1,797
Views
51
CrossRef citations to date
0
Altmetric
Reviews

Enzyme activity during germination of different cereals: A review

ORCID Icon, , ORCID Icon, , , , & ORCID Icon show all

References

  • Miransari, M.; Smith, D.L. Plant Hormones and Seed Germination. Environ. Exp. Bot. 2014, 99, 110–121. DOI: 10.1016/j.envexpbot.2013.11.005.
  • Yamaguchi, S.;. Gibberellin Metabolism and Its Regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. DOI: 10.1146/annurev.arplant.59.032607.092804.
  • Palmiano, E.P.; Juliano, B.O. Biochemical Changes in the Rice Grain during Germination. Plant Physiol. 1972, 49(5), 751–756.
  • McFadden, G.I.; Ahluwalia, B.; Clarke, A.E.; Fincher, G.B. Expression Sites and Developmental Regulation of Genes Encoding (1-3, 1-4)-β-glucanase in Germinated Barley. Planta. 1988, 173(4), 500–508. DOI: 10.1007/BF00958963.
  • Lee, Y.T.; Bamforth, C.W. Variations in Solubility of Barley Beta-Glucan during Malting and Impact on Levels of Beta-Glucan in Wort and Beer. J. Am. Soc. Brewing Chemists. 2009, 67(2), 67–71. DOI: 10.1094/ASBCJ-2009-0226-01.
  • Caspers, M.P.; Lok, F.; Sinjorgo, K.; Van Zeijl, M.J.; Nielsen, K.A.; Cameron-Mills, V. Synthesis, Processing and Export of Cytoplasmic endo-β-1,4-xylanase from Barley Aleurone during Germination. Plant J. 2001, 26(2), 191–204.
  • Sung, H.G.; Shin, H.T.; Ha, J.K.; Lai, H.L.; Cheng, K.J.; Lee, J.H. Effect of Germination Temperature on Characteristics of Phytase Production from Barley. Bioresour. Technol. 2005, 96(11), 1297–1303. DOI: 10.1016/j.biortech.2004.10.010.
  • Thompson, J.E.; Froese, C.D.; Madey, E.; Smith, M.D.; Hong, Y. Lipid Metabolism during Plant Senescence. Prog. Lipid Res. 1998, 37, 119–141.
  • Szewińska, J.; Simińska, J.; Bielawski, W. The Roles of Cysteine Proteases and Phytocystatins in Development and Germination of Cereal Sedes. J. Plant Physiol. 2016, 207, 10–21. DOI: 10.1016/j.jplph.2016.09.008.
  • Domínguez, F.;.; Francisco, J.C. Programmed Cell Death (PCD): An Essential Process of Cereal Seed Development and Germination. Front. Plant Sci. 2014, 5, 1–11.
  • Young, T.E.; Gallie, D.R. Regulation of Programmed Cell Death in Maize Endosperm by Abscisic Acid. Plant Mol. Biol. 2000, 42(2), 397–414.
  • Kondhare, K.R.; Farrell, A.D.; Kettlewell, P.S.; Hedden, P.; Monaghan, J.M. Pre-Maturity A-Amylase in Wheat: The Role of Abscisic Acid and Gibberellins. J. Cereal Sci. 2015, 63, 95–108. DOI: 10.1016/j.jcs.2015.03.004.
  • Guzmán-Ortiz, F.A.; Robles-Ramírez, M.D.C.; Sánchez-Pardo, M.E.; Berrios, J.D.J.; Mora-Escobedo, R. Chapter 2. Effect of Germination on Bioactive Compounds of Soybean (Glycine Max). In Seeds as Functional Food and Nutraceuticals; Rosalva Mora-Escobedo, Jose de J. Berrios, Gustavo Fidel Gutierrez-López., Ed.; Nova Science Publisher, Inc: New York, 2014; Vol. 23, pp 23–42.
  • Filner, P.; Varner, J.E. Test for De Novo Synthesis of Enzymes: Density Labeling with H2O18 of Barley Alpha-Amylase Induced by Gibberellic Acid. Proc. Natl. Acad. Sci. U.S.A. 1967, 58(4), 1520–1526.
