: 10.1021/jf501468b.
  • Escriche, I.; Kadar, M.; Domenech, E.; et al. A Potentiometric Electronic Tongue for the Discrimination of Honey according to the Botanical Origin. Comparison with Traditional Methodologies: Physicochemical Parameters and Volatile Profile. J. Food. Eng. 2012, 109(3), 449–456. DOI: 10.1016/j.jfoodeng.2011.10.036.
  • Li, Y.; Lei, J.; Liang, D. Identification of Fake Green Tea by Sensory Assessment and Electronic Tongue. Food Sci. Technol. Res. 2015, 21(2), 207–212. DOI: 10.3136/fstr.21.207.
  • Zhou, J.; L., W.; Teng, J.;, et al., Research on Pattern Recognition Based on the Universal Electronic Tongue System. International Conference on Wireless Communications NETWORKING and Mobile Computing. IEEE, 2010, 1–4.
  • Zhang, J.; Pan, C.; Gao, H.; et al. Application of Potential Type Electronic Tongue on Milk Discrimination. Telkomnika Indonesian J. Electr, Eng. 2013, 11(9), DOI: 10.11591/telkomnika.v11i9.3292.
  • Chen, Q.; Zhao, J.; Vittayapadung, S. Identification of the Green Tea Grade Level Using Electronic Tongue and Pattern Recognition. Food Res. Int. 2008, 41(5), 500–504. DOI: 10.1016/j.foodres.2008.03.005.
  • Ouyang, Q.; Zhao, J.; Chen, Q. Instrumental Intelligent Test of Food Sensory Quality as Mimic of Human Panel Test Combining Multiple Cross-Perception Sensors and Data Fusion. Anal. Chim. Acta. 2014, 841, 68–76. DOI: 10.1016/j.aca.2014.06.001.
  • L., R.;. Developments in Instrumental Techniques for Food Flavour Evaluation: Future Prospects. J. Sci. Food Agric. 2000, 80(14), 2044–2048. DOI: 10.1002/(ISSN)1097-0010.
  • Ninomiya, Y.; M., F. Qualitative Discrimination among Umani and the Four Basic Taste Substances in Mice. A Basic Taste; Marcel Dekker: New York, 1987; pp 365–385.
  • K., T.;. Taste Sensor. Sensors Actuat. B Chem.L. 2000, 64(1), 205–215. DOI: 10.1016/S0925-4005(99)00508-0.
  • J.S., S.;. An Electronic Tongue for Core Taste Identification Based on Conductometry. Int. J. Eng. Res. Appl. 2013, 3(3), 961–963.
  • Chandrashekar, J.; et al. The Receptors and Cells for Mammalian Taste. Nature. 2006, 444(7117), 288–294. DOI: 10.1038/nature05401.
  • Pein, M.; et al. Interlaboratory Testing of Insent E-Tongues. Int. J. Pharm. 2014, 469(2), 228–237. DOI: 10.1016/j.ijpharm.2014.02.036.
  • Woertz, K.; Tissen, C.; Kleinebudde, P.; et al. A Comparative Study on Two Electronic Tongues for Pharmaceutical Formulation Development. J. Pharm. Biomed. Anal. 2011, 55(2), 272–281. DOI: 10.1016/j.jpba.2011.02.002.
  • Zoldan, S.M.; et al. Electronic Tongue System to Evaluate Flavor of Soybean (Glycine Max (L.) Merrill) Genotypes. Braz. Arch. Biol. Technol. 2014, 57(5), 797–802. DOI: 10.1590/S1516-8913201402176.
  • Wang, X.Y.; C., P.G.; Li, Y. Research Progress of Difference between Electronic Tongue and Real Taste Evaluation. Food and Mach. 2016, 32, 213–216.
  • Chen, R.; H., I.; Toko, K. Development of Sensor with High Selectivity for Saltiness and Its Application in Taste Evaluation of Table Salt. Sensors Mater. 2010, 22(6), 313–325.
  • Arrieta, A.A.; C., A.; Rodríguez-Méndez, M.L.; et al. Voltammetric Sensor Array Based on Conducting Polymer-Modified Electrodes for the Discrimination of Liquids. Electrochim. Acta. 2004, 49(26), 4543–4551. DOI: 10.1016/j.electacta.2004.05.010.
  • Hayashi, N.; Chen, R.; Ikezaki, H.; et al. Evaluation of the Umami Taste Intensity of Green Tea by a Taste Sensor. J. Agric. Food Chem. 2008, 56(16), 7384. DOI: 10.1021/jf800933x.