  • Mei, Y.Q.; Song, S.Q.; Morphological, E. Physiological Events Occurring during Germination of Maize Seeds. Agric. Sci. China 2008, 7(8), 950–957. DOI: 10.1016/S1671-2927(08)60134-0.
  • Farzaneh, V.; Ghodsvali, A.; Bakhshabadi, H.; Zare, Z.; Carvalho, I.S. The Impact of Germination Time on the Some Selected Parameters through Malting Process. ‎International J. Biol. Macromolecules. 2017, 94, 663–668. DOI: 10.1016/j.ijbiomac.2016.10.052.
  • Phiarais, B.P.N.; Wijngaard, H.H.; Arendt, E.K. The Impact of Kilning on Enzymatic Activity of Buckwheat Malt. J. Inst. Brewing. 2005, 111(3), 290–298. DOI: 10.1002/j.2050-0416.2005.tb00685.x.
  • Helland, M.H.; Wicklund, T.; Narvhus, J.A. Effect of Germination Time on Alpha-Amylase Production and Viscosity of Maize Porridge. Food Res. Int. 2002, 35(2), 315–321. DOI: 10.1016/S0963-9969(01)00202-2.
  • Yamasaki, Y.;. β-Amylase in Germinating Millet Sedes. Phytochem. 2003, 64, 935–939.
  • Tian, B.; Xie, B.; Shi, J.; Wu, J.; Cai, Y.; Xu, T.; Xue, S.; Deng, Q. (2010) Physicochemical Changes of Oat Seeds during Germination. Food Chem. 2010, 119(3), 1195–1200. DOI: 10.1016/j.foodchem.2009.08.035.
  • Moon Gngarm, A.; Moontree, T.; Deedpinrum, P.; Padtong, K. Functional Properties of Brown Rice Flour as Affected by Germination. APCBEE Procedia. 2014, 8, 41–46. DOI: 10.1016/j.apcbee.2014.01.077.
  • Larson, L.A.;. The Effect Soaking Pea Seeds with or without Seedcoats Has on Seedlins Growth. Plant Physiol. 1968, 43, 255–259.
  • Moongngarm, A.;. Influence of Germination Conditions on Starch, Physicochemical Properties, and Microscopic Structure of Rice Flour. Int. Conf. Biology, Environ. Chem. 2011, 1, 78–82.
  • Hübner, F.; Beatus, D.S.; Kurt, G.; Christophe, M.C.; Jan, A.D.; Elke, K.A. Influence of Germination Time and Temperature on the Properties of Rye Malt and Rye Malt Based Worts. J. Cereal Sci. 2010, 52(1), 72–79. DOI: 10.1016/j.jcs.2010.03.005.
  • Traoré, T.C.; Mouquet, C.; Icard-Verniere, C.; Traoré, A.S.; Trèche, S. Changes in Nutrient Composition, Phytate and Cyanide Contents and A-Amylase Activity during Cereal Malting in Small Production Units in Ouagadougou (Burkina Faso). Food Chem. 2004, 88(1), 105–114. DOI: 10.1016/j.foodchem.2004.01.032.
  • Uvere, P.O.; Adenuga, O.D.; Mordi, C. The Effect of Germination and Kilning on the Cyanogenic Potential, Amylase and Alcohol Levels of Sorghum Malts Used for Burukut U Production. J. Sci. Food Agric. 2000, 80(3), 352–358. DOI: 10.1002/(ISSN)1097-0010.
  • Sana, N.K.; Sarkar, B.C.; Azad, M.A.K.; Huque, M.E.; Shaha, R.K. Enzyme Activities and Mobilization of Nutrients in Brassica (Brassica Spp.) And Wheat (Triticum Aestivum L.) Seeds during Germination. J. Bio-Science. 2009, 17, 101–106.
  • Kalita, D.; Sarma, B.; Srivastava, B. Influence of Germination Conditions on Malting Potential of Low and Normal Amylose Paddy and Changes in Enzymatic Activity and Physico Chemical Properties. Food Chem. 2017, 2017(220), 67–75. DOI: 10.1016/j.foodchem.2016.09.193.
  • Zheng, Y.M.; He, R.G.; Huang, X.; Zheng, L.; Hu, Q.L.; Hua, P. Effects of Germination on Composition of Carbohydrate and Activity of Relevant Enzymes in Different Varieties of Brown Rice. Cereal and Feed Ind. 2006, 5, 1–3.
  • Carr, D.J.;. Chemieal Influenees of the Environment. In Encyclopedia of Plant Physiology; Ruhland, W., Ed.; Springer-Verlag: Berlin, 1961; Vol. ume XVI, pp 737–794.
  • Palmer, G.H.; Bathgate, G.N. Malting and Brewing. In Adnaces in Cereal Science and Technology. In American Association of Cereal Chemists; Pomeranz, Y., Ed.; ST Paul: MN, 1976; Vol. 1, pp 235–324.
  • Janecek, S.; Balaz, S. α-amilase and Approaches Leading to Enhanced Stability. FEBS Lett. 1992, 304(1), 1–3.
  • Palmer, G.H.; Shirakasi, T.; Sanusi, L.A., Physiology of Germination. Proc EBC Congr Invited Lectures 1989, 63–74.
  • Delcour, J.A.; Hoseney, R.C. Principles Cereal Science and Technology, 3rd ed.; AACC: St. Paul, MN, USA, 2000.
  • Li, C.; Oh, S.-G.; Lee, D.-H.; Baik, H.-W.; Chung, H.-J. Effect of Germination on the Structures and Physicochemical Properties of Starches from Brown Rice, Oat, Sorghum, and Millet. Int. J. Biol. Macromol. 2017, 105, 931–939. DOI: 10.1016/j.ijbiomac.2017.07.123.
  • Lineback, D.R.; Ponpipom, S. Effects of Germination of Wheat, Oats, and Pearl Millet on Alpha-Amylase Activity and Starch Degradation. Starch‐Stärke. 1977, 29(2), 52–60. DOI: 10.1002/(ISSN)1521-379X.
  • Claver, I.P.; Zhang, H.; Li, Q.; Zhu, K.; Zhou, H. Impact of the Soak and the Malt on the Physicochemical Properties of the Sorghum Starches. Int. J. Mol. Sci. 2010, 11(8), 3002–3015. DOI: 10.3390/ijms11083002.
  • Li, C.Y.; Li, W.H.; Lee, B.; Laroche, A.; Cao, L.P.; Lu, Z.X. Morphological Characterization of Triticale Starch Granules during Endosperm Development and Seed Germination. Can. J. Plant Sci. 2011, 91(1), 57–67. DOI: 10.4141/cjps10039.
  • Li, C.Y.; Li, C.; Lu, Z.X.; Li, W.H.; Cao, L.P. Morphological Changes of Starch Granules during Grain Filling and Seed Germination in Wheat. Starch‐Stärke. 2012, 64(2), 166–170. DOI: 10.1002/star.201100093.
  • Wu, F.; Chen, H.; Yang, N.; Wang, J.; Duan, X.; Jin, Z.; Xu, X. Effect of Germination Time on Physicochemical Properties of Brown Rice Flour and Starch from Different Rice Cultivars. J. Cereals Sci. 2013, 58(2), 263–271. DOI: 10.1016/j.jcs.2013.06.008.
  • Zakarai, S.; Matsuda, T.; Nitta, Y. Effect of Temperature on the Decomposition of Reserves during Germination and Early Growth of Rice Plants. Plant Prod. Sci. 2001, 4(1), 20–28. DOI: 10.1626/pps.4.20.
  • Correia, L.; Nunes, A.; Barros, A.S.; Delgadillo, I. Protein Profile and Malt Activity during Sorghum Germination. J. Sci. Food Agric. 2008, 88(15), 2598–2605. DOI: 10.1002/jsfa.3348.
  • Briggs, D.E.;. Malts and Malting; Birmingham UK: Springer Science & Business Media, 1998.
  • Hoj, P.B.; Hartman, D.J.; Morrice, N.A.; Doan, D.N.; Fincher, G.B. Purification of (1-3)-β-glucan Endohydrolase Isoenzyme II from Germinated Barley and Determination of Its Primary Structure from a cDNA Clone. Plant Mol. Biol. 1989, 13(1), 31–42.
  • Ballance, G.M.; Meredith, W.O.S.; Laberge, D.E. Distribution and Development of endo-β-glucanase Activities in Barley Tissues during Germination. Can. J. Plant Sci. 1976, 56(3), 459–466. DOI: 10.4141/cjps76-076.