  • Mizota, Y.; H., M.; Ikeda, M.; et al. Flavor Evaluation Using Taste Sensor for UHT Processed Milk Stored in Cartons Having Different Light Permeabilities. Milchwissenschaft-Milk Sci. Int. 2009, 64(2), 143–146.
  • Toyota, K.; H., C.; Abe, K.; et al. Sweetness Sensor with Lipid/Polymer Membranes: Sweet-Responsive Substances. Sensors Mater. 2011, 23(8), 465–474.
  • Toyota, K.; H., C.; Abe, K.; et al. Sweetness Sensor with Lipid/Polymer Membranes: Response to Various Sugars. Sensors Mater. 2011, 23(8), 475–482.
  • Yang, Y.; et al. Evaluation of Monosodium Glutamate, Disodium Inosinate and Guanylate Umami Taste by an Electronic Tongue. J. Food. Eng. 2013, 116(3), 627–632. DOI: 10.1016/j.jfoodeng.2012.12.042.
  • Simoes Costa, A.M.; et al. Astringency Quantification in Wine: Comparison of the Electronic Tongue and FT-MIR Spectroscopy. Sens. Actuators B: Chem. 2015, 207, 1095–1103. DOI: 10.1016/j.snb.2014.10.052.
  • Tian, H.; et al. Comparison of Intensities and Binary Interactions of Four Basic Tastes between an Electronic Tongue and a Human Tongue. Food Sci. Biotechnol. 2015, 24(5), 1711–1715. DOI: 10.1007/s10068-015-0222-9.
  • Moreno, L.; Merlos, A.; Abramova, N.; et al. Multi-Sensor Array Used as an “Electronic Tongue” for Mineral Water Analysis. Sensors Actuat. B Chem.L. 2006, 116(1), 130–134. DOI: 10.1016/j.snb.2005.12.063.
  • Moreno, I.C.L.; Kloock, J.P.; Schöning, M.J.; et al. Electronic Integrated Multisensor Tongue Applied to Grape Juice and Wine Analysis. Analyst. 2008, 133(10), 1440–1448. DOI: 10.1039/b801228h.
  • Phat, C.; Moon, B.; Lee, C. Evaluation of Umami Taste in Mushroom Extracts by Chemical Analysis, Sensory Evaluation, and an Electronic Tongue System. Food Chem. 2016, 192, 1068–1077. DOI: 10.1016/j.foodchem.2015.07.113.
  • Gong, J.; et al. Identification of Key Umami-Related Compounds in Yangtze Coilia Ectenes by Combining Electronic Tongue Analysis with Sensory Evaluation. RSC Adv. 2016, 6(51), 45689–45695. DOI: 10.1039/C6RA02931K.
  • Jawaid, S.; et al. Rapid Detection of Melamine Adulteration in Dairy Milk by SB-ATR-Fourier Transform Infrared Spectroscopy. Food Chem. 2013, 141(3), 3066–3071. DOI: 10.1016/j.foodchem.2013.05.106.
  • Legin, A.; et al. Electronic Tongue for Pharmaceutical Analytics: Quantification of Tastes and Masking Effects. Anal Bioanal. Chem. 2004, 380(1), 36–45. DOI: 10.1007/s00216-004-2738-3.
  • Karoui, R.; B., J. A Review of the Analytical Methods Coupled with Chemometric Tools for the Determination of the Quality and Identity of Dairy Products. Food Chem. 2007, 102(3), 621–640. DOI: 10.1016/j.foodchem.2006.05.042.
  • Peris, M.; Escuder-Gilabert, L. Electronic Noses and Tongues to Assess Food Authenticity and Adulteration. Trends Food Sci. Technol. 2016, 58, 40–54. DOI: 10.1016/j.tifs.2016.10.014.
  • Tudor Kalit, M.;. Application of Electronic Nose and Electronic Tongue in the Dairy Industry. Mljekarstvo. 2014, 228–244. DOI: 10.15567/mljekarstvo.
  • Kargin, I.D.; et al. HPLC Determination of Tetracycline Antibiotics in Milk with Post-Column Derivatization and Fluorescence Detection. Inorg. Mater. 2016, 52(14), 1365–1369. DOI: 10.1134/S0020168516140065.
  • Jha, S.N.; et al. Detection and Quantification of Urea in Milk Using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. Food Bioproc. Tech. 2015, 8(4), 926–933. DOI: 10.1007/s11947-014-1455-y.