  • Cui, S.W.; Wang, Q. Cell Wall Polysaccharides in Cereals: Chemical Structures and Functional Properties. Struct. Chem. 2009, 20(2), 291–297. DOI: 10.1007/s11224-009-9441-0.
  • Gianinetti, A.;. A Theoretical Framework for B-Glucan Degradation during Barley Malting. Theory Biosci. 2009, 128(2), 97–108. DOI: 10.1007/s12064-008-0055-7.
  • Etokakpan, O.U.;. Comparative Studies of the Degradation of Nonstarchy Polysaccharides by Sorghums and Barleys during Malting. J. Sci. Food Agric. 1992, 58(1), 129–134. DOI: 10.1002/(ISSN)1097-0010.
  • Marconi, O.; Tomasi, I.; Dionisio, L.; Perretti, G.; Fantozzi, P. Effects of Malting on Molecular Weight Distribution and Content of Water-Extractable β-glucans in Barley. Food Res. Int. 2014, 64, 677–682. DOI: 10.1016/j.foodres.2014.07.035.
  • Hübner, F.; O’Neil, T.; Cashman, K.D.; Arendt, E.K. The Influence of Germination Conditions on Beta-Glucan, Dietary Fibre and Phytate during the Germination of Oats and Barley. Eur. Food Res. Technol. 2010, 231(1), 27–35. DOI: 10.1007/s00217-010-1247-1.
  • Autio, K.; Simoinen, T.; Suortti, T.; Salmenkallio-Marttitla, M.; Lassila, K.; Wilhelmson, A. Structural and Enzyme Changes in Germinated Barley and Rye. J. Inst. Brewing. 2001, 107(1), 19–25. DOI: 10.1002/j.2050-0416.2001.tb00075.x.
  • Wilhelmson, A.; Oksman-Caldentey, K.M.; Laitila, A.; Suortti, T.; Kaukovirta-Norja, A.; Poutanen, K. Development of a Germination Process for Producing High β-Glucan, Whole Grain Food Ingredients from Oat. Chem. J. 2001, 78(6), 715–720.
  • Kołodziejczyk, P.; Michniewicz, J. The Changes of Some Enzymes Activities during Germination of Rye Kernels. Electron. J. Polish Agric. Universities. 2004, 7, 1.
  • Kuusela, P.; Hämäläinen, J.J.; Reinikainen, P.; Olkku, J. A Simulation Model for the Control of Beta-Glucanase Activity and Beta-Glucan Degradation during Germination in Malting. J. Inst. Brewing. 2004, 110(4), 309–319. DOI: 10.1002/jib.2004.110.issue-4.
  • Butt, M.S.; Thair, M.; Ahmad, Z.; Tauseef, M. Xylanases and Their Applications in Baking Industry. Food Technol. Biotechonol. 2008, 46, 22–31.
  • Simpson, D.J.; Fincher, G.B.; Huang, A.H.; Cameron-Mills, V. Structure and Function of Cereal and Related Higher Plant (1-> 4)-β-xylan Endohydrolases. J. Cereal Sci. 2003, 37(2), 111–127. DOI: 10.1006/jcrs.2002.0488.
  • Dornez, E.; Gebruers, K.; Delcour, J.A.; Courtin, C.M. Grain-Associated Xylanases: Occurrence, Variability, and Implications for Cereal Processing. Trends Food Sci. Technol. 2009, 20(11), 495–510. DOI: 10.1016/j.tifs.2009.05.004.
  • Van Campenhout, S.; Pollet, A.; Bourgois, T.M.; Rombouts, S.; Beaugrand, J.; Gebruers, K.; De Backer, E.; Courtin, C.M.; Delcour, J.A.; Volckaert, G. Unprocessed barley aleurone endo-β-1, 4-xylanase X-I is an active enzyme. Biochem. Biochem. Biophysical Res. Communications. 2007, 356(3), 799–804. DOI: 10.1016/j.bbrc.2007.03.066.
  • Taiz, L.; Honigman, W.A. Production of Cell Wall Hydrolyzing Enzymes by Barley Aleurone Layers in Response to Gibberellic Acid. Plant Physiol. 1976, 58(3), 380–386.