  • Xiao-Dong; et al. Simultaneous Determination of Melamine and Cyanuric Acid in Dairy;Products by Mixed-Mode Solid Phase Extraction and GC-MS. Food Control. 2013, 30(2), 545–548. DOI: 10.1016/j.foodcont.2012.06.045.
  • Xu, X.M.; et al. Direct Determination of Melamine in Dairy Products by Gas Chromatography/Mass Spectrometry with Coupled Column Separation. Anal. Chim. Acta. 2009, 650(1), 39–43. DOI: 10.1016/j.aca.2009.04.026.
  • Tao, D.; et al. Determination of Melamine Residue in Plant Origin Protein Powders Using High Performance Liquid Chromatography-Diode Array Detection and High Performance Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Chinese Journal of Chromatography, 2008, 26(1), 6–9.
  • Lima, M.J.R.; Fernandes, S.M.V.; Rangel, A.O.S.S. Enzymatic Determination of Urea in Milk by Sequential Injection with Spectrophotometric and Conductometric Detection. J. Agric. Food Chem. 2004, 52(23), 6887. DOI: 10.1021/jf0488312.
  • Wen, Y.; et al. Determination of Melamine in Milk Powder, Milk and Fish Feed by Capillary Electrophoresis: A Good Alternative to HPLC. J. Sci. Food Agric. 2010, 90(13), 2178–2182. DOI: 10.1002/jsfa.4066.
  • Ellis, D.I.; Brewster, V.L.; Dunn, W.B.; et al. Fingerprinting Food: Current Technologies for the Detection of Food Adulteration and Contamination. Chem. Soc. Rev. 2012, 41(17), 5706–5727. DOI: 10.1039/c2cs35138b.
  • Terenzio, B.; A., G.; Maurizio, M.; et al. Transfer of Melamine to Cheese; Wageningen Academic Publishers: Wageningen, Gelderland, 2013, 781–791.
  • Ezhilan, M.; Gumpu, M.B.; Ramachandra, B.L.; et al. Design and Development of Electrochemical Biosensor for the Simultaneous Detection of Melamine and Urea in Adulterated Milk Samples. Sensors Actuat. B Chem.L. 2016, 238, 1283–1292. DOI: 10.1016/j.snb.2016.09.100.
  • Moore, J.C.; DeVries, J.W.; Lipp, M.; et al. Total Protein Methods and Their Potential Utility to Reduce the Risk of Food Protein Adulteration. Compr. Rev. Food Sci. Food Saf. 2010, 9(4), 330–357. DOI: 10.1111/j.1541-4337.2010.00114.x.
  • Paixão, T.R.L.C.; Bertotti, M. Fabrication of Disposable Voltammetric Electronic Tongues by Using Prussian Blue Films Electrodeposited onto CD-R Gold Surfaces and Recognition of Milk Adulteration. Sens. Actuators B: Chem. 2009, 137(1), 266–273. DOI: 10.1016/j.snb.2008.10.045.
  • Bueno, L.; et al. Voltammetric Electronic Tongue for Discrimination of Milk Adulterated with Urea, Formaldehyde and Melamine. Chemosensors. 2014, 2(4), 251–266. DOI: 10.3390/chemosensors2040251.
  • Hilding-Ohlsson, A.; et al. Voltamperometric Discrimination of Urea and Melamine Adulterated Skimmed Milk Powder. Sensors (Basel). 2012, 12(9), 12220–12234. DOI: 10.3390/s120912220.
  • Trivedi, U.B.; et al. Potentiometric Biosensor for Urea Determination in Milk. Sens. Actuators B: Chem. 2009, 140(1), 260–266. DOI: 10.1016/j.snb.2009.04.022.
  • Li, L.A.; Y., Y.; Yang, J.; et al. Voltammetric Electronic Tongue for the Qualitative Analysis of Milk Adulterated with Urea Combined with Multi-Way Data Analysis. Int. J. Electrochemical Sci. 2015, 10(7), 5970–5980.
  • Yaping, Y.; E.A., H.Z. Discrimination of Milk Adulterated with Urea Using Voltammetric Electronic Tongue Coupled with PCA-LSSVM. Int. J. Electrochemical Sci. 2015, 10, 10119–10131.
  • Kaminski, J.; S., A.A.; Mahadevan, S. Determination of Formaldehyde in Fresh and Retail Milk by Liquid Column Chromatography. J. Aoac Int. 1993, 76(5), 1010–1013.