  • Dornez, E.; Joye, I.J.; Gebruers, K.; Delcour, J.A.; Courtin, C.M. Wheat-Kernel-Associated Endoxylanases Consist of a Majority of Microbial and Minority of Wheat Endogenous Endosylanases. J. Agric. Food Chem. 2006, 54(11), 4028–4032. DOI: 10.1021/jf060129d.
  • De Backer, E.; Gebruers, K.; Van Den Ende, W.; Courtin, C.M.; Delcour, J.A. Post-Translational Processing of β-d-xylanases and Changes in Extractability of Arabinoxylans during Wheat Germination. Plant Physiol. Biochem. 2010, 48(2), 90–97. DOI: 10.1016/j.plaphy.2009.10.008.
  • Gebruers, K.; Dornez, E.; Bedõ, Z.; Rakszegi, M.; Courtin, C.M.; Delcour, J.A. Variability in Xylanase and Xylanase Inhibition Activities in Different Cereals in the HEALTHGRAIN Diversity Screen and Contribution of Environment and Genotype to This Variability in Common Wheat. J. Agric. Food Chem. 2010, 58(17), 9362–9371. DOI: 10.1021/jf100474m.
  • Debyser, W.; Delcour, J.A., Inhibitors of xylanolytic and β-glucanolytic enzymes. Eur. Pat., further matter added April 1998, published as WO 98/49278 15 1997.
  • Debyser, W.; Debyser, W.; Peumans, W.J.; Van Damme, E.J.M.; Delcour, J.A. TAXI, a New Class of Enzyme Inhibitors Affecting Bread Volume. J. Cereal Sci. 1999, 30, 39–43. DOI: 10.1006/jcrs.1999.0272.
  • Croes, E.; Gebruers, K.; Luyten, N.; Delcour, J.A.; Courtin, C.M. The Three Classes of Wheat Xylanase-Inhibiting Proteins Accumulate in an Analogous Way during Wheat Ear Development and Germination. J. Plant Physiol. 2009, 166(12), 1253–1262. DOI: 10.1016/j.jplph.2009.02.008.
  • Nirmala, M.; Rao, M.S.; Muralikrishna, G. Carbohydrates and Their Degrading Enzymes from Native and Malted Finger Millet (Ragi, Eleusine Coracana, Indaf- 15). Food Chem. 2000, 69(2), 175–180. DOI: 10.1016/S0308-8146(99)00250-2.
  • Biely, P.; Ahlgren, J.A.; Leathers, T.D.; Greene, R.V.; Cotta, M.A. Aryl-Glycosidase Activities in Germinating Maize. Cereal Chem. 2003, 80(2), 144–147. DOI: 10.1094/CCHEM.2003.80.2.144.
  • Collins, T.; Hoyoux, A.; Dutron, A.; Georis, J.; Genot, B.; Dauvrin, T.; Filip Arnaut, F.; Gerday, C.; Feller, G. Use of Glycoside Hydrolase Family 8 Xylanases in Baking. J. Cereal Sci. 2006, 43(1), 79–84. DOI: 10.1016/j.jcs.2005.08.002.
  • Luo, Y.W.; Xie, W.H.; Xu, M.; Luo, F.X. Effects of Phytase and Polyphenol Oxidase Treatments on in Vitro Iron Bioavailability in Faba Bean (Vicia Faba L). CyTA – J. Food. 2012, 10(2), 165–171. DOI: 10.1080/19476337.2011.631222.
  • Luo, Y.W.; Xie, W.H.; Jin, X.X.; Wang, Q.; He, Y.J. Effects of Germination on Iron, Zinc, Calcium, Manganese, and Copper Availability from Cereals and Legumes. CyTA – J. Food. 2014, 12(1), 22–26. DOI: 10.1080/19476337.2013.782071.
  • Torres-Torres, N.; Tovar-Palacio, A.R. La historia del uso de la soya en México, su valor nutricional y su efecto en la salud. Salud públ Méx. 2009, 51(3), 246–257. DOI: 10.1590/S0036-36342009000300016.
  • Brinch-Pedersen, H.; Madsen, C.K.; Holme, I.B.; Dionisio, G. Increased Understanding of the Cereal Phytase Complement for Better Mineral Bio-Availability and Resource Management. J. Cereal Sci. 2014, 59(3), 373–381. DOI: 10.1016/j.jcs.2013.10.003.