  • Tan, G.; S., T.; Shen, Z.; et al. Electronic Tongue Detection for Residual?Antibiotic in Milk Powder. Trans. Chin. Soc. Agric. Eng. 2011, 27(4), 361–365.
  • Lynas, L.; Currie, D.; Mccaughey, W.J.; et al. Contamination of Animal Feedingstuffs with Undeclared Antimicrobial Additives. Food Addit. Contam. 1998, 15(2), 162–170. DOI: 10.1080/02652039809374626.
  • Wei, Z.; Wang, J. Detection of Antibiotic Residues in Bovine Milk by a Voltammetric Electronic Tongue System. Anal. Chim. Acta. 2011, 694(1–2), 46–56. DOI: 10.1016/j.aca.2011.02.053.
  • Mercante, L.A.; et al. Electronic Tongue Based on Nanostructured Hybrid Films of Gold Nanoparticles and Phthalocyanines for Milk Analysis. Journal of Nanomaterials. 2015, 1–7. DOI: 10.1155/2015/890637.
  • Scagion, V.P.; et al. An Electronic Tongue Based on Conducting Electrospun Nanofibers for Detecting Tetracycline in Milk Samples. RSC Adv. 2016, 6(105), 103740–103746. DOI: 10.1039/C6RA21326J.
  • Wei, Z.; Wang, J.; Zhang, X. Monitoring of Quality and Storage Time of Unsealed Pasteurized Milk by Voltammetric Electronic Tongue. Electrochim. Acta. 2013, 88, 231–239. DOI: 10.1016/j.electacta.2012.10.042.
  • Fan, B.L.; P., Q.J.; et al. Application of Electronic Sensory Evaluation System in Meat Quality Analysis. J. Food Saf. Health. 2014, 5(8), 2440–2447.
  • Haddi, Z.; et al. Instrumental Assessment of Red Meat Origins and Their Storage Time Using Electronic Sensing Systems. Anal. Methods. 2015, 7(12), 5193–5203. DOI: 10.1039/C5AY00572H.
  • Apetrei, I.M.; Apetrei, C. Application of Voltammetric E-Tongue for the Detection of Ammonia and Putrescine in Beef Products. Sens. Actuators B: Chem. 2016, 234, 371–379. DOI: 10.1016/j.snb.2016.05.005.
  • Gil, L.; et al. Monitoring of Physical–Chemical and Microbiological Changes in Fresh Pork Meat under Cold Storage by Means of a Potentiometric Electronic Tongue. Food Chem. 2011, 126(3), 1261–1268. DOI: 10.1016/j.foodchem.2010.11.054.
  • Labrador, R.H.; et al. Prediction of NaCl, Nitrate and Nitrite Contents in Minced Meat by Using a Voltammetric Electronic Tongue and an Impedimetric Sensor. Food Chem. 2010, 122(3), 864–870. DOI: 10.1016/j.foodchem.2010.02.049.
  • Campos, I.; et al. Accurate Concentration Determination of Anions Nitrate, Nitrite and Chloride in Minced Meat Using a Voltammetric Electronic Tongue. Sens. Actuators B: Chem. 2010, 149(1), 71–78. DOI: 10.1016/j.snb.2010.06.028.
  • Han, F.K.; Y., H.X.; Teye, E.; et al. A Nondestructive Method for Fish Freshness Determination with Electronic Tongue Combined with Linear and Non-Linear Multivariate Algorithms. J. Food Sci. 2014, 32(6), 532–537.
  • Han, F.K.; Huang, H.X.; et al. Quantitative Analysis of Fish Microbiological Quality Using Electronic Tongue Coupled with Nonlinear Pattern Recognition Algorithms. J. Food Saf. Health. 2015, 35, 336–344. DOI: 10.1111/jfs.2015.35.issue-3.
  • Zhao, G.Y.; F., H.J.; Tian, S.Y.; Deng, S.P. Rapid Identification of Pathogenic Vibrios in Aquatic Products by Smart Tongue. J. Microbiol. 2010, 50(1), 113–118.
  • Yamanaka, H.;. Polyamines as Potential Indexes for Freshness of Fish and Squid. Food Rev. Int. 1990, 6(4), 591–602. DOI: 10.1080/87559129009540894.
  • Rodríguez-Méndez, M.L.; et al. Biogenic Amines and Fish Freshness Assessment Using a Multisensor System Based on Voltammetric Electrodes. Comparison between CPE and Screen-Printed Electrodes. Electrochimi. Acta. 2009, 54(27), 7033–7041.
  • Apetrei, I.M.; M L., R.-M.; Apetrei, C.; et al. Fish Freshness Monitoring Using an E-Tongue Based on Polypyrrole Modified Screen-Printed Electrodes. IEEE Sens. J. 2013, 13(7), 2548–2554. DOI: 10.1109/JSEN.2013.2253317.
  • Ruiz-Rico, M.; et al. Use of the Voltammetric Tongue in Fresh Cod (Gadus Morhua) Quality Assessment. Innov. Food Sci. Emerg. Technol. 2013, 18, 256–263. DOI: 10.1016/j.ifset.2012.12.010.
  • Yu-Wen, Y.I.; J., F.W.; Jia, H.F.; et al. Application of Electronic Tongue on Discriminationof Silver Carp during Frozen Storage. Food Mach. 2014, 30(2), 142–145.
  • Campos, I.; et al. Monitoring Grape Ripeness Using a Voltammetric Electronic Tongue. Food Res. Intz. 2013, 54(2), 1369–1375. DOI: 10.1016/j.foodres.2013.10.011.
  • Qiu, S.; Wang, J. Effects of Storage Temperature and Time on Internal Quality of Satsuma Mandarin (Citrus Unshiu Marc.) By Means of E-Nose and E-Tongue Based on Two-Way MANOVA Analysis and Random Forest. Innov. Food Sci. Emerg. Technol. 2015, 31, 139–150. DOI: 10.1016/j.ifset.2015.08.005.
  • Lignou, S.; Parker, J.K.; Baxter, C.; et al. Sensory and Instrumental Analysis of Medium and Long Shelf-Life Charentais Cantaloupe Melons (Cucumis Melo, L.) Harvested at Different Maturities. Food Chem. 2014, 148(100), 218. DOI: 10.1016/j.foodchem.2013.10.045.
  • Al-Maiman, S.A.; Ahmad, D. Changes in Physical and Chemical Properties during Pomegranate (Punica Granatum, L.) Fruit Maturation. Food Chem. 2002, 76(4), 437–441. DOI: 10.1016/S0308-8146(01)00301-6.
  • Raithore, S.; et al. Electronic Tongue Response to Chemicals in Orange Juice that Change Concentration in Relation to Harvest Maturity and Citrus Greening or Huanglongbing (HLB) Disease. Sensors (Basel). 2015, 15(12), 30062–30075. DOI: 10.3390/s151229787.
  • Hong, X.; Wang, J. Use of Electronic Nose and Tongue to Track Freshness of Cherry Tomatoes Squeezed for Juice Consumption: Comparison of Different Sensor Fusion Approaches. Food Bioproc. Tech. 2014, 8(1), 158–170. DOI: 10.1007/s11947-014-1390-y.
  • Hong, X.; Wang, J. Application of E-Nose and E-Tongue to Measure the Freshness of Cherry Tomatoes Squeezed for Juice Consumption. Anal. Methods. 2014, 6(9), 3133. DOI: 10.1039/c3ay42145g.
  • Qiu, S.; Wang, J.; Gao, L. Qualification and Quantisation of Processed Strawberry Juice Based on Electronic Nose and Tongue. LWT Food Sci. Technol. 2015, 60(1), 115–123. DOI: 10.1016/j.lwt.2014.08.041.
  • Qiu, S.; Wang, J. Application of Sensory Evaluation, HS-SPME GC-MS, E-Nose, and E-Tongue for Quality Detection in Citrus Fruits. J. Food Sci. 2015, 80(10), S2296–304. DOI: 10.1111/1750-3841.13012.
  • Rudnitskaya, A.; Kirsanov, D.; Legin, A.; et al. Analysis of Apples Varieties – Comparison of Electronic Tongue with Different Analytical Techniques. Sensors Actuat. B Chem.L. 2006, 116, 23–28. DOI: 10.1016/j.snb.2005.11.069.
  • Bleibaum, R.N.; Stone, H.; Tan, T.; et al. Comparison of Sensory and Consumer Results with Electronic Nose and Tongue Sensors for Apple Juices. Food Qual. Prefer. 2002, 13(6), 409–422. DOI: 10.1016/S0950-3293(02)00017-4.
  • Haddi, Z.; Mabrouk, S.; Bougrini, M.; et al. E-Nose and e-Tongue Combination for Improved Recognition of Fruit Juice Samples. Food Chem. 2014, 150(2), 246–253. DOI: 10.1016/j.foodchem.2013.10.105.