  • Kim, H.Y.; Hwang, I.G.; Kim, T.M.; Woo, K.S.; Park, D.S.; Kim, J.H.; Kim, D.J.; Lee, J.; Lee, Y.R.; Jeong, H.S. Chemical and Functional Components in Different Parts of Rough Rice (Oryza Sativa L.) Before and after Germination. Food Chem. 2012, 134(1), 288–293. DOI: 10.1016/j.foodchem.2012.02.138.
  • Chinma, C.E.; Anuonye, J.C.; Simon, O.C.; Ohiare, R.O.; Danbaba, N. Effect of Germination on the Physicochemical and Antioxidant Characteristics of Rice Flour from Three Rice Varieties from Nigeria. Food Chem. 2015, 185, 454–458. DOI: 10.1016/j.foodchem.2015.04.010.
  • Agte, V.; Joshi, S.; Khot, S.; Paknikar, K.; Chiplonkar, S. Effect of Processing on Phytate Degradation and Mineral Solubility in Pulses. J. Sci. Technol. 1998, 35(4), 330–332.
  • Liu, B.L.; Amjad, R.; Tzeng, Y.M.; Rob, A. The Induction and Characterization of Phytase and Beyond. Enzyme Microb. Technol. 1998, 22(5), 415–425. DOI: 10.1016/S0141-0229(97)00210-X.
  • Kayodé, A.P.P.; Hounhouigana, J.D.; Nout, M.J.R. Impact of Brewing Process Operations on Phytate, Phenolic Compounds and in Vitro Solubility of Iron and Zinc in Opaque Sorghum Beer. LWT Food Sci. Technol. 2007, 40(5), 834–841. DOI: 10.1016/j.lwt.2006.04.001.
  • Bartnik, M.; Szafranska, I. Changes in Phytate Content and Phytase Activity during the Germination of Some Cereals. J. Cereal Sci. 1978, 5(1), 23–28. DOI: 10.1016/S0733-5210(87)80005-X.
  • Centeno, C.; Viveros, A.; Brenes, A.; Lozano, A.; De La Cuadra, C. (2003) Effect of Several Germination Conditions on Total P, Phytate P, Phytase, Acid Phosphatase Activities and Inositol Phosphate Esters in Spring and Winter Wheat. J. Agric. Sci. 2003, 141(3–4), 313–321. DOI: 10.1017/S0021859603003666.
  • Pernollet, J.C.;. Protein Bodies of Seeds, Ultrastructure, Biochemistry, and Degradation. Phytochem. 1978, 17(9), 1473–1480. DOI: 10.1016/S0031-9422(00)94623-5.
  • Pernollet, J.C.;. corpuscules proteiques des graines, stade transitoire de vacuoles specialisees. Physiologie Vegetale. 1982, 20, 259.
  • Van der Hoorn, R.A.;. Plant Proteases: From Phenotypes to Molecular Mechanisms. Annu. Rev. Plant Biol. 2008, 59, 191–223. DOI: 10.1146/annurev.arplant.59.032607.092835.
  • Brijs, K.; Trogh, I.; Jones, B.; Delcour, J.A. Proteolytic Enzymes in Germinating Rye Grains. Cereal Chem. 2002, 79(3), 423–428. DOI: 10.1094/CCHEM.2002.79.3.423.
  • Müntz, K.;. Proteases and Proteolytic Cleavage of Storage Proteins in Developing and Germinating Dicotyledonous Seeds. J. Exp. Bot. 1996, 47(5), 605–622. DOI: 10.1093/jxb/47.5.605.
  • Grudkowska, M.; Zagdanska, B. Multifunctional Role of Plant Cysteine Proteinases. Acta Biochimica Polonica-English Edition. 2004, 51, 609–624.
  • Cambra, I.; Martínez, M.; Dáder, B.; González-Melendi, P.; Gandullo, J.; Santamaría, M.E.; Díaz, I. A Cathepsin F-Like Peptidase Involved in Barley Grain Protein Mobilization, HvPap-1, Is Modulated by Its Own Propeptide and by Cystatins. J. Exp. Bot. 2012, 63(12), 4615–4629. DOI: 10.1093/jxb/ers137.
  • Wrobel, R.; Jones, B.L. Appearance of Endoproteolytic Enzymes during the Germination of Barley. Plant Physiol. 1992, 100(3), 1508–1516.