  • Hong, X.; Wang, J.; Qiu, S. Authenticating Cherry Tomato juices—Discussion of Different Data Standardization and Fusion Approaches Based on Electronic Nose and Tongue. Food Res. Int. 2014, 60, 173–179. DOI: 10.1016/j.foodres.2013.10.039.
  • Hong, X.; Wang, J. Detection of Adulteration in Cherry Tomato Juices Based on Electronic Nose and Tongue: Comparison of Different Data Fusion Approaches. J. Food. Eng. 2014, 126, 89–97. DOI: 10.1016/j.jfoodeng.2013.11.008.
  • Ouyang, Q.; Zhao, J.; Chen, Q. Classification of Rice Wine according to Different Marked Ages Using a Portable Multi-Electrode Electronic Tongue Coupled with Multivariate Analysis. Food Res. Int. 2013, 51(2), 633–640. DOI: 10.1016/j.foodres.2012.12.032.
  • Ciosek, P.; W., W. Miniaturized Electronic Tongue with an Integrated Reference Microelectrode for the Recognition of Milk Samples. Talanta. 2008, 76(3), 548–556. DOI: 10.1016/j.talanta.2008.03.051.
  • Toczyłowska, R.; Pokrop, R.; Dybko, A.; et al. Planar Potentiometric Sensors Based on Au and Ag Microelectrodes and Conducting Polymers for Flow-Cell Analysis. Anal. Chim. Acta. 2005, 540(1), 167–172. DOI: 10.1016/j.aca.2004.09.002.
  • Ciosek, P.; Wroblewski, W. The Recognition of Beer with Flow-Through Sensor Array Based on Miniaturized Solid-State Electrodes. Talanta. 2006, 69(5), 1156–1161. DOI: 10.1016/j.talanta.2005.12.029.
  • Verrelli, G.; Francioso, L.; Paolesse, R.; et al. Development of Silicon-Based Potentiometric Sensors: Towards a Miniaturized Electronic Tongue. Sensors Actuat. B Chem.L. 2007, 123(1), 191–197. DOI: 10.1016/j.snb.2006.08.015.
  • Twomey, K.; et al. Fabrication and Characterization of a Miniaturized Planar Voltammetric Sensor Array for Use in an Electronic Tongue. Sens. Actuators B: Chem. 2009, 140(2), 532–541. DOI: 10.1016/j.snb.2009.05.031.
  • Fredrik Winquist, C.K.R.; Lundström, I. A Miniaturized Voltammetric Electronic Tongue. Anal. Lett. 2008, 41(5), 917–924. DOI: 10.1080/00032710801934809.
  • Ciosek, P.; Wroblewski, W. Miniaturized Electronic Tongue with an Integrated Reference Microelectrode for the Recognition of Milk Samples. Talanta. 2008, 76(3), 548–556. DOI: 10.1016/j.talanta.2008.03.051.
  • Giménezgómez, P.; Escudé-Pujol, R.; Capdevila, F.; et al. Portable Electronic Tongue Based on Microsensors for the Analysis of Cava Wines. Sensors. 2016, 16(11), 1796. DOI: 10.3390/s16111796.
  • Beullens, K.; et al. Analysis of Tomato Taste Using Two Types of Electronic Tongues. Sens. Actuators B: Chem. 2008, 131(1), 10–17. DOI: 10.1016/j.snb.2007.12.024.
  • Benjamin, O.; Gamrasni, D. Electronic Tongue as an Objective Evaluation Method for Taste Profile of Pomegranate Juice in Comparison with Sensory Panel and Chemical Analysis. Food Anal. Methods. 2015, 9(6), 1726–1735. DOI: 10.1007/s12161-015-0350-0.
  • Bagnasco, L.; et al. Application of a Voltammetric Electronic Tongue and near Infrared Spectroscopy for a Rapid Umami Taste Assessment. Food Chem. 2014, 157, 421–428. DOI: 10.1016/j.foodchem.2014.02.044.
  • Pioggia, G.; D., F.F.; Marchetti, A.; Ferro, M.; Leardi, R.; Ahluwalia, A. A Composite Sensor Array Impedentiometric Electronic Tongue: Part II. Discrimination of Basic Tastes. Biosens. Bioelectron. 2007, 22, 2624–2628. DOI: 10.1016/j.bios.2006.10.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.