  • Martínez, M.; Cambra, I.; Carrillo, L.; Diaz-Mendoza, M.; Diaz, I. Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination. Plant Physiol. 2009, 151(3), 1531–1545. DOI: 10.1104/pp.109.146019.
  • Zhang, N.; Jones, B.L. Development of Proteolytic Activities during Barley Malting and Their Localization in the Green Malt Kernel. J. Cereal Sci.. 1995, 22(2), 147–155. DOI: 10.1016/0733-5210(95)90044-6.
  • Cejudo, F.J.; González, M.C.; Serrato, A.J.; Sánchez, R.; Domínguez, F. Function and Hormonal Control of Proteases in Cereal Grains. Recent Res. Dev. In Plant Physiol. 2001, 2, 57–65.
  • Martínez, M.; Abraham, Z.; Carbonero, P.; Díaz, I. Comparative Phylogenetic Analysis of Cystatin Gene Families from Arabidopsis, Rice and Barley. Mol. Genet. Genomics. 2005, 273(5), 423–432. DOI: 10.1007/s00438-005-1147-4.
  • Hammerton, R.W.; Ho, T.H.D. Hormonal Regulation of the Development of Protease and Carboxypeptidase Activities in Barley Aleurone Layers. Plant Physiol. 1982, 80(3), 692–697. DOI: 10.1104/pp.80.3.692.
  • Cejudo, F.J.; Murphy, G.; Chinoy, C.; Baulcombe, D.C. A Gibberellin-Regulated Gene from Wheat with Sequence Homology to Cathepsin B of Mammalian Cells. Plant J. 1992, 2(6), 937–948.
  • Mäkinen, O.E.; Zannini, E.; Arendt, E.K. Germination of Oat and Quinoa and Evaluation of the Malts as Gluten Free Baking Ingredients. Plant Foods Hum. Nutr. 2013, 68(1), 90–95. DOI: 10.1007/s11130-013-0335-3.
  • Mäkinen, O.E.; Hager, A.S.; Arendt, E.K. Localisation and Development of Proteolytic Activities in Quinoa (Chenopodium Quinoa) Seeds during Germination and Early Seedling Growth. J. Cereal Sci. 2014, 60(3), 484–489. DOI: 10.1016/j.jcs.2014.08.009.
  • Koehler, S.; Ho, T.H.D. Purification and Characterization of the Gibberellic Acid-Induced Cysteine Endoproteinases in Barley Aleurone Layers. Plant Physiol. 1988, 87(1), 95–103.
  • Rogers, J.C.; Dean, D.; Heck, G.R. Aleurain: A Barley Thiol Protease Closely Related to Mammalian Cathepsin H. Proc. Natl. Acad. Sci. 1982, 82(19), 6512–6516. DOI: 10.1073/pnas.82.19.6512.
  • Holwerda, B.C.; Galvin, N.J.; Baranski, T.J.; Rogers, J.C. In Vitro Processing of Aleurain, a Barley Vacuolar Thiol Protease. Plant Cell. 1990, 2(11), 1091–1106. DOI: 10.1105/tpc.2.11.1091.
  • Holwerda, B.C.; Rogers, J.C. Purification and Characterization of Aleurain: A Plant Thiol Protease Functionally Homologous to Mammalian Cathepsin H. Plant Physiol. 1992, 99(3), 848–855.
  • Bethke, P.C.; Hillmer, S.; Jones, R.L. Isolation of Intact Protein Storage Vacuoles from Barley Aleurone. Identification Aspartic Cysteine Proteases. Plant Physiol. 1996, 110(2), 521–529.
  • Jones, B.L.;. Endoproteases of Barley and Malt. J. Cereal Sci. 2005, 42(2), 139–156. DOI: 10.1016/j.jcs.2005.03.007.
  • Chen, J.; Ouyang, Y.; Wang, L.; Xie, W.; Zhang, Q. Aspartic Proteases Gene Family in Rice: Gene Structure and Expression, Predicted Protein Features and Phylogenetic Relation. Gene. 2009, 442(1), 108–118. DOI: 10.1016/j.gene.2009.04.021.
  • Wrobel, R.; Jones, B.L. Identification and Partial Characterization of High Mr Neutral Proteases from 4-Day Germinated Barley Seed. J. Cereal Sci. 1993, 18(3), 225–237. DOI: 10.1006/jcrs.1993.1049.
  • Sundblom, N.O.; Mikola, J. On the Nature of the Proteases Secreted by the Aleurone Layer of Barley Grain. Physiol. Plant. 1972, 27(3), 281–284. DOI: 10.1111/j.1399-3054.1972.tb03615.x.
  • Bewley, J.D.; Black, M. Germination, Structure and Composition. In Seeds - Physiology of Development and Germination; Plenum Press: New York, 1994; pp 1–33.
  • Van der Hoorn, R.A.L.; Leeuwenburgh, M.A.; Bogyo, M.; Joosten, M.H.A.J.; Peck, S.C. Activity Profiling of Papain-Like Cysteine Proteases in Plants. Plant Physiol. 2004, 135, 1170–1178. DOI: 10.1104/pp.104.041467.
  • Clarke, N.A.; Wilkinson, M.C.; Laidman, D.L. Lipid Metabolism in Germinating Cereals. In Lipids in Cereal Technology; Barnes, P.J., Ed.; Academic Press: London, 1983; pp 57–92.
  • Vijayakumar, K.R.; Gowda, L.R. Temporal Expression Profiling of Lipase during Germination and Rice Caryopsis Development. Plant Physiol. Biochem. 2012, 57, 245–253. DOI: 10.1016/j.plaphy.2012.05.028.
  • Neuberger, T.; Sreenivasulu, N.; Rokitta, M.; Rolletschek, H.; Göbel, C.; Rutten, T.; Radchuk, V.; Feussner, I.; Wobus, U.; Jakob, P.; Webb, A.; Borisjuk, L. Quantitative Imaging of Oil Storage in Developing Crop Seeds. Plant Biotechnol. J. 2008, 6(1), 31–45. DOI: 10.1111/j.1467-7652.2007.00294.x.
  • Barthole, G.; Lepiniec, L.; Rogowsky, P.M.; Baud, S. Controlling Lipid Accumulation in Cereal Grains. Plant Sci. 2012, 185, 33–39. DOI: 10.1016/j.plantsci.2011.09.002.
  • Huang, A.H.; Moreau, R.A. Lipases in the Storage Tissue of Peanut and Other Oilseeds during Germination. Plant. 1978, 141(1), 111–116. DOI: 10.1007/BF00387752.
  • Taverner, R.J.A.; Laidman, D.L. The Induction of Lipase Activity in the Germinating Wheat Grain. Phytochem.. 1972, 11(3), 989–997. DOI: 10.1016/S0031-9422(00)88443-5.
  • Matlashewski, G.J.; Urquhart, A.A.; Sahasrabudhe, M.R.; Altosaar, I. Lipase Activity in Oat Flour Suspensions and Soluble Extracts. Cereal Chem. 1982, 59(5), 418–422.
  • Baxter, D.E.;. Recognition of Two Lipases from Barley and Green Malt. J. Inst. Brewing. 1984, 90(4), 277–281. DOI: 10.1002/j.2050-0416.1984.tb04273.x.
  • Peterson, D.M.;. Lipase Activity and Lipid Metabolism during Oat Malting. Cereal Chem.. 1999, 76(1), 159–163. DOI: 10.1094/CCHEM.1999.76.1.159.
  • Berner, D.L.; Hammond, E.G. Phylogeny of Lipase Specificity. Lipids. 1970, 5(6), 558–562.
  • Leonova, S.; Grimberg, Å.; Marttila, S.; Stymne, S.; Carlsson, A.S. (2010) Mobilization of Lipid Reserves during Germination of Oat (Avena Sativa L.), A Cereal Rich in Endosperm Oil. J. Exp. Bot.. 2010, 61(11), 3089–3099. DOI: 10.1093/jxb/erq141.
  • Hidayat, C.; Hastuti, P.; Utazmi, S.; Wardhani, A.K.; Pradipta, S. Enhancing Indigenous Lipase Activity of Germinated Jatropha Curcas L. Seeds Enzymatic Degradation Phorbol Ester, Biocatalysis Agricultural Biotechnol. 2014, 3(3), 71–76. DOI: 10.1016/j.bcab.2014.02.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.